f395d223d5604c88a287f0e9f32a2834b6d3accd
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--random_regression_order", action="store_true", default=False)
68
69 parser.add_argument("--noncausal_prompt", action="store_true", default=False)
70
71 parser.add_argument("--no_checkpoint", action="store_true", default=False)
72
73 parser.add_argument("--overwrite_results", action="store_true", default=False)
74
75 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
76
77 ##############################
78 # maze options
79
80 parser.add_argument("--maze_height", type=int, default=13)
81
82 parser.add_argument("--maze_width", type=int, default=21)
83
84 parser.add_argument("--maze_nb_walls", type=int, default=15)
85
86 ##############################
87 # one-shot prediction
88
89 parser.add_argument("--oneshot", action="store_true", default=False)
90
91 parser.add_argument("--oneshot_input", type=str, default="head")
92
93 parser.add_argument("--oneshot_output", type=str, default="trace")
94
95 ######################################################################
96
97 args = parser.parse_args()
98
99 try:
100     os.mkdir(args.result_dir)
101 except FileExistsError:
102     if not args.overwrite_results:
103         print(f"result directory {args.result_dir} already exists")
104         exit(1)
105
106 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
107
108 if args.seed >= 0:
109     # torch.backends.cudnn.deterministic = True
110     # torch.backends.cudnn.benchmark = False
111     # torch.use_deterministic_algorithms(True)
112     torch.manual_seed(args.seed)
113     if torch.cuda.is_available():
114         torch.cuda.manual_seed_all(args.seed)
115
116 ######################################################################
117
118
119 def log_string(s):
120     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
121
122     if log_file is not None:
123         log_file.write(t + s + "\n")
124         log_file.flush()
125
126     print(t + s)
127     sys.stdout.flush()
128
129
130 for n in vars(args):
131     log_string(f"args.{n} {getattr(args, n)}")
132
133 ######################################################################
134
135
136 def reorder(x, order, reverse=False):  # x is NxTxD1x...xDk, order is NxT'
137     u = x.reshape(x.size()[:2] + (-1,))
138     order = order.unsqueeze(-1).expand(-1, -1, u.size(-1))
139     if reverse:
140         v = u.new(u.size()).scatter_(1, order, u)
141     else:
142         v = u.gather(1, order)
143     v = v.reshape(v.size()[:2] + x.size()[2:])
144     return v
145
146
147 def shuffle(x, prompt_len):
148     if args.random_regression_order:
149         order = torch.rand(x.size(), device=x.device)
150         order[:, :prompt_len] = torch.arange(-prompt_len, 0, device=x.device)
151         order = order.sort(1).indices
152     else:
153         order = (
154             torch.arange(x.size(1), device=x.device).unsqueeze(0).expand(x.size(0), -1)
155         )
156     return reorder(x, order), order
157
158
159 def eval_mygpt(model, input, mode="standard", prompt_len=0):
160     x, order = shuffle(input, prompt_len)
161     x = model(mygpt.BracketedSequence(x), mode=mode, order=order).x
162     return reorder(x, order, reverse=True)
163
164
165 ######################################################################
166
167 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
168 # tokens that should be generated
169
170
171 def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
172     for input, ar_mask, order in zip(
173         input.split(batch_size), ar_mask.split(batch_size), order.split(batch_size)
174     ):
175         i = (ar_mask.sum(0) > 0).nonzero()
176         if i.min() > 0:
177             # Needed to initialize the model's cache
178             model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
179         for s in range(i.min(), i.max() + 1):
180             output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
181             logits = output[:, s]
182             if args.deterministic_synthesis:
183                 t_next = logits.argmax(1)
184             else:
185                 dist = torch.distributions.categorical.Categorical(logits=logits)
186                 t_next = dist.sample()
187             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
188
189
190 ######################################################################
191
192
193 def compute_perplexity(model, task, prompt_len, split="train"):
194     with torch.autograd.no_grad():
195         t = model.training
196         model.eval()
197
198         nb_samples, acc_loss = 0, 0.0
199
200         for input in task.batches(split=split):
201             input = input.to(device)
202             output = eval_mygpt(model, input, prompt_len=prompt_len)
203             if args.noncausal_prompt:
204                 d = input.size(1) // 2
