Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--random_regression_order", action="store_true", default=False)
68
69 parser.add_argument("--noncausal_prompt", action="store_true", default=False)
70
71 parser.add_argument("--no_checkpoint", action="store_true", default=False)
72
73 parser.add_argument("--overwrite_results", action="store_true", default=False)
74
75 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
76
77 ##############################
78 # maze options
79
80 parser.add_argument("--maze_height", type=int, default=13)
81
82 parser.add_argument("--maze_width", type=int, default=21)
83
84 parser.add_argument("--maze_nb_walls", type=int, default=15)
85
86 ##############################
87 # one-shot prediction
88
89 parser.add_argument("--oneshot", action="store_true", default=False)
90
91 parser.add_argument("--oneshot_input", type=str, default="head")
92
93 parser.add_argument("--oneshot_output", type=str, default="trace")
94
95 ######################################################################
96
97 args = parser.parse_args()
98
99 try:
100     os.mkdir(args.result_dir)
101 except FileExistsError:
102     if not args.overwrite_results:
103         print(f"result directory {args.result_dir} already exists")
104         exit(1)
105
106 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
107
108 if args.seed >= 0:
109     # torch.backends.cudnn.deterministic = True
110     # torch.backends.cudnn.benchmark = False
111     # torch.use_deterministic_algorithms(True)
112     torch.manual_seed(args.seed)
113     if torch.cuda.is_available():
114         torch.cuda.manual_seed_all(args.seed)
115
116 ######################################################################
117
118
119 def log_string(s):
120     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
121
122     if log_file is not None:
123         log_file.write(t + s + "\n")
124         log_file.flush()
125
126     print(t + s)
127     sys.stdout.flush()
128
129
130 for n in vars(args):
131     log_string(f"args.{n} {getattr(args, n)}")
132
133 ######################################################################
134
135
136 def reorder(x, order, reverse=False):  # x is NxTxD1x...xDk, order is NxT'
137     u = x.reshape(x.size()[:2] + (-1,))
138     order = order.unsqueeze(-1).expand(-1, -1, u.size(-1))
139     if reverse:
140         v = u.new(u.size()).scatter_(1, order, u)
141     else:
142         v = u.gather(1, order)
143     v = v.reshape(v.size()[:2] + x.size()[2:])
144     return v
145
146
147 def shuffle(x, prompt_len):
148     if args.random_regression_order:
149         order = torch.rand(x.size(), device=x.device)
150         order[:, :prompt_len] = torch.arange(-prompt_len, 0, device=x.device)
151         order = order.sort(1).indices
152     else:
153         order = (
154             torch.arange(x.size(1), device=x.device).unsqueeze(0).expand(x.size(0), -1)
155         )
156     return reorder(x, order), order
157
158
159 def eval_mygpt(model, input, mode="standard", prompt_len=0):
160     x, order = shuffle(input, prompt_len)
161     x = model(mygpt.BracketedSequence(x), mode=mode, order=order).x
162     return reorder(x, order, reverse=True)
163
164
165 ######################################################################
166
167 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
168 # tokens that should be generated
169
170
171 def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
172     for input, ar_mask, order in zip(
173         input.split(batch_size), ar_mask.split(batch_size), order.split(batch_size)
174     ):
175         i = (ar_mask.sum(0) > 0).nonzero()
176         if i.min() > 0:
177             # Needed to initialize the model's cache
178             model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
179         for s in range(i.min(), i.max() + 1):
180             output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
181             logits = output[:, s]
182             if args.deterministic_synthesis:
183                 t_next = logits.argmax(1)
184             else:
185                 dist = torch.distributions.categorical.Categorical(logits=logits)
186                 t_next = dist.sample()
187             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
188
189
190 ######################################################################
191
192
193 def compute_perplexity(model, task, prompt_len, split="train"):
194     with torch.autograd.no_grad():
195         t = model.training
196         model.eval()
197
198         nb_samples, acc_loss = 0, 0.0
199
200         for input in task.batches(split=split):
201             input = input.to(device)
202             output = eval_mygpt(model, input, prompt_len=prompt_len)
203             if args.noncausal_prompt:
204                 d = input.size(1) // 2
205                 loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:])
206             else:
207                 loss = F.cross_entropy(output.transpose(1, 2), input)
208             acc_loss += loss.item() * input.size(0)
209             nb_samples += input.size(0)
210
211         model.train(t)
212
213         return math.exp(min(100, acc_loss / nb_samples))
214
215
216 ######################################################################
217
218
219 def oneshot_policy_loss(mazes, output, policies, height, width):
220     masks = (mazes == maze.v_empty).unsqueeze(-1)
221     targets = policies.permute(0, 2, 1) * masks
222     output = output * masks
223     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
224
225
