Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--random_regression_order", action="store_true", default=False)
68
69 parser.add_argument("--no_checkpoint", action="store_true", default=False)
70
71 parser.add_argument("--overwrite_results", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ##############################
85 # one-shot prediction
86
87 parser.add_argument("--oneshot", action="store_true", default=False)
88
89 parser.add_argument("--oneshot_input", type=str, default="head")
90
91 parser.add_argument("--oneshot_output", type=str, default="trace")
92
93 ######################################################################
94
95 args = parser.parse_args()
96
97 try:
98     os.mkdir(args.result_dir)
99 except FileExistsError:
100     if not args.overwrite_results:
101         print(f"result directory {args.result_dir} already exists")
102         exit(1)
103
104 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
105
106 if args.seed >= 0:
107     # torch.backends.cudnn.deterministic = True
108     # torch.backends.cudnn.benchmark = False
109     # torch.use_deterministic_algorithms(True)
110     torch.manual_seed(args.seed)
111     if torch.cuda.is_available():
112         torch.cuda.manual_seed_all(args.seed)
113
114 ######################################################################
115
116
117 def log_string(s):
118     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
119
120     if log_file is not None:
121         log_file.write(t + s + "\n")
122         log_file.flush()
123
124     print(t + s)
125     sys.stdout.flush()
126
127
128 for n in vars(args):
129     log_string(f"args.{n} {getattr(args, n)}")
130
131 ######################################################################
132
133
134 def generation_order(x, fixed_len):
135     if args.random_regression_order:
136         order = torch.rand(x.size(), device=x.device)
137         order[:, :fixed_len] = torch.linspace(-2, -1, fixed_len, device=order.device)
138         order = order.sort(1).indices
139     else:
140         order = (
141             torch.arange(x.size(1), device=x.device).unsqueeze(0).expand(x.size(0), -1)
142         )
143     return order
144
145
146 def reorder(x, order, back=False):  # x is NxTxD1x...xDk, order is NxT'
147     u = x.reshape(x.size()[:2] + (-1,))
148     order = order.unsqueeze(-1).expand(-1, -1, u.size(-1))
149     if back:
150         v = u.new(u.size())
151         v.scatter_(1, order, u)
152     else:
153         v = u.gather(1, order)
154     v = v.reshape(v.size()[:2] + x.size()[2:])
155     return v
156
157
158 def shuffle(x, fixed_len):
159     order = generation_order(x, fixed_len)
160     return reorder(x, order), order
161
162
163 ######################################################################
164
165 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
166 # tokens that should be generated
167
168
169 def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
170     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
171         i = (ar_mask.sum(0) > 0).nonzero()
172         if i.min() > 0:
173             # Needed to initialize the model's cache
174             model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
175         for s in range(i.min(), i.max() + 1):
176             output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
177             logits = output[:, s]
178             if args.deterministic_synthesis:
179                 t_next = logits.argmax(1)
180             else:
181                 dist = torch.distributions.categorical.Categorical(logits=logits)
182                 t_next = dist.sample()
183             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
184
185
186 ######################################################################
187
188
189 def compute_perplexity(model, split="train"):
190     with torch.autograd.no_grad():
191         t = model.training
192         model.eval()
193
194         nb_samples, acc_loss = 0, 0.0
195
196         for input in task.batches(split=split):
197             input = input.to(device)
198             input, order = shuffle(input, task.height * task.width)
199             output = model(mygpt.BracketedSequence(input), order=order).x
200             loss = F.cross_entropy(output.transpose(1, 2), input)
201             acc_loss += loss.item() * input.size(0)
202             nb_samples += input.size(0)
203
204         model.train(t)
205
206         return math.exp(min(100, acc_loss / nb_samples))
207
208
209 ######################################################################
210
211
212 def oneshot_policy_loss(mazes, output, policies, height, width):
213     masks = (mazes == maze.v_empty).unsqueeze(-1)
214     targets = policies.permute(0, 2, 1) * masks
215     output = output * masks
216     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
217
218
219 def oneshot_trace_loss(mazes, output, policies, height, width):
220     masks = mazes == maze.v_empty
221     targets = maze.stationary_densities(
222         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
223     ).flatten(-2)
224     targets = targets * masks
225     output = output.squeeze(-1) * masks
226     return (output - targets).abs().sum() / masks.sum()
227
228
229 def oneshot(gpt, task):
230     t = gpt.training
231     gpt.eval()
232
233     if args.oneshot_input == "head":
