Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
68
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
70
71 parser.add_argument("--one_shot", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ######################################################################
85
86 args = parser.parse_args()
87
88 try:
89     os.mkdir(args.result_dir)
90 except FileExistsError:
91     if not args.overwrite_results:
92         print(f"result directory {args.result_dir} already exists")
93         exit(1)
94
95 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
96
97 if args.seed >= 0:
98     # torch.backends.cudnn.deterministic = True
99     # torch.backends.cudnn.benchmark = False
100     # torch.use_deterministic_algorithms(True)
101     torch.manual_seed(args.seed)
102     if torch.cuda.is_available():
103         torch.cuda.manual_seed_all(args.seed)
104
105 ######################################################################
106
107
108 def log_string(s):
109     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
110
111     if log_file is not None:
112         log_file.write(t + s + "\n")
113         log_file.flush()
114
115     print(t + s)
116     sys.stdout.flush()
117
118
119 for n in vars(args):
120     log_string(f"args.{n} {getattr(args, n)}")
121
122 ######################################################################
123
124
125 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
126 # tokens that should be generated
127
128
129 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
130     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
131         i = (ar_mask.sum(0) > 0).nonzero()
132         if i.min() > 0:
133             # Needed to initialize the model's cache
134             model(mygpt.BracketedSequence(input, 0, i.min()))
135         for s in range(i.min(), i.max() + 1):
136             output = model(mygpt.BracketedSequence(input, s, 1)).x
137             logits = output[:, s]
138             if args.deterministic_synthesis:
139                 t_next = logits.argmax(1)
140             else:
141                 dist = torch.distributions.categorical.Categorical(logits=logits)
142                 t_next = dist.sample()
143             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
144
145
146 ######################################################################
147
148
149 def compute_perplexity(model, split="train"):
150     with torch.autograd.no_grad():
151         t = model.training
152         model.eval()
153
154         nb_samples, acc_loss = 0, 0.0
155
156         for input in task.batches(split=split):
157             input = input.to(device)
158
159             output = model(mygpt.BracketedSequence(input)).x
160             loss = F.cross_entropy(output.transpose(1, 2), input)
161             acc_loss += loss.item() * input.size(0)
162             nb_samples += input.size(0)
163
164         model.train(t)
165
166         return math.exp(min(100, acc_loss / nb_samples))
167
168
169 ######################################################################
170
171
172 def one_shot(gpt, task):
173     t = gpt.training
174     gpt.eval()
175     model = nn.Linear(args.dim_model, 4).to(device)
176
177     for n_epoch in range(args.nb_epochs):
178         optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
179
180         acc_train_loss, nb_train_samples = 0, 0
181         for input, targets in task.policy_batches(split="train"):
182             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
183             output = model(output_gpt)
184             loss = (
185                 -(output.log_softmax(-1) * targets).sum(-1).mean()
186                 + targets.xlogy(targets).sum(-1).mean()
187             )
188             acc_train_loss += loss.item() * input.size(0)
189             nb_train_samples += input.size(0)
190
191             optimizer.zero_grad()
192             loss.backward()
193             optimizer.step()
194
195         acc_test_loss, nb_test_samples = 0, 0
196         for input, targets in task.policy_batches(split="test"):
197             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
198             output = model(output_gpt)
199             loss = (
200                 -(output.log_softmax(-1) * targets).sum(-1).mean()
201                 + targets.xlogy(targets).sum(-1).mean()
202             )
203             acc_test_loss += loss.item() * input.size(0)
204             nb_test_samples += input.size(0)
205
206         log_string(
207             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
208         )
209
210     gpt.train(t)
211
212
213 ######################################################################
214
215
216 class Task:
217     def batches(self, split="train"):
218         pass
219
220     def vocabulary_size(self):
221         pass
222
223     def produce_results(self, n_epoch, model):
224         pass
225
226
227 ######################################################################
228
229 import maze
230
231
232 class TaskMaze(Task):
233     def map2seq(self, *m):
234         return torch.cat([x.flatten(1) for x in m], 1)
235
236     def seq2map(self, s):
237         s = s.reshape(s.size(0), -1, self.height, self.width)
238         return (s[:, k] for k in range(s.size(1)))
239
240     def __init__(
241         self,
242         nb_train_samples,
243         nb_test_samples,
244         batch_size,
245         height,
246         width,
247         nb_walls,
248         device=torch.device("cpu"),
249     ):
250         self.batch_size = batch_size