226 def oneshot_trace_loss(mazes, output, policies, height, width):
227     masks = mazes == maze.v_empty
228     targets = maze.stationary_densities(
229         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
230     ).flatten(-2)
231     targets = targets * masks
232     output = output.squeeze(-1) * masks
233     return (output - targets).abs().sum() / masks.sum()
234
235
236 def oneshot(model, learning_rate_scheduler, task):
237     t = model.training
238     model.eval()
239     mazes = task.test_input[:32].clone()
240     mazes[:, task.height * task.width :] = 0
241     policies = task.test_policies[:32]
242     targets = maze.stationary_densities(
243         mazes[:, : task.height * task.width].view(-1, task.height, task.width),
244         policies.view(-1, 4, task.height, task.width),
245     ).flatten(-2)
246     output = eval_mygpt(model, mazes, prompt_len=task.height * task.width)
247     output = F.softmax(output, dim=2)
248     print(f"{output.size()=}")
249     proba_path = output[:, task.height * task.width :, 4].reshape(
250         -1, task.height, task.width
251     )
252     mazes = mazes[:, : task.height * task.width].reshape(-1, task.height, task.width)
253     targets = targets.reshape(-1, task.height, task.width)
254     paths = task.test_input[:32, task.height * task.width :].reshape(
255         -1, task.height, task.width
256     )
257     filename = f"oneshot.png"
258     maze.save_image(
259         os.path.join(args.result_dir, filename),
260         mazes=mazes,
261         # target_paths=paths,
262         score_paths=proba_path,
263         score_truth=targets,
264     )
265     log_string(f"wrote {filename}")
266
267
268 def oneshot_old(gpt, learning_rate_scheduler, task):
269     t = gpt.training
270     gpt.eval()
271
272     if args.oneshot_input == "head":
273         dim_in = args.dim_model
274     elif args.oneshot_input == "deep":
275         dim_in = args.dim_model * args.nb_blocks * 2
276     else:
277         raise ValueError(f"{args.oneshot_input=}")
278
279     if args.oneshot_output == "policy":
280         dim_out = 4
281         compute_loss = oneshot_policy_loss
282     elif args.oneshot_output == "trace":
283         dim_out = 1
284         compute_loss = oneshot_trace_loss
285     else:
286         raise ValueError(f"{args.oneshot_output=}")
287
288     model = nn.Sequential(
289         nn.Linear(dim_in, args.dim_model),
290         nn.ReLU(),
291         nn.Linear(args.dim_model, args.dim_model),
292         nn.ReLU(),
293         nn.Linear(args.dim_model, dim_out),
294     ).to(device)
295
296     learning_rate_scheduler.reset()
297
298     for n_epoch in range(args.nb_epochs):
299         learning_rate = learning_rate_scheduler.get_learning_rate()
300         log_string(f"learning_rate {n_epoch} {learning_rate}")
301
302         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
303
304         acc_train_loss, nb_train_samples = 0, 0
305         for mazes, policies in task.policy_batches(split="train"):
306             output_gpt = eval_mygpt(
307                 gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
308             )
309             output = model(output_gpt)
310
311             loss = compute_loss(mazes, output, policies, task.height, task.width)
312             acc_train_loss += loss.item() * mazes.size(0)
313             nb_train_samples += mazes.size(0)
314
315             optimizer.zero_grad()
316             loss.backward()
317             optimizer.step()
318
319         learning_rate_scheduler.update(n_epoch + 1, acc_train_loss)
320
321         acc_test_loss, nb_test_samples = 0, 0
322         for mazes, policies in task.policy_batches(split="test"):
323             output_gpt = eval_mygpt(
324                 gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
325             )
326             output = model(output_gpt)
327             loss = compute_loss(mazes, output, policies, task.height, task.width)
328             acc_test_loss += loss.item() * mazes.size(0)
329             nb_test_samples += mazes.size(0)
330
331         log_string(
332             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
333         )
334
335         # -------------------
336         mazes = task.test_input[:32, : task.height * task.width]
337         policies = task.test_policies[:32]
338         output_gpt = eval_mygpt(
339             gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
340         )
341         output = model(output_gpt)
342         if args.oneshot_output == "policy":
343             targets = policies.permute(0, 2, 1)
344             scores = (
345                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
346             ).float()
347         elif args.oneshot_output == "trace":
348             targets = maze.stationary_densities(
349                 mazes.view(-1, task.height, task.width),
350                 policies.view(-1, 4, task.height, task.width),
351             ).flatten(-2)
352             scores = output
353         else:
354             raise ValueError(f"{args.oneshot_output=}")
355
356         scores = scores.reshape(-1, task.height, task.width)
357         mazes = mazes.reshape(-1, task.height, task.width)
358         targets = targets.reshape(-1, task.height, task.width)
359         filename = (
360             f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png"
361         )
362         maze.save_image(
363             os.path.join(args.result_dir, filename),
364             mazes=mazes,
365             score_paths=scores,
366             score_truth=targets,
367         )