205                 loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:])
206             else:
207                 loss = F.cross_entropy(output.transpose(1, 2), input)
208             acc_loss += loss.item() * input.size(0)
209             nb_samples += input.size(0)
210
211         model.train(t)
212
213         return math.exp(min(100, acc_loss / nb_samples))
214
215
216 ######################################################################
217
218
219 def oneshot_policy_loss(mazes, output, policies, height, width):
220     masks = (mazes == maze.v_empty).unsqueeze(-1)
221     targets = policies.permute(0, 2, 1) * masks
222     output = output * masks
223     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
224
225
226 def oneshot_trace_loss(mazes, output, policies, height, width):
227     masks = mazes == maze.v_empty
228     targets = maze.stationary_densities(
229         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
230     ).flatten(-2)
231     targets = targets * masks
232     output = output.squeeze(-1) * masks
233     return (output - targets).abs().sum() / masks.sum()
234
235
236 def oneshot(gpt, learning_rate_scheduler, task):
237     t = gpt.training
238     gpt.eval()
239
240     if args.oneshot_input == "head":
241         dim_in = args.dim_model
242     elif args.oneshot_input == "deep":
243         dim_in = args.dim_model * args.nb_blocks * 2
244     else:
245         raise ValueError(f"{args.oneshot_input=}")
246
247     if args.oneshot_output == "policy":
248         dim_out = 4
249         compute_loss = oneshot_policy_loss
250     elif args.oneshot_output == "trace":
251         dim_out = 1
252         compute_loss = oneshot_trace_loss
253     else:
254         raise ValueError(f"{args.oneshot_output=}")
255
256     model = nn.Sequential(
257         nn.Linear(dim_in, args.dim_model),
258         nn.ReLU(),
259         nn.Linear(args.dim_model, args.dim_model),
260         nn.ReLU(),
261         nn.Linear(args.dim_model, dim_out),
262     ).to(device)
263
264     learning_rate_scheduler.reset()
265
266     for n_epoch in range(args.nb_epochs):
267         learning_rate = learning_rate_scheduler.learning_rate()
268         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
269
270         acc_train_loss, nb_train_samples = 0, 0
271         for mazes, policies in task.policy_batches(split="train"):
272             output_gpt = eval_mygpt(
273                 gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
274             )
275             output = model(output_gpt)
276
277             loss = compute_loss(mazes, output, policies, task.height, task.width)
278             acc_train_loss += loss.item() * mazes.size(0)
279             nb_train_samples += mazes.size(0)
280
281             optimizer.zero_grad()
282             loss.backward()
283             optimizer.step()
284
285         learning_rate_scheduler.update(n_epoch + 1, acc_train_loss)
286
287         acc_test_loss, nb_test_samples = 0, 0
288         for mazes, policies in task.policy_batches(split="test"):
289             output_gpt = eval_mygpt(
290                 gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
291             )
292             output = model(output_gpt)
293             loss = compute_loss(mazes, output, policies, task.height, task.width)
294             acc_test_loss += loss.item() * mazes.size(0)
295             nb_test_samples += mazes.size(0)
296
297         log_string(
298             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
299         )
300
301         # -------------------
302         mazes = task.test_input[:32, : task.height * task.width]
303         policies = task.test_policies[:32]
304         output_gpt = eval_mygpt(
305             gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
306         )
307         output = model(output_gpt)
308         if args.oneshot_output == "policy":
309             targets = policies.permute(0, 2, 1)
310             scores = (
311                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
312             ).float()
313         elif args.oneshot_output == "trace":
314             targets = maze.stationary_densities(
315                 mazes.view(-1, task.height, task.width),
316                 policies.view(-1, 4, task.height, task.width),
317             ).flatten(-2)
318             scores = output
319         else:
320             raise ValueError(f"{args.oneshot_output=}")
321
322         scores = scores.reshape(-1, task.height, task.width)
323         mazes = mazes.reshape(-1, task.height, task.width)
324         targets = targets.reshape(-1, task.height, task.width)
325         filename = (
326             f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png"
327         )
328         maze.save_image(