251         self.height = height
252         self.width = width
253         self.device = device
254
255         train_mazes, train_paths, train_policies = maze.create_maze_data(
256             nb_train_samples,
257             height=height,
258             width=width,
259             nb_walls=nb_walls,
260             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
261         )
262         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
263         self.train_policies = train_policies.flatten(-2).permute(0, 2, 1).to(device)
264
265         test_mazes, test_paths, test_policies = maze.create_maze_data(
266             nb_test_samples,
267             height=height,
268             width=width,
269             nb_walls=nb_walls,
270             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
271         )
272         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
273         self.test_policies = test_policies.flatten(-2).permute(0, 2, 1).to(device)
274
275         self.nb_codes = self.train_input.max() + 1
276
277     def batches(self, split="train", nb_to_use=-1):
278         assert split in {"train", "test"}
279         input = self.train_input if split == "train" else self.test_input
280         if nb_to_use > 0:
281             input = input[:nb_to_use]
282         for batch in tqdm.tqdm(
283             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
284         ):
285             yield batch
286
287     def policy_batches(self, split="train", nb_to_use=-1):
288         assert split in {"train", "test"}
289         input = self.train_input if split == "train" else self.test_input
290         targets = self.train_policies if split == "train" else self.test_policies
291         input = input[:, : self.height * self.width]
292         targets = targets * (input != maze.v_wall)[:, :, None]
293
294         if nb_to_use > 0:
295             input = input[:nb_to_use]
296             targets = targets[:nb_to_use]
297
298         for batch in tqdm.tqdm(
299             zip(input.split(self.batch_size), targets.split(self.batch_size)),
300             dynamic_ncols=True,
301             desc=f"epoch-{split}",
302         ):
303             yield batch
304
305     def vocabulary_size(self):
306         return self.nb_codes
307
308     def compute_error(self, model, split="train", nb_to_use=-1):
309         nb_total, nb_correct = 0, 0
310         for input in task.batches(split, nb_to_use):
311             result = input.clone()
312             ar_mask = result.new_zeros(result.size())
313             ar_mask[:, self.height * self.width :] = 1
314             result *= 1 - ar_mask
315             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
316             mazes, paths = self.seq2map(result)
317             nb_correct += maze.path_correctness(mazes, paths).long().sum()
318             nb_total += mazes.size(0)
319
320         return nb_total, nb_correct
321
322     def produce_results(self, n_epoch, model):
323         with torch.autograd.no_grad():
324             t = model.training
325             model.eval()
326
327             train_nb_total, train_nb_correct = self.compute_error(
328                 model, "train", nb_to_use=1000
329             )
330             log_string(
331                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
332             )
333
334             test_nb_total, test_nb_correct = self.compute_error(
335                 model, "test", nb_to_use=1000
336             )
337             log_string(
338                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
339             )
340
341             input = self.test_input[:32]
342             result = input.clone()
343             ar_mask = result.new_zeros(result.size())
344             ar_mask[:, self.height * self.width :] = 1
345             result *= 1 - ar_mask
346             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
347
348             mazes, paths = self.seq2map(input)
349             _, predicted_paths = self.seq2map(result)
350             maze.save_image(
351                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
352                 mazes,
353                 paths,
354                 predicted_paths,
355                 maze.path_correctness(mazes, predicted_paths),
356             )
357
358             model.train(t)
359
360
361 ######################################################################
362
363 log_string(f"device {device}")
364
365
366 task = TaskMaze(
367     nb_train_samples=args.nb_train_samples,
368     nb_test_samples=args.nb_test_samples,
369     batch_size=args.batch_size,
370     height=args.maze_height,
371     width=args.maze_width,
372     nb_walls=args.maze_nb_walls,
373     device=device,
374 )
375
376
377 vocabulary_size = task.vocabulary_size()
378
379 log_string(f"vocabulary_size {vocabulary_size}")
380
381 ##############################
382
383 model = mygpt.MyGPT(
384     vocabulary_size=vocabulary_size,
385     dim_model=args.dim_model,
386     dim_keys=args.dim_keys,
387     dim_hidden=args.dim_hidden,
388     nb_heads=args.nb_heads,
389     nb_blocks=args.nb_blocks,
390     causal=True,
391     dropout=args.dropout,
392 )
393
394 model.to(device)
395
396 nb_parameters = sum(p.numel() for p in model.parameters())
397 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
398
399 ######################################################################
400
401 nb_epochs_finished = 0
402
403 if args.no_checkpoint:
404     log_string(f"not trying to load checkpoint.")
