b505156b49abb389f90f0640fae3d4d59dc9a4e4
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
68
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
70
71 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
72
73 ##############################
74 # maze options
75
76 parser.add_argument("--maze_height", type=int, default=13)
77
78 parser.add_argument("--maze_width", type=int, default=21)
79
80 parser.add_argument("--maze_nb_walls", type=int, default=15)
81
82 parser.add_argument("--oneshot", action="store_true", default=False)
83
84 parser.add_argument("--oneshot_input", type=str, default="head")
85
86 parser.add_argument("--oneshot_output", type=str, default="policy")
87
88 ######################################################################
89
90 args = parser.parse_args()
91
92 try:
93     os.mkdir(args.result_dir)
94 except FileExistsError:
95     if not args.overwrite_results:
96         print(f"result directory {args.result_dir} already exists")
97         exit(1)
98
99 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
100
101 if args.seed >= 0:
102     # torch.backends.cudnn.deterministic = True
103     # torch.backends.cudnn.benchmark = False
104     # torch.use_deterministic_algorithms(True)
105     torch.manual_seed(args.seed)
106     if torch.cuda.is_available():
107         torch.cuda.manual_seed_all(args.seed)
108
109 ######################################################################
110
111
112 def log_string(s):
113     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
114
115     if log_file is not None:
116         log_file.write(t + s + "\n")
117         log_file.flush()
118
119     print(t + s)
120     sys.stdout.flush()
121
122
123 for n in vars(args):
124     log_string(f"args.{n} {getattr(args, n)}")
125
126 ######################################################################
127
128
129 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
130 # tokens that should be generated
131
132
133 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
134     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
135         i = (ar_mask.sum(0) > 0).nonzero()
136         if i.min() > 0:
137             # Needed to initialize the model's cache
138             model(mygpt.BracketedSequence(input, 0, i.min()))
139         for s in range(i.min(), i.max() + 1):
140             output = model(mygpt.BracketedSequence(input, s, 1)).x
141             logits = output[:, s]
142             if args.deterministic_synthesis:
143                 t_next = logits.argmax(1)
144             else:
145                 dist = torch.distributions.categorical.Categorical(logits=logits)
146                 t_next = dist.sample()
147             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
148
149
150 ######################################################################
151
152
153 def compute_perplexity(model, split="train"):
154     with torch.autograd.no_grad():
155         t = model.training
156         model.eval()
157
158         nb_samples, acc_loss = 0, 0.0
159
160         for input in task.batches(split=split):
161             input = input.to(device)
162
163             output = model(mygpt.BracketedSequence(input)).x
164             loss = F.cross_entropy(output.transpose(1, 2), input)
165             acc_loss += loss.item() * input.size(0)
166             nb_samples += input.size(0)
167
168         model.train(t)
169
170         return math.exp(min(100, acc_loss / nb_samples))
171
172
173 ######################################################################
174
175
176 def oneshot_policy_loss(output, policies, mask):
177     targets = policies.permute(0, 2, 1) * mask.unsqueeze(-1)
178     output = output * mask.unsqueeze(-1)
179     return -(output.log_softmax(-1) * targets).sum() / mask.sum()
180
181
182 # loss = (output.softmax(-1) - targets).abs().max(-1).values.mean()
183
184
185 def oneshot(gpt, task):
186     t = gpt.training
187     gpt.eval()
188
189     if args.oneshot_input == "head":
190         dim_in = args.dim_model
191     elif args.oneshot_input == "deep":
192         dim_in = args.dim_model * args.nb_blocks * 2
193     else:
194         raise ValueError(f"{args.oneshot_input=}")
195
196     if args.oneshot_output == "policy":
197         dim_out = 4
198         compute_loss = oneshot_policy_loss
199     elif args.oneshot_output == "trace":
200         dim_out = 1
201     else:
202         raise ValueError(f"{args.oneshot_output=}")
203
204     model = nn.Sequential(
205         nn.Linear(dim_in, args.dim_model),
206         nn.ReLU(),
207         nn.Linear(args.dim_model, args.dim_model),
208         nn.ReLU(),
209         nn.Linear(args.dim_model, 4),
210     ).to(device)
211
212     for n_epoch in range(args.nb_epochs):
213         learning_rate = learning_rate_schedule[n_epoch]
214         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
215
216         acc_train_loss, nb_train_samples = 0, 0
217         for input, policies in task.policy_batches(split="train"):
218             ####
219             # print(f'{input.size()=} {policies.size()=}')
220             # s = maze.stationary_densities(
221             # exit(0)
222             ####
223             mask = input == maze.v_empty
224             output_gpt = gpt(mygpt.BracketedSequence(input), mode=args.oneshot_input).x
225             output = model(output_gpt)
226
227             loss = compute_loss(output, policies, mask)
228             acc_train_loss += loss.item() * input.size(0)
229             nb_train_samples += input.size(0)
230
231             optimizer.zero_grad()
232             loss.backward()
233             optimizer.step()
234
235         acc_test_loss, nb_test_samples = 0, 0
236         for input, policies in task.policy_batches(split="test"):
237             mask = input == maze.v_empty
238             output_gpt = gpt(mygpt.BracketedSequence(input), mode=args.oneshot_input).x
239             output = model(output_gpt)
