Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
68
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
70
71 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
72
73 ##############################
74 # maze options
75
76 parser.add_argument("--maze_height", type=int, default=13)
77
78 parser.add_argument("--maze_width", type=int, default=21)
79
80 parser.add_argument("--maze_nb_walls", type=int, default=15)
81
82 ##############################
83 # one-shot prediction
84
85 parser.add_argument("--oneshot", action="store_true", default=False)
86
87 parser.add_argument("--oneshot_input", type=str, default="head")
88
89 parser.add_argument("--oneshot_output", type=str, default="trace")
90
91 ######################################################################
92
93 args = parser.parse_args()
94
95 try:
96     os.mkdir(args.result_dir)
97 except FileExistsError:
98     if not args.overwrite_results:
99         print(f"result directory {args.result_dir} already exists")
100         exit(1)
101
102 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
103
104 if args.seed >= 0:
105     # torch.backends.cudnn.deterministic = True
106     # torch.backends.cudnn.benchmark = False
107     # torch.use_deterministic_algorithms(True)
108     torch.manual_seed(args.seed)
109     if torch.cuda.is_available():
110         torch.cuda.manual_seed_all(args.seed)
111
112 ######################################################################
113
114
115 def log_string(s):
116     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
117
118     if log_file is not None:
119         log_file.write(t + s + "\n")
120         log_file.flush()
121
122     print(t + s)
123     sys.stdout.flush()
124
125
126 for n in vars(args):
127     log_string(f"args.{n} {getattr(args, n)}")
128
129 ######################################################################
130
131
132 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
133 # tokens that should be generated
134
135
136 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
137     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
138         i = (ar_mask.sum(0) > 0).nonzero()
139         if i.min() > 0:
140             # Needed to initialize the model's cache
141             model(mygpt.BracketedSequence(input, 0, i.min()))
142         for s in range(i.min(), i.max() + 1):
143             output = model(mygpt.BracketedSequence(input, s, 1)).x
144             logits = output[:, s]
145             if args.deterministic_synthesis:
146                 t_next = logits.argmax(1)
147             else:
148                 dist = torch.distributions.categorical.Categorical(logits=logits)
149                 t_next = dist.sample()
150             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
151
152
153 ######################################################################
154
155
156 def compute_perplexity(model, split="train"):
157     with torch.autograd.no_grad():
158         t = model.training
159         model.eval()
160
161         nb_samples, acc_loss = 0, 0.0
162
163         for input in task.batches(split=split):
164             input = input.to(device)
165
166             output = model(mygpt.BracketedSequence(input)).x
167             loss = F.cross_entropy(output.transpose(1, 2), input)
168             acc_loss += loss.item() * input.size(0)
169             nb_samples += input.size(0)
170
171         model.train(t)
172
173         return math.exp(min(100, acc_loss / nb_samples))
174
175
176 ######################################################################
177
178
179 def oneshot_policy_loss(mazes, output, policies, height, width):
180     masks = (mazes == maze.v_empty).unsqueeze(-1)
181     targets = policies.permute(0, 2, 1) * masks
182     output = output * masks
183     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
184
185
186 def oneshot_trace_loss(mazes, output, policies, height, width):
187     masks = mazes == maze.v_empty
188     targets = maze.stationary_densities(
189         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
190     ).flatten(-2)
191     targets = targets * masks
192     output = output.squeeze(-1) * masks
193     return (output - targets).abs().sum() / masks.sum()
194
195
196 def oneshot(gpt, task):
197     t = gpt.training
198     gpt.eval()
199
200     if args.oneshot_input == "head":
201         dim_in = args.dim_model
202     elif args.oneshot_input == "deep":
203         dim_in = args.dim_model * args.nb_blocks * 2
204     else:
205         raise ValueError(f"{args.oneshot_input=}")
206
207     if args.oneshot_output == "policy":
208         dim_out = 4
209         compute_loss = oneshot_policy_loss
210     elif args.oneshot_output == "trace":
211         dim_out = 1
212         compute_loss = oneshot_trace_loss
213     else:
