a2898673d7a2e7a53cc53cd08a6f1cdb95e8a8a3
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(
30     description="An implementation of GPT with cache to solve a toy geometric reasoning task."
31 )
32
33 parser.add_argument("--log_filename", type=str, default="train.log")
34
35 parser.add_argument("--result_dir", type=str, default="results_default")
36
37 parser.add_argument("--seed", type=int, default=0)
38
39 parser.add_argument("--nb_epochs", type=int, default=25)
40
41 parser.add_argument("--nb_train_samples", type=int, default=200000)
42
43 parser.add_argument("--nb_test_samples", type=int, default=50000)
44
45 parser.add_argument("--batch_size", type=int, default=25)
46
47 parser.add_argument("--optim", type=str, default="adam")
48
49 parser.add_argument("--learning_rate", type=float, default=1e-3)
50
51 parser.add_argument(
52     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
53 )
54
55 parser.add_argument("--dim_model", type=int, default=512)
56
57 parser.add_argument("--dim_keys", type=int, default=64)
58
59 parser.add_argument("--dim_hidden", type=int, default=2048)
60
61 parser.add_argument("--nb_heads", type=int, default=8)
62
63 parser.add_argument("--nb_blocks", type=int, default=12)
64
65 parser.add_argument("--dropout", type=float, default=0.1)
66
67 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
68
69 parser.add_argument("--no_checkpoint", action="store_true", default=False)
70
71 parser.add_argument("--overwrite_results", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ######################################################################
85
86 args = parser.parse_args()
87
88 try:
89     os.mkdir(args.result_dir)
90 except FileExistsError:
91     if not args.overwrite_results:
92         print(f"result directory {args.result_dir} already exists")
93         exit(1)
94
95 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
96
97 if args.seed >= 0:
98     # torch.backends.cudnn.deterministic = True
99     # torch.backends.cudnn.benchmark = False
100     # torch.use_deterministic_algorithms(True)
101     torch.manual_seed(args.seed)
102     if torch.cuda.is_available():
103         torch.cuda.manual_seed_all(args.seed)
104
105 ######################################################################
106
107
108 def log_string(s):
109     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
110
111     if log_file is not None:
112         log_file.write(t + s + "\n")
113         log_file.flush()
114
115     print(t + s)
116     sys.stdout.flush()
117
118
119 for n in vars(args):
120     log_string(f"args.{n} {getattr(args, n)}")
121
122 ######################################################################
123
124
125 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
126 # tokens that should be generated
127
128
129 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
130
131     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
132         i = (ar_mask.sum(0) > 0).nonzero()
133         if i.min() > 0:
134             model(
135                 mygpt.BracketedSequence(input, 0, i.min())
136             )  # Needed to initialize the model's cache
137         for s in range(i.min(), i.max() + 1):
138             output = model(mygpt.BracketedSequence(input, s, 1)).x
139             logits = output[:, s]
140             if args.deterministic_synthesis:
141                 t_next = logits.argmax(1)
142             else:
143                 dist = torch.distributions.categorical.Categorical(logits=logits)
144                 t_next = dist.sample()
145             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
146
147
148 ######################################################################
149
150
151 class Task:
152     def batches(self, split="train"):
153         pass
154
155     def vocabulary_size(self):
156         pass
157
158     def produce_results(self, n_epoch, model):
159         pass
160
161
162 ######################################################################
163
164 import maze
165
166
167 class TaskMaze(Task):
168     def map2seq(self, *m):
169         return torch.cat([x.flatten(1) for x in m], 1)
170
171     def seq2map(self, s):
172         s = s.reshape(s.size(0), -1, self.height, self.width)
173         return (s[:, k] for k in range(s.size(1)))
174
175     def __init__(
176         self,
177         nb_train_samples,
178         nb_test_samples,
179         batch_size,
180         height,
181         width,
182         nb_walls,
183         device=torch.device("cpu"),
184     ):
185         self.batch_size = batch_size
186         self.height = height
