afec61d4a506161e0da2e449d2dfa3445e386110
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
68
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
70
71 parser.add_argument("--one_shot", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ######################################################################
85
86 args = parser.parse_args()
87
88 try:
89     os.mkdir(args.result_dir)
90 except FileExistsError:
91     if not args.overwrite_results:
92         print(f"result directory {args.result_dir} already exists")
93         exit(1)
94
95 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
96
97 if args.seed >= 0:
98     # torch.backends.cudnn.deterministic = True
99     # torch.backends.cudnn.benchmark = False
100     # torch.use_deterministic_algorithms(True)
101     torch.manual_seed(args.seed)
102     if torch.cuda.is_available():
103         torch.cuda.manual_seed_all(args.seed)
104
105 ######################################################################
106
107
108 def log_string(s):
109     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
110
111     if log_file is not None:
112         log_file.write(t + s + "\n")
113         log_file.flush()
114
115     print(t + s)
116     sys.stdout.flush()
117
118
119 for n in vars(args):
120     log_string(f"args.{n} {getattr(args, n)}")
121
122 ######################################################################
123
124
125 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
126 # tokens that should be generated
127
128
129 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
130     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
131         i = (ar_mask.sum(0) > 0).nonzero()
132         if i.min() > 0:
133             # Needed to initialize the model's cache
134             model(mygpt.BracketedSequence(input, 0, i.min()))
135         for s in range(i.min(), i.max() + 1):
136             output = model(mygpt.BracketedSequence(input, s, 1)).x
137             logits = output[:, s]
138             if args.deterministic_synthesis:
139                 t_next = logits.argmax(1)
140             else:
141                 dist = torch.distributions.categorical.Categorical(logits=logits)
142                 t_next = dist.sample()
143             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
144
145
146 ######################################################################
147
148
149 def compute_perplexity(model, split="train"):
150     with torch.autograd.no_grad():
151         t = model.training
152         model.eval()
153
154         nb_samples, acc_loss = 0, 0.0
155
156         for input in task.batches(split=split):
157             input = input.to(device)
158
159             output = model(mygpt.BracketedSequence(input)).x
160             loss = F.cross_entropy(output.transpose(1, 2), input)
161             acc_loss += loss.item() * input.size(0)
162             nb_samples += input.size(0)
163
164         model.train(t)
165
166         return math.exp(min(100, acc_loss / nb_samples))
167
168
169 ######################################################################
170
171
172 def one_shot(gpt, task):
173     t = gpt.training
174     gpt.eval()
175
176     model = nn.Sequential(
177         nn.Linear(args.dim_model, args.dim_model),
178         nn.ReLU(),
179         nn.Linear(args.dim_model, args.dim_model),
180         nn.ReLU(),
181         nn.Linear(args.dim_model, 4),
182     ).to(device)
183
184     for n_epoch in range(args.nb_epochs):
185         learning_rate = learning_rate_schedule[n_epoch]
186         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
187
188         acc_train_loss, nb_train_samples = 0, 0
189         for input, targets in task.policy_batches(split="train"):
190             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
191             output = model(output_gpt)
192             targets = targets * (input.unsqueeze(-1) == maze.v_empty)
193             output = output * (input.unsqueeze(-1) == maze.v_empty)
194             # loss = (output.softmax(-1) - targets).abs().max(-1).values.mean()
195             loss = (
196                 -(output.log_softmax(-1) * targets).sum()
197                 / (input == maze.v_empty).sum()
198             )
199             acc_train_loss += loss.item() * input.size(0)
200             nb_train_samples += input.size(0)
201
202             optimizer.zero_grad()
203             loss.backward()
204             optimizer.step()
205
206         acc_test_loss, nb_test_samples = 0, 0
207         for input, targets in task.policy_batches(split="test"):
208             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
209             output = model(output_gpt)
210             targets = targets * (input.unsqueeze(-1) == maze.v_empty)
211             output = output * (input.unsqueeze(-1) == maze.v_empty)
212             # loss = (output.softmax(-1) - targets).abs().max(-1).values.mean()
213             loss = (
214                 -(output.log_softmax(-1) * targets).sum()
215                 / (input == maze.v_empty).sum()
216             )
217             acc_test_loss += loss.item() * input.size(0)
218             nb_test_samples += input.size(0)
219
220         log_string(
221             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
222         )
223
224         # -------------------
225         input = task.test_input[:32, : task.height * task.width]
226         targets = task.test_policies[:32]
227         output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
228         output = model(output_gpt)
229         # losses = (-output.log_softmax(-1) * targets + targets.xlogy(targets)).sum(-1)
230         # losses = losses * (input == maze.v_empty)
231         # losses = losses / losses.max()
232         # losses = (output.softmax(-1) - targets).abs().max(-1).values
233         # losses = (losses >= 0.05).float()
234         losses = (
235             (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
236         ).float()
237         losses = losses.reshape(-1, args.maze_height, args.maze_width)
238         input = input.reshape(-1, args.maze_height, args.maze_width)
239         maze.save_image(
240             os.path.join(args.result_dir, f"oneshot_{n_epoch:04d}.png"),
241             mazes=input,
242             score_paths=losses,
243         )
244         # -------------------
245
246     gpt.train(t)
247
248
249 ######################################################################
250
251