368         log_string(f"wrote {filename}")
369
370         # -------------------
371
372     gpt.train(t)
373
374
375 ######################################################################
376
377
378 class LearningRateScheduler:
379     def get_learning_rate(self):
380         pass
381
382     def update(self, nb_finished_epochs, loss):
383         pass
384
385     def reset(self):
386         pass
387
388     def get_state(self):
389         return vars(self)
390
391     def set_state(self, state):
392         print(f"{state=}")
393         for k, v in state.items():
394             setattr(self, k, v)
395
396
397 class StepWiseScheduler(LearningRateScheduler):
398     def __init__(self, schedule):
399         self.nb_finished_epochs = 0
400         self.schedule = schedule
401
402     def get_learning_rate(self):
403         return self.schedule[self.nb_finished_epochs]
404
405     def update(self, nb_finished_epochs, loss):
406         self.nb_finished_epochs = nb_finished_epochs
407
408     def reset(self):
409         self.nb_finished_epochs = 0
410
411     def get_state(self):
412         return {"nb_finished_epochs": self.nb_finished_epochs}
413
414
415 class AutoScheduler(LearningRateScheduler):
416     def __init__(self, learning_rate_init, growth=1.0, degrowth=0.2):
417         self.learning_rate_init = learning_rate_init
418         self.learning_rate = learning_rate_init
419         self.growth = growth
420         self.degrowth = degrowth
421         self.pred_loss = None
422
423     def get_learning_rate(self):
424         return self.learning_rate
425
426     def update(self, nb_finished_epochs, loss):
427         if self.pred_loss is not None:
428             if loss >= self.pred_loss:
429                 self.learning_rate *= self.degrowth
430             else:
431                 self.learning_rate *= self.growth
432         self.pred_loss = loss
433
434     def reset(self):
435         self.learning_rate = self.learning_rate_init
436
437     def get_state(self):
438         return {
439             "learning_rate_init": self.learning_rate_init,
440             "pred_loss": self.pred_loss,
441         }
442
443
444 ######################################################################
445
446
447 class Task:
448     def batches(self, split="train", nb_to_use=-1, desc=None):
449         pass
450
451     def vocabulary_size(self):
452         pass
453
454     def produce_results(self, n_epoch, model):
455         pass
456
457
458 ######################################################################
459
460 import maze
461
462
463 class TaskMaze(Task):
464     def map2seq(self, *m):
465         return torch.cat([x.flatten(1) for x in m], 1)
466
467     def seq2map(self, s):
468         s = s.reshape(s.size(0), -1, self.height, self.width)
469         return (s[:, k] for k in range(s.size(1)))
470
471     def __init__(
472         self,
473         nb_train_samples,
474         nb_test_samples,
475         batch_size,
476         height,
477         width,
478         nb_walls,
479         device=torch.device("cpu"),
480     ):
481         self.batch_size = batch_size
482         self.height = height
483         self.width = width
484         self.device = device
485
486         train_mazes, train_paths, train_policies = maze.create_maze_data(
487             nb_train_samples,
488             height=height,
489             width=width,
490             nb_walls=nb_walls,
491             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
492         )
493         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
494         self.train_policies = train_policies.flatten(-2).to(device)
495
496         test_mazes, test_paths, test_policies = maze.create_maze_data(
497             nb_test_samples,
498             height=height,
499             width=width,
500             nb_walls=nb_walls,
501             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
502         )
503         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
504         self.test_policies = test_policies.flatten(-2).to(device)
505
506         self.nb_codes = self.train_input.max() + 1
507
508     def batches(self, split="train", nb_to_use=-1, desc=None):
509         assert split in {"train", "test"}
510         input = self.train_input if split == "train" else self.test_input
511         if nb_to_use > 0:
512             input = input[:nb_to_use]
513         if desc is None:
514             desc = f"epoch-{split}"
515         for batch in tqdm.tqdm(
516             input.split(self.batch_size), dynamic_ncols=True, desc=desc
517         ):
518             yield batch
519
520     def policy_batches(self, split="train", nb_to_use=-1, desc=None):
521         assert split in {"train", "test"}
522         input = self.train_input if split == "train" else self.test_input
523         policies = self.train_policies if split == "train" else self.test_policies
524         input = input[:, : self.height * self.width]
525         policies = policies * (input != maze.v_wall)[:, None]
526
527         if nb_to_use > 0:
528             input = input[:nb_to_use]
529             policies = policies[:nb_to_use]
530
531         if desc is None:
532             desc = f"epoch-{split}"
533         for batch in tqdm.tqdm(
534             zip(input.split(self.batch_size), policies.split(self.batch_size)),
535             dynamic_ncols=True,
536             desc=desc,
537         ):
538             yield batch
539
540     def vocabulary_size(self):
541         return self.nb_codes
542