214         raise ValueError(f"{args.oneshot_output=}")
215
216     model = nn.Sequential(
217         nn.Linear(dim_in, args.dim_model),
218         nn.ReLU(),
219         nn.Linear(args.dim_model, args.dim_model),
220         nn.ReLU(),
221         nn.Linear(args.dim_model, dim_out),
222     ).to(device)
223
224     for n_epoch in range(args.nb_epochs):
225         learning_rate = learning_rate_schedule[n_epoch]
226         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
227
228         acc_train_loss, nb_train_samples = 0, 0
229         for mazes, policies in task.policy_batches(split="train"):
230             output_gpt = gpt(mygpt.BracketedSequence(mazes), mode=args.oneshot_input).x
231             output = model(output_gpt)
232
233             loss = compute_loss(mazes, output, policies, task.height, task.width)
234             acc_train_loss += loss.item() * mazes.size(0)
235             nb_train_samples += mazes.size(0)
236
237             optimizer.zero_grad()
238             loss.backward()
239             optimizer.step()
240
241         acc_test_loss, nb_test_samples = 0, 0
242         for mazes, policies in task.policy_batches(split="test"):
243             output_gpt = gpt(mygpt.BracketedSequence(mazes), mode=args.oneshot_input).x
244             output = model(output_gpt)
245             loss = compute_loss(mazes, output, policies, task.height, task.width)
246             acc_test_loss += loss.item() * mazes.size(0)
247             nb_test_samples += mazes.size(0)
248
249         log_string(
250             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
251         )
252
253         # -------------------
254         mazes = task.test_input[:32, : task.height * task.width]
255         policies = task.test_policies[:32]
256         output_gpt = gpt(mygpt.BracketedSequence(mazes), mode=args.oneshot_input).x
257         output = model(output_gpt)
258         if args.oneshot_output == "policy":
259             targets = policies.permute(0, 2, 1)
260             scores = (
261                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
262             ).float()
263         elif args.oneshot_output == "trace":
264             targets = maze.stationary_densities(
265                 mazes.view(-1, task.height, task.width),
266                 policies.view(-1, 4, task.height, task.width),
267             ).flatten(-2)
268             scores = output
269         else:
270             raise ValueError(f"{args.oneshot_output=}")
271
272         scores = scores.reshape(-1, task.height, task.width)
273         mazes = mazes.reshape(-1, task.height, task.width)
274         targets = targets.reshape(-1, task.height, task.width)
275         maze.save_image(
276             os.path.join(
277                 args.result_dir,
278                 f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png",
279             ),
280             mazes=mazes,
281             score_paths=scores,
282             score_truth=targets,
283         )
284         # -------------------
285
286     gpt.train(t)
287
288
289 ######################################################################
290
291
292 class Task:
293     def batches(self, split="train"):
294         pass
295
296     def vocabulary_size(self):
297         pass
298
299     def produce_results(self, n_epoch, model):
300         pass
301
302
303 ######################################################################
304
305 import maze
306
307
308 class TaskMaze(Task):
309     def map2seq(self, *m):
310         return torch.cat([x.flatten(1) for x in m], 1)
311
312     def seq2map(self, s):
313         s = s.reshape(s.size(0), -1, self.height, self.width)
314         return (s[:, k] for k in range(s.size(1)))
315
316     def __init__(
317         self,
318         nb_train_samples,
319         nb_test_samples,
320         batch_size,
321         height,
322         width,
323         nb_walls,
324         device=torch.device("cpu"),
325     ):
326         self.batch_size = batch_size
327         self.height = height
328         self.width = width
329         self.device = device
330
331         train_mazes, train_paths, train_policies = maze.create_maze_data(
332             nb_train_samples,
333             height=height,
334             width=width,
335             nb_walls=nb_walls,
336             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
337         )
338         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
339         self.train_policies = train_policies.flatten(-2).to(device)
340
341         test_mazes, test_paths, test_policies = maze.create_maze_data(
342             nb_test_samples,
343             height=height,
344             width=width,
345             nb_walls=nb_walls,
346             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