187         self.width = width
188         self.device = device
189
190         mazes_train, paths_train = maze.create_maze_data(
191             nb_train_samples,
192             height=height,
193             width=width,
194             nb_walls=nb_walls,
195             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
196         )
197         mazes_train, paths_train = mazes_train.to(device), paths_train.to(device)
198         self.train_input = self.map2seq(mazes_train, paths_train)
199         self.nb_codes = self.train_input.max() + 1
200
201         mazes_test, paths_test = maze.create_maze_data(
202             nb_test_samples,
203             height=height,
204             width=width,
205             nb_walls=nb_walls,
206             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
207         )
208         mazes_test, paths_test = mazes_test.to(device), paths_test.to(device)
209         self.test_input = self.map2seq(mazes_test, paths_test)
210
211     def batches(self, split="train", nb_to_use=-1):
212         assert split in {"train", "test"}
213         input = self.train_input if split == "train" else self.test_input
214         if nb_to_use > 0:
215             input = input[:nb_to_use]
216         for batch in tqdm.tqdm(
217             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
218         ):
219             yield batch
220
221     def vocabulary_size(self):
222         return self.nb_codes
223
224     def compute_error(self, model, split="train", nb_to_use=-1):
225         nb_total, nb_correct = 0, 0
226         for input in task.batches(split, nb_to_use):
227             result = input.clone()
228             ar_mask = result.new_zeros(result.size())
229             ar_mask[:, self.height * self.width :] = 1
230             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
231             mazes, paths = self.seq2map(result)
232             nb_correct += maze.path_correctness(mazes, paths).long().sum()
233             nb_total += mazes.size(0)
234
235         return nb_total, nb_correct
236
237     def produce_results(self, n_epoch, model):
238         with torch.autograd.no_grad():
239             t = model.training
240             model.eval()
241
242             train_nb_total, train_nb_correct = self.compute_error(
243                 model, "train", nb_to_use=1000
244             )
245             log_string(
246                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
247             )
248
249             test_nb_total, test_nb_correct = self.compute_error(
250                 model, "test", nb_to_use=1000
251             )
252             log_string(
253                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
254             )
255
256             input = self.test_input[:32]
257             result = input.clone()
258             ar_mask = result.new_zeros(result.size())
259
260             ar_mask[:, self.height * self.width :] = 1
261             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
262
263             mazes, paths = self.seq2map(input)
264             _, predicted_paths = self.seq2map(result)
265             maze.save_image(
266                 f"result_{n_epoch:04d}.png",
267                 mazes,
268                 paths,
269                 predicted_paths,
270                 maze.path_correctness(mazes, predicted_paths),
271             )
272
273             model.train(t)
274
275
276 ######################################################################
277
278 log_string(f"device {device}")
279
280
281 task = TaskMaze(
282     nb_train_samples=args.nb_train_samples,
283     nb_test_samples=args.nb_test_samples,
284     batch_size=args.batch_size,
285     height=args.maze_height,
286     width=args.maze_width,
287     nb_walls=args.maze_nb_walls,
288     device=device,
289 )
290
291
292 vocabulary_size = task.vocabulary_size()
293
294 log_string(f"vocabulary_size {vocabulary_size}")
295
296 ##############################
297
298 model = mygpt.MyGPT(
299     vocabulary_size=vocabulary_size,
300     dim_model=args.dim_model,
301     dim_keys=args.dim_keys,
302     dim_hidden=args.dim_hidden,
303     nb_heads=args.nb_heads,
304     nb_blocks=args.nb_blocks,
305     causal=True,
306     dropout=args.dropout,
307 )
308
309 model.to(device)
310
311 nb_parameters = sum(p.numel() for p in model.parameters())
312 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
313
314 ######################################################################
315
316 nb_epochs_finished = 0
317
318 if args.no_checkpoint:
319     log_string(f"not trying to load checkpoint.")