543     def compute_error(self, model, split="train", nb_to_use=-1):
544         nb_total, nb_correct = 0, 0
545         for input in task.batches(split, nb_to_use):
546             result = input.clone()
547             ar_mask = result.new_zeros(result.size())
548             ar_mask[:, self.height * self.width :] = 1
549             result *= 1 - ar_mask
550             x, order = shuffle(result, self.height * self.width)
551             masked_inplace_autoregression(
552                 model, self.batch_size, x, ar_mask, order=order
553             )
554             result = reorder(x, order, reverse=True)
555             mazes, paths = self.seq2map(result)
556             nb_correct += maze.path_correctness(mazes, paths).long().sum()
557             nb_total += mazes.size(0)
558
559         return nb_total, nb_correct
560
561     def produce_results(self, n_epoch, model):
562         with torch.autograd.no_grad():
563             t = model.training
564             model.eval()
565
566             train_nb_total, train_nb_correct = self.compute_error(
567                 model, "train", nb_to_use=1000
568             )
569             log_string(
570                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
571             )
572
573             test_nb_total, test_nb_correct = self.compute_error(
574                 model, "test", nb_to_use=1000
575             )
576             log_string(
577                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
578             )
579
580             input = self.test_input[:32]
581             result = input.clone()
582             ar_mask = result.new_zeros(result.size())
583             ar_mask[:, self.height * self.width :] = 1
584             result *= 1 - ar_mask
585             x, order = shuffle(result, self.height * self.width)
586             masked_inplace_autoregression(
587                 model, self.batch_size, x, ar_mask, order=order
588             )
589             result = reorder(x, order, reverse=True)
590
591             mazes, paths = self.seq2map(input)
592             _, predicted_paths = self.seq2map(result)
593             filename = f"result_{n_epoch:04d}.png"
594             maze.save_image(
595                 os.path.join(args.result_dir, filename),
596                 mazes=mazes,
597                 target_paths=paths,
598                 predicted_paths=predicted_paths,
599                 path_correct=maze.path_correctness(mazes, predicted_paths),
600             )
601             log_string(f"wrote {filename}")
602
603             model.train(t)
604
605
606 ######################################################################
607
608 log_string(f"device {device}")
609
610
611 task = TaskMaze(
612     nb_train_samples=args.nb_train_samples,
613     nb_test_samples=args.nb_test_samples,
614     batch_size=args.batch_size,
615     height=args.maze_height,
616     width=args.maze_width,
617     nb_walls=args.maze_nb_walls,
618     device=device,
619 )
620
621
622 vocabulary_size = task.vocabulary_size()
623
624 log_string(f"vocabulary_size {vocabulary_size}")
625
626 ##############################
627
628
629 def noncausal_prompt_amm_generator(d):
630     q = torch.arange(d)[:, None]
631     k = torch.arange(d)[None, :]
632     s = args.maze_height * args.maze_width
633     return torch.logical_and(q < k, torch.logical_or(q >= s, k >= s))
634     # return q < k
635
636
637 def noncausal_prompt_oneshot_amm_generator(d):
638     q = torch.arange(d)[:, None]
639     k = torch.arange(d)[None, :]
640     s = args.maze_height * args.maze_width
641     return k >= s
642     # return q < k
643
644
645 if args.oneshot:
646     amm_generator = noncausal_prompt_oneshot_amm_generator
647 elif args.noncausal_prompt:
648     amm_generator = noncausal_prompt_amm_generator
649 else:
650     amm_generator = None
651
652 model = mygpt.MyGPT(
653     vocabulary_size=vocabulary_size,
654     dim_model=args.dim_model,
655     dim_keys=args.dim_keys,
656     dim_hidden=args.dim_hidden,
657     nb_heads=args.nb_heads,
658     nb_blocks=args.nb_blocks,
659     causal=True,
660     dropout=args.dropout,
661     amm_generator=amm_generator,
662 )
663
664 model.to(device)
665
666 nb_parameters = sum(p.numel() for p in model.parameters())
667 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
668
669 ######################################################################
670
671 if args.learning_rate_schedule == "auto":
672     learning_rate_scheduler = AutoScheduler(args.learning_rate)
673
674 elif args.learning_rate_schedule == "cos":
675     schedule = {}
676     for n_epoch in range(args.nb_epochs):
677         u = n_epoch / args.nb_epochs * math.pi
678         schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
679     learning_rate_scheduler = StepWiseScheduler(schedule)
680     log_string(f"learning_rate_schedule {schedule}")
681
682 else:
683     u = {
684         int(k): float(v)
685         for k, v in [
686             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
687         ]
688     }
689
690     schedule = {}
691     learning_rate = args.learning_rate
692     for n_epoch in range(args.nb_epochs):
693         if n_epoch in u:
694             learning_rate = u[n_epoch]
695         schedule[n_epoch] = learning_rate
696     learning_rate_scheduler = StepWiseScheduler(schedule)
697     log_string(f"learning_rate_schedule {schedule}")
698
699 ######################################################################
700
701 nb_epochs_finished = 0
702
703 if args.no_checkpoint:
704     log_string(f"not trying to load checkpoint.")