234         dim_in = args.dim_model
235     elif args.oneshot_input == "deep":
236         dim_in = args.dim_model * args.nb_blocks * 2
237     else:
238         raise ValueError(f"{args.oneshot_input=}")
239
240     if args.oneshot_output == "policy":
241         dim_out = 4
242         compute_loss = oneshot_policy_loss
243     elif args.oneshot_output == "trace":
244         dim_out = 1
245         compute_loss = oneshot_trace_loss
246     else:
247         raise ValueError(f"{args.oneshot_output=}")
248
249     model = nn.Sequential(
250         nn.Linear(dim_in, args.dim_model),
251         nn.ReLU(),
252         nn.Linear(args.dim_model, args.dim_model),
253         nn.ReLU(),
254         nn.Linear(args.dim_model, dim_out),
255     ).to(device)
256
257     for n_epoch in range(args.nb_epochs):
258         learning_rate = learning_rate_schedule[n_epoch]
259         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
260
261         acc_train_loss, nb_train_samples = 0, 0
262         for mazes, policies in task.policy_batches(split="train"):
263             x, order = shuffle(mazes, task.height * task.width)
264             x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
265             output_gpt = reorder(x, order, back=True)
266             output = model(output_gpt)
267
268             loss = compute_loss(mazes, output, policies, task.height, task.width)
269             acc_train_loss += loss.item() * mazes.size(0)
270             nb_train_samples += mazes.size(0)
271
272             optimizer.zero_grad()
273             loss.backward()
274             optimizer.step()
275
276         acc_test_loss, nb_test_samples = 0, 0
277         for mazes, policies in task.policy_batches(split="test"):
278             x, order = shuffle(mazes, task.height * task.width)
279             x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
280             output_gpt = reorder(x, order, back=True)
281             output = model(output_gpt)
282             loss = compute_loss(mazes, output, policies, task.height, task.width)
283             acc_test_loss += loss.item() * mazes.size(0)
284             nb_test_samples += mazes.size(0)
285
286         log_string(
287             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
288         )
289
290         # -------------------
291         mazes = task.test_input[:32, : task.height * task.width]
292         policies = task.test_policies[:32]
293         x, order = shuffle(mazes, task.height * task.width)
294         x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
295         output_gpt = reorder(x, order, back=True)
296         output = model(output_gpt)
297         if args.oneshot_output == "policy":
298             targets = policies.permute(0, 2, 1)
299             scores = (
300                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
301             ).float()
302         elif args.oneshot_output == "trace":
303             targets = maze.stationary_densities(
304                 mazes.view(-1, task.height, task.width),
305                 policies.view(-1, 4, task.height, task.width),
306             ).flatten(-2)
307             scores = output
308         else:
309             raise ValueError(f"{args.oneshot_output=}")
310
311         scores = scores.reshape(-1, task.height, task.width)
312         mazes = mazes.reshape(-1, task.height, task.width)
313         targets = targets.reshape(-1, task.height, task.width)
314         maze.save_image(
315             os.path.join(
316                 args.result_dir,
317                 f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png",
318             ),
319             mazes=mazes,
320             score_paths=scores,
321             score_truth=targets,
322         )
323         # -------------------
324
325     gpt.train(t)
326
327
328 ######################################################################
329
330
331 class Task:
332     def batches(self, split="train", nb_to_use=-1, desc=None):
333         pass
334
335     def vocabulary_size(self):
336         pass
337
338     def produce_results(self, n_epoch, model):
339         pass
340
341
342 ######################################################################
343
344 import maze
345
346
347 class TaskMaze(Task):
348     def map2seq(self, *m):
349         return torch.cat([x.flatten(1) for x in m], 1)
350
351     def seq2map(self, s):
352         s = s.reshape(s.size(0), -1, self.height, self.width)
353         return (s[:, k] for k in range(s.size(1)))
354
355     def __init__(
356         self,
357         nb_train_samples,
358         nb_test_samples,
359         batch_size,
360         height,
361         width,
362         nb_walls,
363         device=torch.device("cpu"),
364     ):
365         self.batch_size = batch_size
366         self.height = height
367         self.width = width
368         self.device = device
369
370         train_mazes, train_paths, train_policies = maze.create_maze_data(
371             nb_train_samples,
372             height=height,
373             width=width,
374             nb_walls=nb_walls,
375             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
376         )
377         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
378         self.train_policies = train_policies.flatten(-2).to(device)
379