347         )
348         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
349         self.test_policies = test_policies.flatten(-2).to(device)
350
351         self.nb_codes = self.train_input.max() + 1
352
353     def batches(self, split="train", nb_to_use=-1):
354         assert split in {"train", "test"}
355         input = self.train_input if split == "train" else self.test_input
356         if nb_to_use > 0:
357             input = input[:nb_to_use]
358         for batch in tqdm.tqdm(
359             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
360         ):
361             yield batch
362
363     def policy_batches(self, split="train", nb_to_use=-1):
364         assert split in {"train", "test"}
365         input = self.train_input if split == "train" else self.test_input
366         policies = self.train_policies if split == "train" else self.test_policies
367         input = input[:, : self.height * self.width]
368         policies = policies * (input != maze.v_wall)[:, None]
369
370         if nb_to_use > 0:
371             input = input[:nb_to_use]
372             policies = policies[:nb_to_use]
373
374         for batch in tqdm.tqdm(
375             zip(input.split(self.batch_size), policies.split(self.batch_size)),
376             dynamic_ncols=True,
377             desc=f"epoch-{split}",
378         ):
379             yield batch
380
381     def vocabulary_size(self):
382         return self.nb_codes
383
384     def compute_error(self, model, split="train", nb_to_use=-1):
385         nb_total, nb_correct = 0, 0
386         for input in task.batches(split, nb_to_use):
387             result = input.clone()
388             ar_mask = result.new_zeros(result.size())
389             ar_mask[:, self.height * self.width :] = 1
390             result *= 1 - ar_mask
391             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
392             mazes, paths = self.seq2map(result)
393             nb_correct += maze.path_correctness(mazes, paths).long().sum()
394             nb_total += mazes.size(0)
395
396         return nb_total, nb_correct
397
398     def produce_results(self, n_epoch, model):
399         with torch.autograd.no_grad():
400             t = model.training
401             model.eval()
402
403             train_nb_total, train_nb_correct = self.compute_error(
404                 model, "train", nb_to_use=1000
405             )
406             log_string(
407                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
408             )
409
410             test_nb_total, test_nb_correct = self.compute_error(
411                 model, "test", nb_to_use=1000
412             )
413             log_string(
414                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
415             )
416
417             input = self.test_input[:32]
418             result = input.clone()
419             ar_mask = result.new_zeros(result.size())
420             ar_mask[:, self.height * self.width :] = 1
421             result *= 1 - ar_mask
422             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
423
424             mazes, paths = self.seq2map(input)
425             _, predicted_paths = self.seq2map(result)
426             maze.save_image(
427                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
428                 mazes=mazes,
429                 target_paths=paths,
430                 predicted_paths=predicted_paths,
431                 path_correct=maze.path_correctness(mazes, predicted_paths),
432             )
433
434             model.train(t)
435
436
437 ######################################################################
438
439 log_string(f"device {device}")
440
441
442 task = TaskMaze(
443     nb_train_samples=args.nb_train_samples,
444     nb_test_samples=args.nb_test_samples,
445     batch_size=args.batch_size,
446     height=args.maze_height,
447     width=args.maze_width,
448     nb_walls=args.maze_nb_walls,
449     device=device,
450 )
451
452
453 vocabulary_size = task.vocabulary_size()
454
455 log_string(f"vocabulary_size {vocabulary_size}")
456
457 ##############################
458
459 model = mygpt.MyGPT(
460     vocabulary_size=vocabulary_size,
461     dim_model=args.dim_model,
462     dim_keys=args.dim_keys,
463     dim_hidden=args.dim_hidden,
464     nb_heads=args.nb_heads,
465     nb_blocks=args.nb_blocks,
466     causal=True,
467     dropout=args.dropout,
468 )
469
470 model.to(device)
471
472 nb_parameters = sum(p.numel() for p in model.parameters())
473 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
474
475 ######################################################################
476
477 nb_epochs_finished = 0
478
479 if args.no_checkpoint:
480     log_string(f"not trying to load checkpoint.")