329             os.path.join(args.result_dir, filename),
330             mazes=mazes,
331             score_paths=scores,
332             score_truth=targets,
333         )
334         log_string(f"wrote {filename}")
335
336         # -------------------
337
338     gpt.train(t)
339
340
341 ######################################################################
342
343
344 class LearningRateScheduler:
345     def learning_rate(self):
346         pass
347
348     def update(self, nb_finished_epochs, loss):
349         pass
350
351     def reset(self):
352         pass
353
354     def get_state(self):
355         return vars(self)
356
357     def set_state(self, state):
358         for k, v in state.item():
359             setattr(self, k, v)
360
361
362 class StepWiseScheduler(LearningRateScheduler):
363     def __init__(self, schedule):
364         self.nb_finished_epochs = 0
365         self.schedule = schedule
366
367     def learning_rate(self):
368         return self.schedule[self.nb_finished_epochs]
369
370     def reset(self):
371         self.nb_finished_epochs = 0
372
373
374 ######################################################################
375
376
377 class Task:
378     def batches(self, split="train", nb_to_use=-1, desc=None):
379         pass
380
381     def vocabulary_size(self):
382         pass
383
384     def produce_results(self, n_epoch, model):
385         pass
386
387
388 ######################################################################
389
390 import maze
391
392
393 class TaskMaze(Task):
394     def map2seq(self, *m):
395         return torch.cat([x.flatten(1) for x in m], 1)
396
397     def seq2map(self, s):
398         s = s.reshape(s.size(0), -1, self.height, self.width)
399         return (s[:, k] for k in range(s.size(1)))
400
401     def __init__(
402         self,
403         nb_train_samples,
404         nb_test_samples,
405         batch_size,
406         height,
407         width,
408         nb_walls,
409         device=torch.device("cpu"),
410     ):
411         self.batch_size = batch_size
412         self.height = height
413         self.width = width
414         self.device = device
415
416         train_mazes, train_paths, train_policies = maze.create_maze_data(
417             nb_train_samples,
418             height=height,
419             width=width,
420             nb_walls=nb_walls,
421             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
422         )
423         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
424         self.train_policies = train_policies.flatten(-2).to(device)
425
426         test_mazes, test_paths, test_policies = maze.create_maze_data(
427             nb_test_samples,
428             height=height,
429             width=width,
430             nb_walls=nb_walls,
431             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
432         )
433         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
434         self.test_policies = test_policies.flatten(-2).to(device)
435
436         self.nb_codes = self.train_input.max() + 1
437
438     def batches(self, split="train", nb_to_use=-1, desc=None):
439         assert split in {"train", "test"}
440         input = self.train_input if split == "train" else self.test_input
441         if nb_to_use > 0:
442             input = input[:nb_to_use]
443         if desc is None:
444             desc = f"epoch-{split}"
445         for batch in tqdm.tqdm(
446             input.split(self.batch_size), dynamic_ncols=True, desc=desc
447         ):
448             yield batch
449
450     def policy_batches(self, split="train", nb_to_use=-1, desc=None):
451         assert split in {"train", "test"}
452         input = self.train_input if split == "train" else self.test_input
453         policies = self.train_policies if split == "train" else self.test_policies
454         input = input[:, : self.height * self.width]
455         policies = policies * (input != maze.v_wall)[:, None]
456
457         if nb_to_use > 0:
458             input = input[:nb_to_use]
459             policies = policies[:nb_to_use]
460
461         if desc is None:
462             desc = f"epoch-{split}"
463         for batch in tqdm.tqdm(
464             zip(input.split(self.batch_size), policies.split(self.batch_size)),
465             dynamic_ncols=True,
466             desc=desc,
467         ):
468             yield batch
469
470     def vocabulary_size(self):
471         return self.nb_codes
472
473     def compute_error(self, model, split="train", nb_to_use=-1):
474         nb_total, nb_correct = 0, 0
475         for input in task.batches(split, nb_to_use):
476             result = input.clone()
477             ar_mask = result.new_zeros(result.size())
478             ar_mask[:, self.height * self.width :] = 1
479             result *= 1 - ar_mask
480             x, order = shuffle(result, self.height * self.width)