405
406 else:
407     try:
408         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
409         checkpoint = torch.load(checkpoint_name)
410         nb_epochs_finished = checkpoint["nb_epochs_finished"]
411         model.load_state_dict(checkpoint["model_state"])
412         torch.set_rng_state(checkpoint["rng_state"])
413         if torch.cuda.is_available():
414             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
415
416         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
417
418     except FileNotFoundError:
419         log_string("starting from scratch.")
420
421     except:
422         log_string("error when loading the checkpoint.")
423         exit(1)
424
425 ######################################################################
426
427 token_count = 0
428 for input in task.batches(split="train"):
429     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
430 token_probas = token_count / token_count.sum()
431 entropy = -torch.xlogy(token_probas, token_probas).sum()
432 train_set_perplexity = math.exp(entropy)
433
434 ##############################
435
436 if args.learning_rate_schedule == "cos":
437     learning_rate_schedule = {}
438     for n_epoch in range(args.nb_epochs):
439         u = n_epoch / args.nb_epochs * math.pi
440         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
441 else:
442     u = {
443         int(k): float(v)
444         for k, v in [
445             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
446         ]
447     }
448
449     learning_rate_schedule = {}
450     learning_rate = args.learning_rate
451     for n_epoch in range(args.nb_epochs):
452         if n_epoch in u:
453             learning_rate = u[n_epoch]
454         learning_rate_schedule[n_epoch] = learning_rate
455
456 log_string(f"learning_rate_schedule {learning_rate_schedule}")
457
458 ##############################
459
460 if args.one_shot:
461     one_shot(model, task)
462     exit(0)
463
464 ##############################
465
466 if nb_epochs_finished >= args.nb_epochs:
467     n_epoch = nb_epochs_finished
468     train_perplexity = compute_perplexity(model, split="train")
469     test_perplexity = compute_perplexity(model, split="test")
470
471     log_string(
472         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
473     )
474
475     task.produce_results(n_epoch, model)
476
477     exit(0)
478
479 ##############################
480
481 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
482     learning_rate = learning_rate_schedule[n_epoch]
483
484     log_string(f"learning_rate {learning_rate}")
485
486     if args.optim == "sgd":
487         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
488     elif args.optim == "adam":
489         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
490     elif args.optim == "adamw":
491         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
492     else:
493         raise ValueError(f"Unknown optimizer {args.optim}.")
494
495     model.train()
496
497     nb_train_samples, acc_train_loss = 0, 0.0
498
499     for input in task.batches(split="train"):
500         input = input.to(device)
501         output = model(mygpt.BracketedSequence(input)).x
502         loss = F.cross_entropy(output.transpose(1, 2), input)
503         acc_train_loss += loss.item() * input.size(0)
504         nb_train_samples += input.size(0)
505
506         optimizer.zero_grad()
507         loss.backward()
508         optimizer.step()
509
510     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
511     test_perplexity = compute_perplexity(model, split="test")
512
513     log_string(
514         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
515     )
516
517     task.produce_results(n_epoch, model)
518
519     checkpoint = {
520         "nb_epochs_finished": n_epoch + 1,
521         "model_state": model.state_dict(),
522         "rng_state": torch.get_rng_state(),
523     }
524
525     if torch.cuda.is_available():
526         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
527
528     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
529     torch.save(checkpoint, checkpoint_name)
530     log_string(f"saved checkpoint {checkpoint_name}")
531
532 ######################################################################