240             loss = compute_loss(output, policies, mask)
241             acc_test_loss += loss.item() * input.size(0)
242             nb_test_samples += input.size(0)
243
244         log_string(
245             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
246         )
247
248         # -------------------
249         input = task.test_input[:32, : task.height * task.width]
250         targets = task.test_policies[:32].permute(0, 2, 1)
251         output_gpt = gpt(mygpt.BracketedSequence(input), mode=args.oneshot_input).x
252         output = model(output_gpt)
253         scores = (
254             (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
255         ).float()
256         scores = scores.reshape(-1, task.height, task.width)
257         input = input.reshape(-1, task.height, task.width)
258         maze.save_image(
259             os.path.join(
260                 args.result_dir,
261                 f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png",
262             ),
263             mazes=input,
264             score_paths=scores,
265         )
266         # -------------------
267
268     gpt.train(t)
269
270
271 ######################################################################
272
273
274 class Task:
275     def batches(self, split="train"):
276         pass
277
278     def vocabulary_size(self):
279         pass
280
281     def produce_results(self, n_epoch, model):
282         pass
283
284
285 ######################################################################
286
287 import maze
288
289
290 class TaskMaze(Task):
291     def map2seq(self, *m):
292         return torch.cat([x.flatten(1) for x in m], 1)
293
294     def seq2map(self, s):
295         s = s.reshape(s.size(0), -1, self.height, self.width)
296         return (s[:, k] for k in range(s.size(1)))
297
298     def __init__(
299         self,
300         nb_train_samples,
301         nb_test_samples,
302         batch_size,
303         height,
304         width,
305         nb_walls,
306         device=torch.device("cpu"),
307     ):
308         self.batch_size = batch_size
309         self.height = height
310         self.width = width
311         self.device = device
312
313         train_mazes, train_paths, train_policies = maze.create_maze_data(
314             nb_train_samples,
315             height=height,
316             width=width,
317             nb_walls=nb_walls,
318             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
319         )
320         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
321         self.train_policies = train_policies.flatten(-2).to(device)
322
323         test_mazes, test_paths, test_policies = maze.create_maze_data(
324             nb_test_samples,
325             height=height,
326             width=width,
327             nb_walls=nb_walls,
328             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
329         )
330         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
331         self.test_policies = test_policies.flatten(-2).to(device)
332
333         self.nb_codes = self.train_input.max() + 1
334
335     def batches(self, split="train", nb_to_use=-1):
336         assert split in {"train", "test"}
337         input = self.train_input if split == "train" else self.test_input
338         if nb_to_use > 0:
339             input = input[:nb_to_use]
340         for batch in tqdm.tqdm(
341             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
342         ):
343             yield batch
344
345     def policy_batches(self, split="train", nb_to_use=-1):
346         assert split in {"train", "test"}
347         input = self.train_input if split == "train" else self.test_input
348         policies = self.train_policies if split == "train" else self.test_policies
349         input = input[:, : self.height * self.width]
350         policies = policies * (input != maze.v_wall)[:, None]
351
352         if nb_to_use > 0:
353             input = input[:nb_to_use]
354             policies = policies[:nb_to_use]
355
356         for batch in tqdm.tqdm(
357             zip(input.split(self.batch_size), policies.split(self.batch_size)),
358             dynamic_ncols=True,
359             desc=f"epoch-{split}",
360         ):
361             yield batch
362
363     def vocabulary_size(self):
364         return self.nb_codes
365
366     def compute_error(self, model, split="train", nb_to_use=-1):
367         nb_total, nb_correct = 0, 0
368         for input in task.batches(split, nb_to_use):
369             result = input.clone()
370             ar_mask = result.new_zeros(result.size())
371             ar_mask[:, self.height * self.width :] = 1
372             result *= 1 - ar_mask
373             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
374             mazes, paths = self.seq2map(result)
375             nb_correct += maze.path_correctness(mazes, paths).long().sum()
376             nb_total += mazes.size(0)
377
378         return nb_total, nb_correct
379
380     def produce_results(self, n_epoch, model):
381         with torch.autograd.no_grad():
382             t = model.training
383             model.eval()
384
385             train_nb_total, train_nb_correct = self.compute_error(
386                 model, "train", nb_to_use=1000
387             )
388             log_string(
389                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
390             )
391
392             test_nb_total, test_nb_correct = self.compute_error(
393                 model, "test", nb_to_use=1000
394             )
395             log_string(
396                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
397             )
398
399             input = self.test_input[:32]
400             result = input.clone()
401             ar_mask = result.new_zeros(result.size())
402             ar_mask[:, self.height * self.width :] = 1
403             result *= 1 - ar_mask
404             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