380         test_mazes, test_paths, test_policies = maze.create_maze_data(
381             nb_test_samples,
382             height=height,
383             width=width,
384             nb_walls=nb_walls,
385             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
386         )
387         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
388         self.test_policies = test_policies.flatten(-2).to(device)
389
390         self.nb_codes = self.train_input.max() + 1
391
392     def batches(self, split="train", nb_to_use=-1, desc=None):
393         assert split in {"train", "test"}
394         input = self.train_input if split == "train" else self.test_input
395         if nb_to_use > 0:
396             input = input[:nb_to_use]
397         if desc is None:
398             desc = f"epoch-{split}"
399         for batch in tqdm.tqdm(
400             input.split(self.batch_size), dynamic_ncols=True, desc=desc
401         ):
402             yield batch
403
404     def policy_batches(self, split="train", nb_to_use=-1, desc=None):
405         assert split in {"train", "test"}
406         input = self.train_input if split == "train" else self.test_input
407         policies = self.train_policies if split == "train" else self.test_policies
408         input = input[:, : self.height * self.width]
409         policies = policies * (input != maze.v_wall)[:, None]
410
411         if nb_to_use > 0:
412             input = input[:nb_to_use]
413             policies = policies[:nb_to_use]
414
415         if desc is None:
416             desc = f"epoch-{split}"
417         for batch in tqdm.tqdm(
418             zip(input.split(self.batch_size), policies.split(self.batch_size)),
419             dynamic_ncols=True,
420             desc=desc,
421         ):
422             yield batch
423
424     def vocabulary_size(self):
425         return self.nb_codes
426
427     def compute_error(self, model, split="train", nb_to_use=-1):
428         nb_total, nb_correct = 0, 0
429         for input in task.batches(split, nb_to_use):
430             result = input.clone()
431             ar_mask = result.new_zeros(result.size())
432             ar_mask[:, self.height * self.width :] = 1
433             result *= 1 - ar_mask
434             result, order = shuffle(result, self.height * self.width)
435             masked_inplace_autoregression(
436                 model, self.batch_size, result, ar_mask, order=order
437             )
438             result = reorder(result, order, back=True)
439             mazes, paths = self.seq2map(result)
440             nb_correct += maze.path_correctness(mazes, paths).long().sum()
441             nb_total += mazes.size(0)
442
443         return nb_total, nb_correct
444
445     def produce_results(self, n_epoch, model):
446         with torch.autograd.no_grad():
447             t = model.training
448             model.eval()
449
450             train_nb_total, train_nb_correct = self.compute_error(
451                 model, "train", nb_to_use=1000
452             )
453             log_string(
454                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
455             )
456
457             test_nb_total, test_nb_correct = self.compute_error(
458                 model, "test", nb_to_use=1000
459             )
460             log_string(
461                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
462             )
463
464             input = self.test_input[:32]
465             result = input.clone()
466             ar_mask = result.new_zeros(result.size())
467             ar_mask[:, self.height * self.width :] = 1
468             result *= 1 - ar_mask
469             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
470
471             mazes, paths = self.seq2map(input)
472             _, predicted_paths = self.seq2map(result)
473             maze.save_image(
474                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
475                 mazes=mazes,
476                 target_paths=paths,
477                 predicted_paths=predicted_paths,
478                 path_correct=maze.path_correctness(mazes, predicted_paths),
479             )
480
481             model.train(t)
482
483
484 ######################################################################
485
486 log_string(f"device {device}")
487
488
489 task = TaskMaze(
490     nb_train_samples=args.nb_train_samples,
491     nb_test_samples=args.nb_test_samples,
492     batch_size=args.batch_size,
493     height=args.maze_height,
494     width=args.maze_width,
495     nb_walls=args.maze_nb_walls,
496     device=device,
497 )
498
499
500 vocabulary_size = task.vocabulary_size()
501
502 log_string(f"vocabulary_size {vocabulary_size}")
503
504 ##############################
505
506 model = mygpt.MyGPT(
507     vocabulary_size=vocabulary_size,
508     dim_model=args.dim_model,
509     dim_keys=args.dim_keys,
510     dim_hidden=args.dim_hidden,
511     nb_heads=args.nb_heads,
512     nb_blocks=args.nb_blocks,
513     causal=True,
514     dropout=args.dropout,
515 )
516
517 model.to(device)
518
519 nb_parameters = sum(p.numel() for p in model.parameters())
520 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
521
522 ######################################################################
523
524 nb_epochs_finished = 0
525
526 if args.no_checkpoint:
527     log_string(f"not trying to load checkpoint.")
