Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--random_regression_order", action="store_true", default=False)
68
69 parser.add_argument("--no_checkpoint", action="store_true", default=False)
70
71 parser.add_argument("--overwrite_results", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ##############################
85 # one-shot prediction
86
87 parser.add_argument("--oneshot", action="store_true", default=False)
88
89 parser.add_argument("--oneshot_input", type=str, default="head")
90
91 parser.add_argument("--oneshot_output", type=str, default="trace")
92
93 ######################################################################
94
95 args = parser.parse_args()
96
97 try:
98     os.mkdir(args.result_dir)
99 except FileExistsError:
100     if not args.overwrite_results:
101         print(f"result directory {args.result_dir} already exists")
102         exit(1)
103
104 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
105
106 if args.seed >= 0:
107     # torch.backends.cudnn.deterministic = True
108     # torch.backends.cudnn.benchmark = False
109     # torch.use_deterministic_algorithms(True)
110     torch.manual_seed(args.seed)
111     if torch.cuda.is_available():
112         torch.cuda.manual_seed_all(args.seed)
113
114 ######################################################################
115
116
117 def log_string(s):
118     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
119
120     if log_file is not None:
121         log_file.write(t + s + "\n")
122         log_file.flush()
123
124     print(t + s)
125     sys.stdout.flush()
126
127
128 for n in vars(args):
129     log_string(f"args.{n} {getattr(args, n)}")
130
131 ######################################################################
132
133
134 def generation_order(x, fixed_len):
135     if args.random_regression_order:
136         order = torch.rand(x.size(), device=x.device)
137         order[:, :fixed_len] = torch.linspace(-2, -1, fixed_len, device=order.device)
138         order = order.sort(1).indices
139     else:
140         order = (
141             torch.arange(x.size(1), device=x.device).unsqueeze(0).expand(x.size(0), -1)
142         )
143     return order
144
145
146 def reorder(x, order, back=False):  # x is NxTxD1x...xDk, order is NxT'
147     u = x.reshape(x.size()[:2] + (-1,))
148     order = order.unsqueeze(-1).expand(-1, -1, u.size(-1))
149     if back:
150         v = u.new(u.size())
151         v.scatter_(1, order, u)
152     else:
153         v = u.gather(1, order)
154     v = v.reshape(v.size()[:2] + x.size()[2:])
155     return v
156
157
158 def shuffle(x, fixed_len):
159     order = generation_order(x, fixed_len)
160     return reorder(x, order), order
161
162
163 ######################################################################
164
165 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
166 # tokens that should be generated
167
168
169 def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
170     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
171         i = (ar_mask.sum(0) > 0).nonzero()
172         if i.min() > 0:
173             # Needed to initialize the model's cache
174             model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
175         for s in range(i.min(), i.max() + 1):
176             output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
177             logits = output[:, s]
178             if args.deterministic_synthesis:
179                 t_next = logits.argmax(1)
180             else:
181                 dist = torch.distributions.categorical.Categorical(logits=logits)
182                 t_next = dist.sample()
183             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
184
185
186 ######################################################################
187
188
189 def compute_perplexity(model, fixed_len, split="train"):
190     with torch.autograd.no_grad():
191         t = model.training
192         model.eval()
193
194         nb_samples, acc_loss = 0, 0.0
195
196         for input in task.batches(split=split):
197             input = input.to(device)
198             x, order = shuffle(input, fixed_len)
199             x = model(mygpt.BracketedSequence(x), order=order).x
200             output = reorder(x, order, back=True)
201             loss = F.cross_entropy(output.transpose(1, 2), input)
202             acc_loss += loss.item() * input.size(0)
203             nb_samples += input.size(0)
204
205         model.train(t)
206
207         return math.exp(min(100, acc_loss / nb_samples))
208
209
210 ######################################################################
211
212
213 def oneshot_policy_loss(mazes, output, policies, height, width):
214     masks = (mazes == maze.v_empty).unsqueeze(-1)
215     targets = policies.permute(0, 2, 1) * masks
216     output = output * masks
217     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
218
219
220 def oneshot_trace_loss(mazes, output, policies, height, width):
221     masks = mazes == maze.v_empty
222     targets = maze.stationary_densities(
223         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
224     ).flatten(-2)
225     targets = targets * masks
226     output = output.squeeze(-1) * masks
227     return (output - targets).abs().sum() / masks.sum()
228
229
230 def oneshot(gpt, task):
231     t = gpt.training
232     gpt.eval()
233
