8fe9a9b0a18c3882fa7718f23d36fd3a226a5157
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--random_regression_order", action="store_true", default=False)
68
69 parser.add_argument("--no_checkpoint", action="store_true", default=False)
70
71 parser.add_argument("--overwrite_results", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ##############################
85 # one-shot prediction
86
87 parser.add_argument("--oneshot", action="store_true", default=False)
88
89 parser.add_argument("--oneshot_input", type=str, default="head")
90
91 parser.add_argument("--oneshot_output", type=str, default="trace")
92
93 ######################################################################
94
95 args = parser.parse_args()
96
97 try:
98     os.mkdir(args.result_dir)
99 except FileExistsError:
100     if not args.overwrite_results:
101         print(f"result directory {args.result_dir} already exists")
102         exit(1)
103
104 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
105
106 if args.seed >= 0:
107     # torch.backends.cudnn.deterministic = True
108     # torch.backends.cudnn.benchmark = False
109     # torch.use_deterministic_algorithms(True)
110     torch.manual_seed(args.seed)
111     if torch.cuda.is_available():
112         torch.cuda.manual_seed_all(args.seed)
113
114 ######################################################################
115
116
117 def log_string(s):
118     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
119
120     if log_file is not None:
121         log_file.write(t + s + "\n")
122         log_file.flush()
123
124     print(t + s)
125     sys.stdout.flush()
126
127
128 for n in vars(args):
129     log_string(f"args.{n} {getattr(args, n)}")
130
131 ######################################################################
132
133
134 def generation_order(x, fixed_len):
135     if args.random_regression_order:
136         order = torch.rand(x.size(), device=x.device)
137         order[:, :fixed_len] = torch.linspace(-2, -1, fixed_len, device=order.device)
138         return order.sort(1).indices
139     else:
140         return (
141             torch.arange(x.size(1), device=x.device).unsqueeze(0).expand(x.size(0), -1)
142         )
143
144
145 def shuffle(x, order, reorder=False):
146     if x.dim() == 3:
147         order = order.unsqueeze(-1).expand(-1, -1, x.size(-1))
148     if reorder:
149         y = x.new(x.size())
150         y.scatter_(1, order, x)
151         return y
152     else:
153         return x.gather(1, order)
154
155
156 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
157 # tokens that should be generated
158
159
160 def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
161     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
162         i = (ar_mask.sum(0) > 0).nonzero()
163         if i.min() > 0:
164             # Needed to initialize the model's cache
165             model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
166         for s in range(i.min(), i.max() + 1):
167             output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
168             logits = output[:, s]
169             if args.deterministic_synthesis:
170                 t_next = logits.argmax(1)
171             else:
172                 dist = torch.distributions.categorical.Categorical(logits=logits)
173                 t_next = dist.sample()
174             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
175
176
177 ######################################################################
178
179
180 def compute_perplexity(model, split="train"):
181     with torch.autograd.no_grad():
182         t = model.training
183         model.eval()
184
185         nb_samples, acc_loss = 0, 0.0
186
187         for input in task.batches(split=split):
188             input = input.to(device)
189             order = generation_order(input, task.height * task.width)
190             input = shuffle(input, order)
191             output = model(mygpt.BracketedSequence(input), order=order).x
192             loss = F.cross_entropy(output.transpose(1, 2), input)
193             acc_loss += loss.item() * input.size(0)
194             nb_samples += input.size(0)
195
196         model.train(t)
197
198         return math.exp(min(100, acc_loss / nb_samples))
199
200
201 ######################################################################
202
203
204 def oneshot_policy_loss(mazes, output, policies, height, width):
205     masks = (mazes == maze.v_empty).unsqueeze(-1)
206     targets = policies.permute(0, 2, 1) * masks
207     output = output * masks
208     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
209
210
211 def oneshot_trace_loss(mazes, output, policies, height, width):
212     masks = mazes == maze.v_empty
213     targets = maze.stationary_densities(
214         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
215     ).flatten(-2)
216     targets = targets * masks
217     output = output.squeeze(-1) * masks
218     return (output - targets).abs().sum() / masks.sum()
219
220
221 def oneshot(gpt, task):
222     t = gpt.training
223     gpt.eval()
224
225     if args.oneshot_input == "head":
226         dim_in = args.dim_model
227     elif args.oneshot_input == "deep":
228         dim_in = args.dim_model * args.nb_blocks * 2
229     else:
230         raise ValueError(f"{args.oneshot_input=}")
231
232     if args.oneshot_output == "policy":
233         dim_out = 4
234         compute_loss = oneshot_policy_loss
235     elif args.oneshot_output == "trace":
236         dim_out = 1
237         compute_loss = oneshot_trace_loss
238     else:
239         raise ValueError(f"{args.oneshot_output=}")
240
241     model = nn.Sequential(
242         nn.Linear(dim_in, args.dim_model),
243         nn.ReLU(),
244         nn.Linear(args.dim_model, args.dim_model),
245         nn.ReLU(),
246         nn.Linear(args.dim_model, dim_out),
247     ).to(device)
248
249     for n_epoch in range(args.nb_epochs):
250         learning_rate = learning_rate_schedule[n_epoch]
251         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
252
253         acc_train_loss, nb_train_samples = 0, 0
254         for mazes, policies in task.policy_batches(split="train"):
255             order = generation_order(mazes, task.height * task.width)
256             x = shuffle(mazes, order)
257             x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
258             output_gpt = shuffle(x, order, reorder=True)
259             output = model(output_gpt)
260
261             loss = compute_loss(mazes, output, policies, task.height, task.width)
262             acc_train_loss += loss.item() * mazes.size(0)
263             nb_train_samples += mazes.size(0)
264