481
482 else:
483     try:
484         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
485         checkpoint = torch.load(checkpoint_name)
486         nb_epochs_finished = checkpoint["nb_epochs_finished"]
487         model.load_state_dict(checkpoint["model_state"])
488         torch.set_rng_state(checkpoint["rng_state"])
489         if torch.cuda.is_available():
490             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
491
492         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
493
494     except FileNotFoundError:
495         log_string("starting from scratch.")
496
497     except:
498         log_string("error when loading the checkpoint.")
499         exit(1)
500
501 ######################################################################
502
503 token_count = 0
504 for input in task.batches(split="train"):
505     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
506 token_probas = token_count / token_count.sum()
507 entropy = -torch.xlogy(token_probas, token_probas).sum()
508 train_set_perplexity = math.exp(entropy)
509
510 ##############################
511
512 if args.learning_rate_schedule == "cos":
513     learning_rate_schedule = {}
514     for n_epoch in range(args.nb_epochs):
515         u = n_epoch / args.nb_epochs * math.pi
516         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
517 else:
518     u = {
519         int(k): float(v)
520         for k, v in [
521             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
522         ]
523     }
524
525     learning_rate_schedule = {}
526     learning_rate = args.learning_rate
527     for n_epoch in range(args.nb_epochs):
528         if n_epoch in u:
529             learning_rate = u[n_epoch]
530         learning_rate_schedule[n_epoch] = learning_rate
531
532 log_string(f"learning_rate_schedule {learning_rate_schedule}")
533
534 ##############################
535
536 if nb_epochs_finished >= args.nb_epochs:
537     n_epoch = nb_epochs_finished
538     train_perplexity = compute_perplexity(model, split="train")
539     test_perplexity = compute_perplexity(model, split="test")
540
541     log_string(
542         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
543     )
544
545     task.produce_results(n_epoch, model)
546
547     exit(0)
548
549 ##############################
550
551 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
552     learning_rate = learning_rate_schedule[n_epoch]
553
554     log_string(f"learning_rate {learning_rate}")
555
556     if args.optim == "sgd":
557         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
558     elif args.optim == "adam":
559         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
560     elif args.optim == "adamw":
561         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
562     else:
563         raise ValueError(f"{args.optim=}")
564
565     model.train()
566
567     nb_train_samples, acc_train_loss = 0, 0.0
568
569     for input in task.batches(split="train"):
570         input = input.to(device)
571         output = model(mygpt.BracketedSequence(input)).x
572         loss = F.cross_entropy(output.transpose(1, 2), input)
573         acc_train_loss += loss.item() * input.size(0)
574         nb_train_samples += input.size(0)
575
576         optimizer.zero_grad()
577         loss.backward()
578         optimizer.step()
579
580     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
581     test_perplexity = compute_perplexity(model, split="test")
582
583     log_string(
584         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
585     )
586
587     task.produce_results(n_epoch, model)
588
589     checkpoint = {
590         "nb_epochs_finished": n_epoch + 1,
591         "model_state": model.state_dict(),
592         "rng_state": torch.get_rng_state(),
593     }
594
595     if torch.cuda.is_available():
596         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
597
598     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
599     torch.save(checkpoint, checkpoint_name)
600     log_string(f"saved checkpoint {checkpoint_name}")
601
602 ######################################################################
603
604 if args.oneshot:
605     oneshot(model, task)
606
607 ######################################################################