252 class Task:
253     def batches(self, split="train"):
254         pass
255
256     def vocabulary_size(self):
257         pass
258
259     def produce_results(self, n_epoch, model):
260         pass
261
262
263 ######################################################################
264
265 import maze
266
267
268 class TaskMaze(Task):
269     def map2seq(self, *m):
270         return torch.cat([x.flatten(1) for x in m], 1)
271
272     def seq2map(self, s):
273         s = s.reshape(s.size(0), -1, self.height, self.width)
274         return (s[:, k] for k in range(s.size(1)))
275
276     def __init__(
277         self,
278         nb_train_samples,
279         nb_test_samples,
280         batch_size,
281         height,
282         width,
283         nb_walls,
284         device=torch.device("cpu"),
285     ):
286         self.batch_size = batch_size
287         self.height = height
288         self.width = width
289         self.device = device
290
291         train_mazes, train_paths, train_policies = maze.create_maze_data(
292             nb_train_samples,
293             height=height,
294             width=width,
295             nb_walls=nb_walls,
296             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
297         )
298         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
299         self.train_policies = train_policies.flatten(-2).permute(0, 2, 1).to(device)
300
301         test_mazes, test_paths, test_policies = maze.create_maze_data(
302             nb_test_samples,
303             height=height,
304             width=width,
305             nb_walls=nb_walls,
306             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
307         )
308         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
309         self.test_policies = test_policies.flatten(-2).permute(0, 2, 1).to(device)
310
311         self.nb_codes = self.train_input.max() + 1
312
313     def batches(self, split="train", nb_to_use=-1):
314         assert split in {"train", "test"}
315         input = self.train_input if split == "train" else self.test_input
316         if nb_to_use > 0:
317             input = input[:nb_to_use]
318         for batch in tqdm.tqdm(
319             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
320         ):
321             yield batch
322
323     def policy_batches(self, split="train", nb_to_use=-1):
324         assert split in {"train", "test"}
325         input = self.train_input if split == "train" else self.test_input
326         targets = self.train_policies if split == "train" else self.test_policies
327         input = input[:, : self.height * self.width]
328         targets = targets * (input != maze.v_wall)[:, :, None]
329
330         if nb_to_use > 0:
331             input = input[:nb_to_use]
332             targets = targets[:nb_to_use]
333
334         for batch in tqdm.tqdm(
335             zip(input.split(self.batch_size), targets.split(self.batch_size)),
336             dynamic_ncols=True,
337             desc=f"epoch-{split}",
338         ):
339             yield batch
340
341     def vocabulary_size(self):
342         return self.nb_codes
343
344     def compute_error(self, model, split="train", nb_to_use=-1):
345         nb_total, nb_correct = 0, 0
346         for input in task.batches(split, nb_to_use):
347             result = input.clone()
348             ar_mask = result.new_zeros(result.size())
349             ar_mask[:, self.height * self.width :] = 1
350             result *= 1 - ar_mask
351             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
352             mazes, paths = self.seq2map(result)
353             nb_correct += maze.path_correctness(mazes, paths).long().sum()
354             nb_total += mazes.size(0)
355
356         return nb_total, nb_correct
357
358     def produce_results(self, n_epoch, model):
359         with torch.autograd.no_grad():
360             t = model.training
361             model.eval()
362
363             train_nb_total, train_nb_correct = self.compute_error(
364                 model, "train", nb_to_use=1000
365             )
366             log_string(
367                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
368             )
369
370             test_nb_total, test_nb_correct = self.compute_error(
371                 model, "test", nb_to_use=1000
372             )
373             log_string(
374                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
375             )
376
377             input = self.test_input[:32]
378             result = input.clone()
379             ar_mask = result.new_zeros(result.size())
380             ar_mask[:, self.height * self.width :] = 1
381             result *= 1 - ar_mask
382             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
383
384             mazes, paths = self.seq2map(input)
385             _, predicted_paths = self.seq2map(result)
386             maze.save_image(
387                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
388                 mazes=mazes,
389                 target_paths=paths,
390                 predicted_paths=predicted_paths,
391                 path_correct=maze.path_correctness(mazes, predicted_paths),
392             )
393
394             model.train(t)
395
396
397 ######################################################################
398
399 log_string(f"device {device}")
400
401
402 task = TaskMaze(
403     nb_train_samples=args.nb_train_samples,
404     nb_test_samples=args.nb_test_samples,
405     batch_size=args.batch_size,
406     height=args.maze_height,
407     width=args.maze_width,
408     nb_walls=args.maze_nb_walls,
409     device=device,
410 )
411
412
413 vocabulary_size = task.vocabulary_size()
414
415 log_string(f"vocabulary_size {vocabulary_size}")
416
417 ##############################
418
419 model = mygpt.MyGPT(
420     vocabulary_size=vocabulary_size,
421     dim_model=args.dim_model,
422     dim_keys=args.dim_keys,
423     dim_hidden=args.dim_hidden,
424     nb_heads=args.nb_heads,
425     nb_blocks=args.nb_blocks,
426     causal=True,
427     dropout=args.dropout,
428 )
429
430 model.to(device)
431
432 nb_parameters = sum(p.numel() for p in model.parameters())
433 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
434
435 ######################################################################
436
437 nb_epochs_finished = 0
438
439 if args.no_checkpoint:
440     log_string(f"not trying to load checkpoint.")