705
706 else:
707     try:
708         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
709         checkpoint = torch.load(checkpoint_name)
710         nb_epochs_finished = checkpoint["nb_epochs_finished"]
711         model.load_state_dict(checkpoint["model_state"])
712         learning_rate_scheduler.set_state(checkpoint["learning_rate_scheduler_state"])
713         torch.set_rng_state(checkpoint["rng_state"])
714         if torch.cuda.is_available():
715             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
716
717         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
718
719     except FileNotFoundError:
720         log_string("starting from scratch.")
721
722     # except:
723     # log_string("error when loading the checkpoint.")
724     # exit(1)
725
726 ######################################################################
727
728 if args.oneshot:
729     oneshot(model, learning_rate_scheduler, task)
730     exit(0)
731
732 ######################################################################
733
734 token_count = 0
735 for input in task.batches(split="train"):
736     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
737 token_probas = token_count / token_count.sum()
738 entropy = -torch.xlogy(token_probas, token_probas).sum()
739 train_set_perplexity = math.exp(entropy)
740
741 ##############################
742
743 if nb_epochs_finished >= args.nb_epochs:
744     n_epoch = nb_epochs_finished
745     train_perplexity = compute_perplexity(
746         model, task, prompt_len=task.height * task.width, split="train"
747     )
748     test_perplexity = compute_perplexity(
749         model, task, prompt_len=task.height * task.width, split="test"
750     )
751
752     log_string(
753         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
754     )
755
756     task.produce_results(n_epoch, model)
757
758 ##############################
759
760 learning_rate_scheduler.reset()
761
762 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
763     learning_rate = learning_rate_scheduler.get_learning_rate()
764     log_string(f"learning_rate {n_epoch} {learning_rate}")
765
766     if args.optim == "sgd":
767         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
768     elif args.optim == "adam":
769         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
770     elif args.optim == "adamw":
771         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
772     else:
773         raise ValueError(f"{args.optim=}")
774
775     model.train()
776
777     nb_train_samples, acc_train_loss = 0, 0.0
778
779     for input in task.batches(split="train"):
780         input = input.to(device)
781         output = eval_mygpt(model, input, prompt_len=task.height * task.width)
782         if args.noncausal_prompt:
783             d = input.size(1) // 2
784             loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:])
785         else:
786             loss = F.cross_entropy(output.transpose(1, 2), input)
787         acc_train_loss += loss.item() * input.size(0)
788         nb_train_samples += input.size(0)
789
790         optimizer.zero_grad()
791         loss.backward()
792         optimizer.step()
793
794     learning_rate_scheduler.update(n_epoch + 1, acc_train_loss)
795
796     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
797     test_perplexity = compute_perplexity(
798         model, task, prompt_len=task.height * task.width, split="test"
799     )
800
801     log_string(
802         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
803     )
804
805     task.produce_results(n_epoch, model)
806
807     checkpoint = {
808         "nb_epochs_finished": n_epoch + 1,
809         "model_state": model.state_dict(),
810         "learning_rate_scheduler_state": learning_rate_scheduler.get_state(),
811         "rng_state": torch.get_rng_state(),
812     }
813
814     if torch.cuda.is_available():
815         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
816
817     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
818     torch.save(checkpoint, checkpoint_name)
819     log_string(f"saved checkpoint {checkpoint_name}")
820
821 ######################################################################