405
406             mazes, paths = self.seq2map(input)
407             _, predicted_paths = self.seq2map(result)
408             maze.save_image(
409                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
410                 mazes=mazes,
411                 target_paths=paths,
412                 predicted_paths=predicted_paths,
413                 path_correct=maze.path_correctness(mazes, predicted_paths),
414             )
415
416             model.train(t)
417
418
419 ######################################################################
420
421 log_string(f"device {device}")
422
423
424 task = TaskMaze(
425     nb_train_samples=args.nb_train_samples,
426     nb_test_samples=args.nb_test_samples,
427     batch_size=args.batch_size,
428     height=args.maze_height,
429     width=args.maze_width,
430     nb_walls=args.maze_nb_walls,
431     device=device,
432 )
433
434
435 vocabulary_size = task.vocabulary_size()
436
437 log_string(f"vocabulary_size {vocabulary_size}")
438
439 ##############################
440
441 model = mygpt.MyGPT(
442     vocabulary_size=vocabulary_size,
443     dim_model=args.dim_model,
444     dim_keys=args.dim_keys,
445     dim_hidden=args.dim_hidden,
446     nb_heads=args.nb_heads,
447     nb_blocks=args.nb_blocks,
448     causal=True,
449     dropout=args.dropout,
450 )
451
452 model.to(device)
453
454 nb_parameters = sum(p.numel() for p in model.parameters())
455 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
456
457 ######################################################################
458
459 nb_epochs_finished = 0
460
461 if args.no_checkpoint:
462     log_string(f"not trying to load checkpoint.")
463
464 else:
465     try:
466         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
467         checkpoint = torch.load(checkpoint_name)
468         nb_epochs_finished = checkpoint["nb_epochs_finished"]
469         model.load_state_dict(checkpoint["model_state"])
470         torch.set_rng_state(checkpoint["rng_state"])
471         if torch.cuda.is_available():
472             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
473
474         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
475
476     except FileNotFoundError:
477         log_string("starting from scratch.")
478
479     except:
480         log_string("error when loading the checkpoint.")
481         exit(1)
482
483 ######################################################################
484
485 token_count = 0
486 for input in task.batches(split="train"):
487     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
488 token_probas = token_count / token_count.sum()
489 entropy = -torch.xlogy(token_probas, token_probas).sum()
490 train_set_perplexity = math.exp(entropy)
491
492 ##############################
493
494 if args.learning_rate_schedule == "cos":
495     learning_rate_schedule = {}
496     for n_epoch in range(args.nb_epochs):
497         u = n_epoch / args.nb_epochs * math.pi
498         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
499 else:
500     u = {
501         int(k): float(v)
502         for k, v in [
503             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
504         ]
505     }
506
507     learning_rate_schedule = {}
508     learning_rate = args.learning_rate
509     for n_epoch in range(args.nb_epochs):
510         if n_epoch in u:
511             learning_rate = u[n_epoch]
512         learning_rate_schedule[n_epoch] = learning_rate
513
514 log_string(f"learning_rate_schedule {learning_rate_schedule}")
515
516 ##############################
517
518 if args.oneshot:
519     oneshot(model, task)
520     exit(0)
521
522 ##############################
523
524 if nb_epochs_finished >= args.nb_epochs:
525     n_epoch = nb_epochs_finished
526     train_perplexity = compute_perplexity(model, split="train")
527     test_perplexity = compute_perplexity(model, split="test")
528
529     log_string(
530         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
531     )
532
533     task.produce_results(n_epoch, model)
534
535     exit(0)
536
537 ##############################
538
539 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
540     learning_rate = learning_rate_schedule[n_epoch]
541
542     log_string(f"learning_rate {learning_rate}")
543
544     if args.optim == "sgd":
545         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
546     elif args.optim == "adam":
547         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
548     elif args.optim == "adamw":
549         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
550     else:
551         raise ValueError(f"{args.optim=}")
552
553     model.train()
554
555     nb_train_samples, acc_train_loss = 0, 0.0
556
557     for input in task.batches(split="train"):
558         input = input.to(device)
559         output = model(mygpt.BracketedSequence(input)).x
560         loss = F.cross_entropy(output.transpose(1, 2), input)
561         acc_train_loss += loss.item() * input.size(0)
562         nb_train_samples += input.size(0)
563
564         optimizer.zero_grad()
565         loss.backward()
566         optimizer.step()
567
568     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
569     test_perplexity = compute_perplexity(model, split="test")
570
571     log_string(
572         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
573     )
574
575     task.produce_results(n_epoch, model)
576
577     checkpoint = {
578         "nb_epochs_finished": n_epoch + 1,
579         "model_state": model.state_dict(),
580         "rng_state": torch.get_rng_state(),
581     }
582
583     if torch.cuda.is_available():
584         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
585
586     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
587     torch.save(checkpoint, checkpoint_name)
588     log_string(f"saved checkpoint {checkpoint_name}")
589
590 ######################################################################