Update.
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
68
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
70
71 parser.add_argument("--one_shot", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ######################################################################
85
86 args = parser.parse_args()
87
88 try:
89     os.mkdir(args.result_dir)
90 except FileExistsError:
91     if not args.overwrite_results:
92         print(f"result directory {args.result_dir} already exists")
93         exit(1)
94
95 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
96
97 if args.seed >= 0:
98     # torch.backends.cudnn.deterministic = True
99     # torch.backends.cudnn.benchmark = False
100     # torch.use_deterministic_algorithms(True)
101     torch.manual_seed(args.seed)
102     if torch.cuda.is_available():
103         torch.cuda.manual_seed_all(args.seed)
104
105 ######################################################################
106
107
108 def log_string(s):
109     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
110
111     if log_file is not None:
112         log_file.write(t + s + "\n")
113         log_file.flush()
114
115     print(t + s)
116     sys.stdout.flush()
117
118
119 for n in vars(args):
120     log_string(f"args.{n} {getattr(args, n)}")
121
122 ######################################################################
123
124
125 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
126 # tokens that should be generated
127
128
129 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
130     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
131         i = (ar_mask.sum(0) > 0).nonzero()
132         if i.min() > 0:
133             # Needed to initialize the model's cache
134             model(mygpt.BracketedSequence(input, 0, i.min()))
135         for s in range(i.min(), i.max() + 1):
136             output = model(mygpt.BracketedSequence(input, s, 1)).x
137             logits = output[:, s]
138             if args.deterministic_synthesis:
139                 t_next = logits.argmax(1)
140             else:
141                 dist = torch.distributions.categorical.Categorical(logits=logits)
142                 t_next = dist.sample()
143             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
144
145
146 ######################################################################
147
148
149 def compute_perplexity(model, split="train"):
150     with torch.autograd.no_grad():
151         t = model.training
152         model.eval()
153
154         nb_samples, acc_loss = 0, 0.0
155
156         for input in task.batches(split=split):
157             input = input.to(device)
158
159             output = model(mygpt.BracketedSequence(input)).x
160             loss = F.cross_entropy(output.transpose(1, 2), input)
161             acc_loss += loss.item() * input.size(0)
162             nb_samples += input.size(0)
163
164         model.train(t)
165
166         return math.exp(min(100, acc_loss / nb_samples))
167
168
169 ######################################################################
170
171
172 def one_shot(gpt, task):
173     t = gpt.training
174     gpt.eval()
175     for input, targets in task.policy_batches():
176         output = gpt(mygpt.BracketedSequence(input), with_readout = False).x
177     gpt.train(t)
178
179 ######################################################################
180
181
182 class Task:
183     def batches(self, split="train"):
184         pass
185
186     def vocabulary_size(self):
187         pass
188
189     def produce_results(self, n_epoch, model):
190         pass
191
192
193 ######################################################################
194
195 import maze
196
197
198 class TaskMaze(Task):
199     def map2seq(self, *m):
200         return torch.cat([x.flatten(1) for x in m], 1)
201
202     def seq2map(self, s):
203         s = s.reshape(s.size(0), -1, self.height, self.width)
204         return (s[:, k] for k in range(s.size(1)))
205
206     def __init__(
207         self,
208         nb_train_samples,
209         nb_test_samples,
210         batch_size,
211         height,
212         width,
213         nb_walls,
214         device=torch.device("cpu"),
215     ):
216         self.batch_size = batch_size
217         self.height = height
218         self.width = width
219         self.device = device
220
221         train_mazes, train_paths, train_policies = maze.create_maze_data(
222             nb_train_samples,
223             height=height,
224             width=width,
225             nb_walls=nb_walls,
226             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
227         )
228         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
229         self.train_policies = train_policies.to(device)
230
231         test_mazes, test_paths, test_policies = maze.create_maze_data(
232             nb_test_samples,
233             height=height,
234             width=width,
235             nb_walls=nb_walls,
236             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
237         )
238         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
239         self.test_policies = test_policies.to(device)
240
241         self.nb_codes = self.train_input.max() + 1
242
243     def batches(self, split="train", nb_to_use=-1):
244         assert split in {"train", "test"}
245         input = self.train_input if split == "train" else self.test_input
246         if nb_to_use > 0:
247             input = input[:nb_to_use]
248         for batch in tqdm.tqdm(
249             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
250         ):
251             yield batch
252
253     def policy_batches(self, split="train", nb_to_use=-1):
254         assert split in {"train", "test"}
255         input = self.train_input if split == "train" else self.test_input
256         targets = self.train_policies if split == "train" else self.test_policies
257         input = input[:, : self.height * self.width]
258         targets = targets.flatten(-2) * (input != maze.v_wall)[:,None]
259
260         if nb_to_use > 0:
261             input = input[:nb_to_use]
262             targets = targets[:nb_to_use]
263
264         for batch in tqdm.tqdm(
265             zip(input.split(self.batch_size), targets.split(self.batch_size)),
266             dynamic_ncols=True,
267             desc=f"epoch-{split}",
268         ):
269             yield batch
270
271     def vocabulary_size(self):
272         return self.nb_codes
273
274     def compute_error(self, model, split="train", nb_to_use=-1):
275         nb_total, nb_correct = 0, 0
276         for input in task.batches(split, nb_to_use):
277             result = input.clone()
278             ar_mask = result.new_zeros(result.size())
279             ar_mask[:, self.height * self.width :] = 1
280             result *= 1 - ar_mask
281             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
282             mazes, paths = self.seq2map(result)
283             nb_correct += maze.path_correctness(mazes, paths).long().sum()