234     if args.oneshot_input == "head":
235         dim_in = args.dim_model
236     elif args.oneshot_input == "deep":
237         dim_in = args.dim_model * args.nb_blocks * 2
238     else:
239         raise ValueError(f"{args.oneshot_input=}")
240
241     if args.oneshot_output == "policy":
242         dim_out = 4
243         compute_loss = oneshot_policy_loss
244     elif args.oneshot_output == "trace":
245         dim_out = 1
246         compute_loss = oneshot_trace_loss
247     else:
248         raise ValueError(f"{args.oneshot_output=}")
249
250     model = nn.Sequential(
251         nn.Linear(dim_in, args.dim_model),
252         nn.ReLU(),
253         nn.Linear(args.dim_model, args.dim_model),
254         nn.ReLU(),
255         nn.Linear(args.dim_model, dim_out),
256     ).to(device)
257
258     for n_epoch in range(args.nb_epochs):
259         learning_rate = learning_rate_schedule[n_epoch]
260         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
261
262         acc_train_loss, nb_train_samples = 0, 0
263         for mazes, policies in task.policy_batches(split="train"):
264             x, order = shuffle(mazes, task.height * task.width)
265             x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
266             output_gpt = reorder(x, order, back=True)
267             output = model(output_gpt)
268
269             loss = compute_loss(mazes, output, policies, task.height, task.width)
270             acc_train_loss += loss.item() * mazes.size(0)
271             nb_train_samples += mazes.size(0)
272
273             optimizer.zero_grad()
274             loss.backward()
275             optimizer.step()
276
277         acc_test_loss, nb_test_samples = 0, 0
278         for mazes, policies in task.policy_batches(split="test"):
279             x, order = shuffle(mazes, task.height * task.width)
280             x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
281             output_gpt = reorder(x, order, back=True)
282             output = model(output_gpt)
283             loss = compute_loss(mazes, output, policies, task.height, task.width)
284             acc_test_loss += loss.item() * mazes.size(0)
285             nb_test_samples += mazes.size(0)
286
287         log_string(
288             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
289         )
290
291         # -------------------
292         mazes = task.test_input[:32, : task.height * task.width]
293         policies = task.test_policies[:32]
294         x, order = shuffle(mazes, task.height * task.width)
295         x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
296         output_gpt = reorder(x, order, back=True)
297         output = model(output_gpt)
298         if args.oneshot_output == "policy":
299             targets = policies.permute(0, 2, 1)
300             scores = (
301                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
302             ).float()
303         elif args.oneshot_output == "trace":
304             targets = maze.stationary_densities(
305                 mazes.view(-1, task.height, task.width),
306                 policies.view(-1, 4, task.height, task.width),
307             ).flatten(-2)
308             scores = output
309         else:
310             raise ValueError(f"{args.oneshot_output=}")
311
312         scores = scores.reshape(-1, task.height, task.width)
313         mazes = mazes.reshape(-1, task.height, task.width)
314         targets = targets.reshape(-1, task.height, task.width)
315         maze.save_image(
316             os.path.join(
317                 args.result_dir,
318                 f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png",
319             ),
320             mazes=mazes,
321             score_paths=scores,
322             score_truth=targets,
323         )
324         # -------------------
325
326     gpt.train(t)
327
328
329 ######################################################################
330
331
332 class Task:
333     def batches(self, split="train", nb_to_use=-1, desc=None):
334         pass
335
336     def vocabulary_size(self):
337         pass
338
339     def produce_results(self, n_epoch, model):
340         pass
341
342
343 ######################################################################
344
345 import maze
346
347
348 class TaskMaze(Task):
349     def map2seq(self, *m):
350         return torch.cat([x.flatten(1) for x in m], 1)
351
352     def seq2map(self, s):
353         s = s.reshape(s.size(0), -1, self.height, self.width)
354         return (s[:, k] for k in range(s.size(1)))
355
356     def __init__(
357         self,
358         nb_train_samples,
359         nb_test_samples,
360         batch_size,
361         height,
362         width,
363         nb_walls,
364         device=torch.device("cpu"),
365     ):
366         self.batch_size = batch_size
367         self.height = height
368         self.width = width
369         self.device = device
370
371         train_mazes, train_paths, train_policies = maze.create_maze_data(
372             nb_train_samples,
373             height=height,
374             width=width,
375             nb_walls=nb_walls,
376             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
377         )
378         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
379         self.train_policies = train_policies.flatten(-2).to(device)
380