441
442 else:
443     try:
444         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
445         checkpoint = torch.load(checkpoint_name)
446         nb_epochs_finished = checkpoint["nb_epochs_finished"]
447         model.load_state_dict(checkpoint["model_state"])
448         torch.set_rng_state(checkpoint["rng_state"])
449         if torch.cuda.is_available():
450             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
451
452         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
453
454     except FileNotFoundError:
455         log_string("starting from scratch.")
456
457     except:
458         log_string("error when loading the checkpoint.")
459         exit(1)
460
461 ######################################################################
462
463 token_count = 0
464 for input in task.batches(split="train"):
465     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
466 token_probas = token_count / token_count.sum()
467 entropy = -torch.xlogy(token_probas, token_probas).sum()
468 train_set_perplexity = math.exp(entropy)
469
470 ##############################
471
472 if args.learning_rate_schedule == "cos":
473     learning_rate_schedule = {}
474     for n_epoch in range(args.nb_epochs):
475         u = n_epoch / args.nb_epochs * math.pi
476         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
477 else:
478     u = {
479         int(k): float(v)
480         for k, v in [
481             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
482         ]
483     }
484
485     learning_rate_schedule = {}
486     learning_rate = args.learning_rate
487     for n_epoch in range(args.nb_epochs):
488         if n_epoch in u:
489             learning_rate = u[n_epoch]
490         learning_rate_schedule[n_epoch] = learning_rate
491
492 log_string(f"learning_rate_schedule {learning_rate_schedule}")
493
494 ##############################
495
496 if args.one_shot:
497     one_shot(model, task)
498     exit(0)
499
500 ##############################
501
502 if nb_epochs_finished >= args.nb_epochs:
503     n_epoch = nb_epochs_finished
504     train_perplexity = compute_perplexity(model, split="train")
505     test_perplexity = compute_perplexity(model, split="test")
506
507     log_string(
508         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
509     )
510
511     task.produce_results(n_epoch, model)
512
513     exit(0)
514
515 ##############################
516
517 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
518     learning_rate = learning_rate_schedule[n_epoch]
519
520     log_string(f"learning_rate {learning_rate}")
521
522     if args.optim == "sgd":
523         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
524     elif args.optim == "adam":
525         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
526     elif args.optim == "adamw":
527         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
528     else:
529         raise ValueError(f"Unknown optimizer {args.optim}.")
530
531     model.train()
532
533     nb_train_samples, acc_train_loss = 0, 0.0
534
535     for input in task.batches(split="train"):
536         input = input.to(device)
537         output = model(mygpt.BracketedSequence(input)).x
538         loss = F.cross_entropy(output.transpose(1, 2), input)
539         acc_train_loss += loss.item() * input.size(0)
540         nb_train_samples += input.size(0)
541
542         optimizer.zero_grad()
543         loss.backward()
544         optimizer.step()
545
546     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
547     test_perplexity = compute_perplexity(model, split="test")
548
549     log_string(
550         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
551     )
552
553     task.produce_results(n_epoch, model)
554
555     checkpoint = {
556         "nb_epochs_finished": n_epoch + 1,
557         "model_state": model.state_dict(),
558         "rng_state": torch.get_rng_state(),
559     }
560
561     if torch.cuda.is_available():
562         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
563
564     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
565     torch.save(checkpoint, checkpoint_name)
566     log_string(f"saved checkpoint {checkpoint_name}")
567
568 ######################################################################