284             nb_total += mazes.size(0)
285
286         return nb_total, nb_correct
287
288     def produce_results(self, n_epoch, model):
289         with torch.autograd.no_grad():
290             t = model.training
291             model.eval()
292
293             train_nb_total, train_nb_correct = self.compute_error(
294                 model, "train", nb_to_use=1000
295             )
296             log_string(
297                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
298             )
299
300             test_nb_total, test_nb_correct = self.compute_error(
301                 model, "test", nb_to_use=1000
302             )
303             log_string(
304                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
305             )
306
307             input = self.test_input[:32]
308             result = input.clone()
309             ar_mask = result.new_zeros(result.size())
310             ar_mask[:, self.height * self.width :] = 1
311             result *= 1 - ar_mask
312             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
313
314             mazes, paths = self.seq2map(input)
315             _, predicted_paths = self.seq2map(result)
316             maze.save_image(
317                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
318                 mazes,
319                 paths,
320                 predicted_paths,
321                 maze.path_correctness(mazes, predicted_paths),
322             )
323
324             model.train(t)
325
326
327 ######################################################################
328
329 log_string(f"device {device}")
330
331
332 task = TaskMaze(
333     nb_train_samples=args.nb_train_samples,
334     nb_test_samples=args.nb_test_samples,
335     batch_size=args.batch_size,
336     height=args.maze_height,
337     width=args.maze_width,
338     nb_walls=args.maze_nb_walls,
339     device=device,
340 )
341
342
343 vocabulary_size = task.vocabulary_size()
344
345 log_string(f"vocabulary_size {vocabulary_size}")
346
347 ##############################
348
349 model = mygpt.MyGPT(
350     vocabulary_size=vocabulary_size,
351     dim_model=args.dim_model,
352     dim_keys=args.dim_keys,
353     dim_hidden=args.dim_hidden,
354     nb_heads=args.nb_heads,
355     nb_blocks=args.nb_blocks,
356     causal=True,
357     dropout=args.dropout,
358 )
359
360 model.to(device)
361
362 nb_parameters = sum(p.numel() for p in model.parameters())
363 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
364
365 ######################################################################
366
367 nb_epochs_finished = 0
368
369 if args.no_checkpoint:
370     log_string(f"not trying to load checkpoint.")
371
372 else:
373     try:
374         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
375         checkpoint = torch.load(checkpoint_name)
376         nb_epochs_finished = checkpoint["nb_epochs_finished"]
377         model.load_state_dict(checkpoint["model_state"])
378         torch.set_rng_state(checkpoint["rng_state"])
379         if torch.cuda.is_available():
380             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
381
382         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
383
384     except FileNotFoundError:
385         log_string("starting from scratch.")
386
387     except:
388         log_string("error when loading the checkpoint.")
389         exit(1)
390
391 ######################################################################
392
393 nb_epochs = args.nb_epochs if args.nb_epochs > 0 else nb_epochs_default
394
395 token_count = 0
396 for input in task.batches(split="train"):
397     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
398 token_probas = token_count / token_count.sum()
399 entropy = -torch.xlogy(token_probas, token_probas).sum()
400 train_set_perplexity = math.exp(entropy)
401
402 ##############################
403
404 if args.learning_rate_schedule == "cos":
405     learning_rate_schedule = {}
406     for n_epoch in range(args.nb_epochs):
407         u = n_epoch / args.nb_epochs * math.pi
408         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
409 else:
410     u = {
411         int(k): float(v)
412         for k, v in [
413             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
414         ]
415     }
416
417     learning_rate_schedule = {}
418     learning_rate = args.learning_rate
419     for n_epoch in range(args.nb_epochs):
420         if n_epoch in u:
421             learning_rate = u[n_epoch]
422         learning_rate_schedule[n_epoch] = learning_rate
423
424 log_string(f"learning_rate_schedule {learning_rate_schedule}")
425
426 ##############################
427
428 if args.one_shot:
429     one_shot(model, task)
430     exit(0)
431
432 ##############################
433
434 if nb_epochs_finished >= nb_epochs:
435     n_epoch = nb_epochs_finished
436     train_perplexity = compute_perplexity(model, split="train")
437     test_perplexity = compute_perplexity(model, split="test")
438
439     log_string(
440         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
441     )
442
443     task.produce_results(n_epoch, model)
444
445     exit(0)
446
447 ##############################
448
449 for n_epoch in range(nb_epochs_finished, nb_epochs):
450     learning_rate = learning_rate_schedule[n_epoch]
451
452     log_string(f"learning_rate {learning_rate}")
453
454     if args.optim == "sgd":
455         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
456     elif args.optim == "adam":
457         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
458     elif args.optim == "adamw":
459         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
460     else:
461         raise ValueError(f"Unknown optimizer {args.optim}.")
462
463     model.train()
464
465     nb_train_samples, acc_train_loss = 0, 0.0
466
467     for input in task.batches(split="train"):
468         input = input.to(device)
469         output = model(mygpt.BracketedSequence(input)).x
470         loss = F.cross_entropy(output.transpose(1, 2), input)
471         acc_train_loss += loss.item() * input.size(0)
472         nb_train_samples += input.size(0)
473
474         optimizer.zero_grad()
475         loss.backward()
476         optimizer.step()
477
478     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
479     test_perplexity = compute_perplexity(model, split="test")
480
481     log_string(
482         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
483     )
484
485     task.produce_results(n_epoch, model)
486
487     checkpoint = {
488         "nb_epochs_finished": n_epoch + 1,
489         "model_state": model.state_dict(),
490         "rng_state": torch.get_rng_state(),
491     }
492
493     if torch.cuda.is_available():
494         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
495
496     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
497     torch.save(checkpoint, checkpoint_name)
498     log_string(f"saved checkpoint {checkpoint_name}")
499
500 ######################################################################