481             masked_inplace_autoregression(
482                 model, self.batch_size, x, ar_mask, order=order
483             )
484             result = reorder(x, order, reverse=True)
485             mazes, paths = self.seq2map(result)
486             nb_correct += maze.path_correctness(mazes, paths).long().sum()
487             nb_total += mazes.size(0)
488
489         return nb_total, nb_correct
490
491     def produce_results(self, n_epoch, model):
492         with torch.autograd.no_grad():
493             t = model.training
494             model.eval()
495
496             train_nb_total, train_nb_correct = self.compute_error(
497                 model, "train", nb_to_use=1000
498             )
499             log_string(
500                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
501             )
502
503             test_nb_total, test_nb_correct = self.compute_error(
504                 model, "test", nb_to_use=1000
505             )
506             log_string(
507                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
508             )
509
510             input = self.test_input[:32]
511             result = input.clone()
512             ar_mask = result.new_zeros(result.size())
513             ar_mask[:, self.height * self.width :] = 1
514             result *= 1 - ar_mask
515             x, order = shuffle(result, self.height * self.width)
516             masked_inplace_autoregression(
517                 model, self.batch_size, x, ar_mask, order=order
518             )
519             result = reorder(x, order, reverse=True)
520
521             mazes, paths = self.seq2map(input)
522             _, predicted_paths = self.seq2map(result)
523             filename = f"result_{n_epoch:04d}.png"
524             maze.save_image(
525                 os.path.join(args.result_dir, filename),
526                 mazes=mazes,
527                 target_paths=paths,
528                 predicted_paths=predicted_paths,
529                 path_correct=maze.path_correctness(mazes, predicted_paths),
530             )
531             log_string(f"wrote {filename}")
532
533             model.train(t)
534
535
536 ######################################################################
537
538 log_string(f"device {device}")
539
540
541 task = TaskMaze(
542     nb_train_samples=args.nb_train_samples,
543     nb_test_samples=args.nb_test_samples,
544     batch_size=args.batch_size,
545     height=args.maze_height,
546     width=args.maze_width,
547     nb_walls=args.maze_nb_walls,
548     device=device,
549 )
550
551
552 vocabulary_size = task.vocabulary_size()
553
554 log_string(f"vocabulary_size {vocabulary_size}")
555
556 ##############################
557
558
559 def noncausal_prompt_amm_generator(d):
560     q = torch.arange(d)[:, None]
561     k = torch.arange(d)[None, :]
562     s = args.maze_height * args.maze_width
563     #    return torch.logical_and(q < k, torch.logical_or(q >= s, k >= s))
564     return q < k
565
566
567 amm_generator = None
568
569 if args.noncausal_prompt:
570     amm_generator = noncausal_prompt_amm_generator
571
572 model = mygpt.MyGPT(
573     vocabulary_size=vocabulary_size,
574     dim_model=args.dim_model,
575     dim_keys=args.dim_keys,
576     dim_hidden=args.dim_hidden,
577     nb_heads=args.nb_heads,
578     nb_blocks=args.nb_blocks,
579     causal=True,
580     dropout=args.dropout,
581     amm_generator=amm_generator,
582 )
583
584 model.to(device)
585
586 nb_parameters = sum(p.numel() for p in model.parameters())
587 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
588
589 ######################################################################
590
591 if args.learning_rate_schedule == "auto":
592     pass
593
594 elif args.learning_rate_schedule == "cos":
595     schedule = {}
596     for n_epoch in range(args.nb_epochs):
597         u = n_epoch / args.nb_epochs * math.pi
598         schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
599     learning_rate_scheduler = StepWiseScheduler(schedule)
600     log_string(f"learning_rate_schedule {schedule}")
601
602 else:
603     u = {
604         int(k): float(v)
605         for k, v in [
606             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
607         ]
608     }
609
610     schedule = {}
611     learning_rate = args.learning_rate
612     for n_epoch in range(args.nb_epochs):
613         if n_epoch in u:
614             learning_rate = u[n_epoch]
615         schedule[n_epoch] = learning_rate
616     learning_rate_scheduler = StepWiseScheduler(schedule)
617     log_string(f"learning_rate_schedule {schedule}")
618
619 ######################################################################
620
621 nb_epochs_finished = 0
622
623 if args.no_checkpoint:
624     log_string(f"not trying to load checkpoint.")