381         test_mazes, test_paths, test_policies = maze.create_maze_data(
382             nb_test_samples,
383             height=height,
384             width=width,
385             nb_walls=nb_walls,
386             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
387         )
388         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
389         self.test_policies = test_policies.flatten(-2).to(device)
390
391         self.nb_codes = self.train_input.max() + 1
392
393     def batches(self, split="train", nb_to_use=-1, desc=None):
394         assert split in {"train", "test"}
395         input = self.train_input if split == "train" else self.test_input
396         if nb_to_use > 0:
397             input = input[:nb_to_use]
398         if desc is None:
399             desc = f"epoch-{split}"
400         for batch in tqdm.tqdm(
401             input.split(self.batch_size), dynamic_ncols=True, desc=desc
402         ):
403             yield batch
404
405     def policy_batches(self, split="train", nb_to_use=-1, desc=None):
406         assert split in {"train", "test"}
407         input = self.train_input if split == "train" else self.test_input
408         policies = self.train_policies if split == "train" else self.test_policies
409         input = input[:, : self.height * self.width]
410         policies = policies * (input != maze.v_wall)[:, None]
411
412         if nb_to_use > 0:
413             input = input[:nb_to_use]
414             policies = policies[:nb_to_use]
415
416         if desc is None:
417             desc = f"epoch-{split}"
418         for batch in tqdm.tqdm(
419             zip(input.split(self.batch_size), policies.split(self.batch_size)),
420             dynamic_ncols=True,
421             desc=desc,
422         ):
423             yield batch
424
425     def vocabulary_size(self):
426         return self.nb_codes
427
428     def compute_error(self, model, split="train", nb_to_use=-1):
429         nb_total, nb_correct = 0, 0
430         for input in task.batches(split, nb_to_use):
431             result = input.clone()
432             ar_mask = result.new_zeros(result.size())
433             ar_mask[:, self.height * self.width :] = 1
434             result *= 1 - ar_mask
435             x, order = shuffle(result, self.height * self.width)
436             masked_inplace_autoregression(
437                 model, self.batch_size, x, ar_mask, order=order
438             )
439             result = reorder(x, order, back=True)
440             mazes, paths = self.seq2map(result)
441             nb_correct += maze.path_correctness(mazes, paths).long().sum()
442             nb_total += mazes.size(0)
443
444         return nb_total, nb_correct
445
446     def produce_results(self, n_epoch, model):
447         with torch.autograd.no_grad():
448             t = model.training
449             model.eval()
450
451             train_nb_total, train_nb_correct = self.compute_error(
452                 model, "train", nb_to_use=1000
453             )
454             log_string(
455                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
456             )
457
458             test_nb_total, test_nb_correct = self.compute_error(
459                 model, "test", nb_to_use=1000
460             )
461             log_string(
462                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
463             )
464
465             input = self.test_input[:32]
466             result = input.clone()
467             ar_mask = result.new_zeros(result.size())
468             ar_mask[:, self.height * self.width :] = 1
469             result *= 1 - ar_mask
470             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
471
472             mazes, paths = self.seq2map(input)
473             _, predicted_paths = self.seq2map(result)
474             maze.save_image(
475                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
476                 mazes=mazes,
477                 target_paths=paths,
478                 predicted_paths=predicted_paths,
479                 path_correct=maze.path_correctness(mazes, predicted_paths),
480             )
481
482             model.train(t)
483
484
485 ######################################################################
486
487 log_string(f"device {device}")
488
489
490 task = TaskMaze(
491     nb_train_samples=args.nb_train_samples,
492     nb_test_samples=args.nb_test_samples,
493     batch_size=args.batch_size,
494     height=args.maze_height,
495     width=args.maze_width,
496     nb_walls=args.maze_nb_walls,
497     device=device,
498 )
499
500
501 vocabulary_size = task.vocabulary_size()
502
503 log_string(f"vocabulary_size {vocabulary_size}")
504
505 ##############################
506
507 model = mygpt.MyGPT(
508     vocabulary_size=vocabulary_size,
509     dim_model=args.dim_model,
510     dim_keys=args.dim_keys,
511     dim_hidden=args.dim_hidden,
512     nb_heads=args.nb_heads,
513     nb_blocks=args.nb_blocks,
514     causal=True,
515     dropout=args.dropout,
516 )
517
518 model.to(device)
519
520 nb_parameters = sum(p.numel() for p in model.parameters())
521 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
522
523 ######################################################################
524
525 nb_epochs_finished = 0
526
527 if args.no_checkpoint:
528     log_string(f"not trying to load checkpoint.")