528
529 else:
530     try:
531         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
532         checkpoint = torch.load(checkpoint_name)
533         nb_epochs_finished = checkpoint["nb_epochs_finished"]
534         model.load_state_dict(checkpoint["model_state"])
535         torch.set_rng_state(checkpoint["rng_state"])
536         if torch.cuda.is_available():
537             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
538
539         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
540
541     except FileNotFoundError:
542         log_string("starting from scratch.")
543
544     except:
545         log_string("error when loading the checkpoint.")
546         exit(1)
547
548 ######################################################################
549
550 token_count = 0
551 for input in task.batches(split="train"):
552     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
553 token_probas = token_count / token_count.sum()
554 entropy = -torch.xlogy(token_probas, token_probas).sum()
555 train_set_perplexity = math.exp(entropy)
556
557 ##############################
558
559 if args.learning_rate_schedule == "cos":
560     learning_rate_schedule = {}
561     for n_epoch in range(args.nb_epochs):
562         u = n_epoch / args.nb_epochs * math.pi
563         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
564 else:
565     u = {
566         int(k): float(v)
567         for k, v in [
568             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
569         ]
570     }
571
572     learning_rate_schedule = {}
573     learning_rate = args.learning_rate
574     for n_epoch in range(args.nb_epochs):
575         if n_epoch in u:
576             learning_rate = u[n_epoch]
577         learning_rate_schedule[n_epoch] = learning_rate
578
579 log_string(f"learning_rate_schedule {learning_rate_schedule}")
580
581 ##############################
582
583 if nb_epochs_finished >= args.nb_epochs:
584     n_epoch = nb_epochs_finished
585     train_perplexity = compute_perplexity(model, split="train")
586     test_perplexity = compute_perplexity(model, split="test")
587
588     log_string(
589         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
590     )
591
592     task.produce_results(n_epoch, model)
593
594 ##############################
595
596 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
597     learning_rate = learning_rate_schedule[n_epoch]
598
599     log_string(f"learning_rate {learning_rate}")
600
601     if args.optim == "sgd":
602         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
603     elif args.optim == "adam":
604         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
605     elif args.optim == "adamw":
606         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
607     else:
608         raise ValueError(f"{args.optim=}")
609
610     model.train()
611
612     nb_train_samples, acc_train_loss = 0, 0.0
613
614     for input in task.batches(split="train"):
615         input = input.to(device)
616         input, order = shuffle(input, task.height * task.width)
617         output = model(mygpt.BracketedSequence(input), order=order).x
618         loss = F.cross_entropy(output.transpose(1, 2), input)
619         acc_train_loss += loss.item() * input.size(0)
620         nb_train_samples += input.size(0)
621
622         optimizer.zero_grad()
623         loss.backward()
624         optimizer.step()
625
626     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
627     test_perplexity = compute_perplexity(model, split="test")
628
629     log_string(
630         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
631     )
632
633     task.produce_results(n_epoch, model)
634
635     checkpoint = {
636         "nb_epochs_finished": n_epoch + 1,
637         "model_state": model.state_dict(),
638         "rng_state": torch.get_rng_state(),
639     }
640
641     if torch.cuda.is_available():
642         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
643
644     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
645     torch.save(checkpoint, checkpoint_name)
646     log_string(f"saved checkpoint {checkpoint_name}")
647
648 ######################################################################
649
650 if args.oneshot:
651     oneshot(model, task)
652
653 ######################################################################