625
626 else:
627     try:
628         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
629         checkpoint = torch.load(checkpoint_name)
630         nb_epochs_finished = checkpoint["nb_epochs_finished"]
631         model.load_state_dict(checkpoint["model_state"])
632         torch.set_rng_state(checkpoint["rng_state"])
633         if torch.cuda.is_available():
634             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
635
636         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
637
638     except FileNotFoundError:
639         log_string("starting from scratch.")
640
641     except:
642         log_string("error when loading the checkpoint.")
643         exit(1)
644
645 ######################################################################
646
647 token_count = 0
648 for input in task.batches(split="train"):
649     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
650 token_probas = token_count / token_count.sum()
651 entropy = -torch.xlogy(token_probas, token_probas).sum()
652 train_set_perplexity = math.exp(entropy)
653
654 ##############################
655
656 if nb_epochs_finished >= args.nb_epochs:
657     n_epoch = nb_epochs_finished
658     train_perplexity = compute_perplexity(
659         model, task, prompt_len=task.height * task.width, split="train"
660     )
661     test_perplexity = compute_perplexity(
662         model, task, prompt_len=task.height * task.width, split="test"
663     )
664
665     log_string(
666         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
667     )
668
669     task.produce_results(n_epoch, model)
670
671 ##############################
672
673 learning_rate_scheduler.reset()
674
675 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
676     learning_rate = learning_rate_scheduler.learning_rate()
677
678     log_string(f"learning_rate {learning_rate}")
679
680     if args.optim == "sgd":
681         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
682     elif args.optim == "adam":
683         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
684     elif args.optim == "adamw":
685         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
686     else:
687         raise ValueError(f"{args.optim=}")
688
689     model.train()
690
691     nb_train_samples, acc_train_loss = 0, 0.0
692
693     for input in task.batches(split="train"):
694         input = input.to(device)
695         output = eval_mygpt(model, input, prompt_len=task.height * task.width)
696         if args.noncausal_prompt:
697             d = input.size(1) // 2
698             loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:])
699         else:
700             loss = F.cross_entropy(output.transpose(1, 2), input)
701         acc_train_loss += loss.item() * input.size(0)
702         nb_train_samples += input.size(0)
703
704         optimizer.zero_grad()
705         loss.backward()
706         optimizer.step()
707
708     learning_rate_scheduler.update(n_epoch + 1, acc_train_loss)
709
710     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
711     test_perplexity = compute_perplexity(
712         model, task, prompt_len=task.height * task.width, split="test"
713     )
714
715     log_string(
716         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
717     )
718
719     task.produce_results(n_epoch, model)
720
721     checkpoint = {
722         "nb_epochs_finished": n_epoch + 1,
723         "model_state": model.state_dict(),
724         "rng_state": torch.get_rng_state(),
725     }
726
727     if torch.cuda.is_available():
728         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
729
730     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
731     torch.save(checkpoint, checkpoint_name)
732     log_string(f"saved checkpoint {checkpoint_name}")
733
734 ######################################################################
735
736 if args.oneshot:
737     oneshot(model, learning_rate_scheduler, task)
738
739 ######################################################################