320
321 else:
322     try:
323         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
324         checkpoint = torch.load(checkpoint_name)
325         nb_epochs_finished = checkpoint["nb_epochs_finished"]
326         model.load_state_dict(checkpoint["model_state"])
327         torch.set_rng_state(checkpoint["rng_state"])
328         if torch.cuda.is_available():
329             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
330
331         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
332
333     except FileNotFoundError:
334         log_string("starting from scratch.")
335
336     except:
337         log_string("error when loading the checkpoint.")
338         exit(1)
339
340 ######################################################################
341
342 nb_epochs = args.nb_epochs if args.nb_epochs > 0 else nb_epochs_default
343
344 token_count = 0
345 for input in task.batches(split="train"):
346     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
347 token_probas = token_count / token_count.sum()
348 entropy = -torch.xlogy(token_probas, token_probas).sum()
349 train_set_perplexity = math.exp(entropy)
350
351 ##############################
352
353 if args.learning_rate_schedule == "cos":
354     learning_rate_schedule = {}
355     for n_epoch in range(args.nb_epochs):
356         u = n_epoch / args.nb_epochs * math.pi
357         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
358 else:
359     u = {
360         int(k): float(v)
361         for k, v in [
362             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
363         ]
364     }
365
366     learning_rate_schedule = {}
367     learning_rate = args.learning_rate
368     for n_epoch in range(args.nb_epochs):
369         if n_epoch in u:
370             learning_rate = u[n_epoch]
371         learning_rate_schedule[n_epoch] = learning_rate
372
373 log_string(f"learning_rate_schedule {learning_rate_schedule}")
374
375 ##############################
376
377 nb_samples_seen = 0
378
379 if nb_epochs_finished >= nb_epochs:
380     task.produce_results(nb_epochs_finished, model)
381
382 for n_epoch in range(nb_epochs_finished, nb_epochs):
383
384     learning_rate = learning_rate_schedule[n_epoch]
385
386     log_string(f"learning_rate {learning_rate}")
387
388     if args.optim == "sgd":
389         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
390     elif args.optim == "adam":
391         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
392     elif args.optim == "adamw":
393         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
394     else:
395         raise ValueError(f"Unknown optimizer {args.optim}.")
396
397     model.train()
398
399     nb_train_samples, acc_train_loss = 0, 0.0
400
401     for input in task.batches(split="train"):
402         input = input.to(device)
403         output = model(mygpt.BracketedSequence(input)).x
404         loss = F.cross_entropy(output.transpose(1, 2), input)
405         acc_train_loss += loss.item() * input.size(0)
406         nb_train_samples += input.size(0)
407         nb_samples_seen += input.size(0)
408
409         optimizer.zero_grad()
410         loss.backward()
411         optimizer.step()
412
413     with torch.autograd.no_grad():
414
415         model.eval()
416
417         nb_test_samples, acc_test_loss = 0, 0.0
418
419         for input in task.batches(split="test"):
420             input = input.to(device)
421
422             # input, loss_masks, true_images = task.excise_last_image(input)
423             # input, loss_masks = task.add_true_image(input, true_images, loss_masks)
424
425             output = model(mygpt.BracketedSequence(input)).x
426             loss = F.cross_entropy(output.transpose(1, 2), input)
427             acc_test_loss += loss.item() * input.size(0)
428             nb_test_samples += input.size(0)
429
430         train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
431         test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
432
433         log_string(
434             f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
435         )
436
437         task.produce_results(n_epoch, model)
438
439     checkpoint = {
440         "nb_epochs_finished": n_epoch + 1,
441         "model_state": model.state_dict(),
442         "rng_state": torch.get_rng_state(),
443     }
444
445     if torch.cuda.is_available():
446         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
447
448     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
449     torch.save(checkpoint, checkpoint_name)
450     log_string(f"saved checkpoint {checkpoint_name}")
451
452 ######################################################################