529
530 else:
531     try:
532         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
533         checkpoint = torch.load(checkpoint_name)
534         nb_epochs_finished = checkpoint["nb_epochs_finished"]
535         model.load_state_dict(checkpoint["model_state"])
536         torch.set_rng_state(checkpoint["rng_state"])
537         if torch.cuda.is_available():
538             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
539
540         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
541
542     except FileNotFoundError:
543         log_string("starting from scratch.")
544
545     except:
546         log_string("error when loading the checkpoint.")
547         exit(1)
548
549 ######################################################################
550
551 token_count = 0
552 for input in task.batches(split="train"):
553     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
554 token_probas = token_count / token_count.sum()
555 entropy = -torch.xlogy(token_probas, token_probas).sum()
556 train_set_perplexity = math.exp(entropy)
557
558 ##############################
559
560 if args.learning_rate_schedule == "cos":
561     learning_rate_schedule = {}
562     for n_epoch in range(args.nb_epochs):
563         u = n_epoch / args.nb_epochs * math.pi
564         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
565 else:
566     u = {
567         int(k): float(v)
568         for k, v in [
569             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
570         ]
571     }
572
573     learning_rate_schedule = {}
574     learning_rate = args.learning_rate
575     for n_epoch in range(args.nb_epochs):
576         if n_epoch in u:
577             learning_rate = u[n_epoch]
578         learning_rate_schedule[n_epoch] = learning_rate
579
580 log_string(f"learning_rate_schedule {learning_rate_schedule}")
581
582 ##############################
583
584 if nb_epochs_finished >= args.nb_epochs:
585     n_epoch = nb_epochs_finished
586     train_perplexity = compute_perplexity(
587         model, fixed_len=task.height * task.width, split="train"
588     )
589     test_perplexity = compute_perplexity(
590         model, fixed_len=task.height * task.width, split="test"
591     )
592
593     log_string(
594         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
595     )
596
597     task.produce_results(n_epoch, model)
598
599 ##############################
600
601 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
602     learning_rate = learning_rate_schedule[n_epoch]
603
604     log_string(f"learning_rate {learning_rate}")
605
606     if args.optim == "sgd":
607         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
608     elif args.optim == "adam":
609         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
610     elif args.optim == "adamw":
611         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
612     else:
613         raise ValueError(f"{args.optim=}")
614
615     model.train()
616
617     nb_train_samples, acc_train_loss = 0, 0.0
618
619     for input in task.batches(split="train"):
620         input = input.to(device)
621         x, order = shuffle(input, task.height * task.width)
622         x = model(mygpt.BracketedSequence(x), order=order).x
623         output = reorder(x, order, back=True)
624         loss = F.cross_entropy(output.transpose(1, 2), input)
625         acc_train_loss += loss.item() * input.size(0)
626         nb_train_samples += input.size(0)
627
628         optimizer.zero_grad()
629         loss.backward()
630         optimizer.step()
631
632     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
633     test_perplexity = compute_perplexity(
634         model, fixed_len=task.height * task.width, split="test"
635     )
636
637     log_string(
638         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
639     )
640
641     task.produce_results(n_epoch, model)
642
643     checkpoint = {
644         "nb_epochs_finished": n_epoch + 1,
645         "model_state": model.state_dict(),
646         "rng_state": torch.get_rng_state(),
647     }
648
649     if torch.cuda.is_available():
650         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
651
652     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
653     torch.save(checkpoint, checkpoint_name)
654     log_string(f"saved checkpoint {checkpoint_name}")
655
656 ######################################################################
657
658 if args.oneshot:
659     oneshot(model, task)
660
661 ######################################################################