265             optimizer.zero_grad()
266             loss.backward()
267             optimizer.step()
268
269         acc_test_loss, nb_test_samples = 0, 0
270         for mazes, policies in task.policy_batches(split="test"):
271             order = generation_order(mazes, task.height * task.width)
272             x = shuffle(mazes, order)
273             x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
274             output_gpt = shuffle(x, order, reorder=True)
275             output = model(output_gpt)
276             loss = compute_loss(mazes, output, policies, task.height, task.width)
277             acc_test_loss += loss.item() * mazes.size(0)
278             nb_test_samples += mazes.size(0)
279
280         log_string(
281             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
282         )
283
284         # -------------------
285         mazes = task.test_input[:32, : task.height * task.width]
286         policies = task.test_policies[:32]
287         order = generation_order(mazes, task.height * task.width)
288         x = shuffle(mazes, order)
289         x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
290         output_gpt = shuffle(x, order, reorder=True)
291         output = model(output_gpt)
292         if args.oneshot_output == "policy":
293             targets = policies.permute(0, 2, 1)
294             scores = (
295                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
296             ).float()
297         elif args.oneshot_output == "trace":
298             targets = maze.stationary_densities(
299                 mazes.view(-1, task.height, task.width),
300                 policies.view(-1, 4, task.height, task.width),
301             ).flatten(-2)
302             scores = output
303         else:
304             raise ValueError(f"{args.oneshot_output=}")
305
306         scores = scores.reshape(-1, task.height, task.width)
307         mazes = mazes.reshape(-1, task.height, task.width)
308         targets = targets.reshape(-1, task.height, task.width)
309         maze.save_image(
310             os.path.join(
311                 args.result_dir,
312                 f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png",
313             ),
314             mazes=mazes,
315             score_paths=scores,
316             score_truth=targets,
317         )
318         # -------------------
319
320     gpt.train(t)
321
322
323 ######################################################################
324
325
326 class Task:
327     def batches(self, split="train", nb_to_use=-1, desc=None):
328         pass
329
330     def vocabulary_size(self):
331         pass
332
333     def produce_results(self, n_epoch, model):
334         pass
335
336
337 ######################################################################
338
339 import maze
340
341
342 class TaskMaze(Task):
343     def map2seq(self, *m):
344         return torch.cat([x.flatten(1) for x in m], 1)
345
346     def seq2map(self, s):
347         s = s.reshape(s.size(0), -1, self.height, self.width)
348         return (s[:, k] for k in range(s.size(1)))
349
350     def __init__(
351         self,
352         nb_train_samples,
353         nb_test_samples,
354         batch_size,
355         height,
356         width,
357         nb_walls,
358         device=torch.device("cpu"),
359     ):
360         self.batch_size = batch_size
361         self.height = height
362         self.width = width
363         self.device = device
364
365         train_mazes, train_paths, train_policies = maze.create_maze_data(
366             nb_train_samples,
367             height=height,
368             width=width,
369             nb_walls=nb_walls,
370             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
371         )
372         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
373         self.train_policies = train_policies.flatten(-2).to(device)
374
375         test_mazes, test_paths, test_policies = maze.create_maze_data(
376             nb_test_samples,
377             height=height,
378             width=width,
379             nb_walls=nb_walls,
380             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
381         )
382         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
383         self.test_policies = test_policies.flatten(-2).to(device)
384
385         self.nb_codes = self.train_input.max() + 1
386
387     def batches(self, split="train", nb_to_use=-1, desc=None):
388         assert split in {"train", "test"}
389         input = self.train_input if split == "train" else self.test_input
390         if nb_to_use > 0:
391             input = input[:nb_to_use]
392         if desc is None:
393             desc = f"epoch-{split}"
394         for batch in tqdm.tqdm(
395             input.split(self.batch_size), dynamic_ncols=True, desc=desc
396         ):
397             yield batch
398
399     def policy_batches(self, split="train", nb_to_use=-1, desc=None):
400         assert split in {"train", "test"}
401         input = self.train_input if split == "train" else self.test_input
402         policies = self.train_policies if split == "train" else self.test_policies
403         input = input[:, : self.height * self.width]
404         policies = policies * (input != maze.v_wall)[:, None]
405
406         if nb_to_use > 0:
407             input = input[:nb_to_use]
408             policies = policies[:nb_to_use]
409
410         if desc is None:
411             desc = f"epoch-{split}"
412         for batch in tqdm.tqdm(
413             zip(input.split(self.batch_size), policies.split(self.batch_size)),
414             dynamic_ncols=True,
415             desc=desc,
416         ):
417             yield batch
418
419     def vocabulary_size(self):
420         return self.nb_codes
421
422     def compute_error(self, model, split="train", nb_to_use=-1):
423         nb_total, nb_correct = 0, 0
424         for input in task.batches(split, nb_to_use):
425             result = input.clone()
426             ar_mask = result.new_zeros(result.size())
427             ar_mask[:, self.height * self.width :] = 1
428             result *= 1 - ar_mask
429             order = generation_order(result, self.height * self.width)
430             masked_inplace_autoregression(
431                 model, self.batch_size, result, ar_mask, order=order
432             )
433             result = shuffle(result, order, reorder=True)
434             mazes, paths = self.seq2map(result)
435             nb_correct += maze.path_correctness(mazes, paths).long().sum()
436             nb_total += mazes.size(0)
437
438         return nb_total, nb_correct
439
440     def produce_results(self, n_epoch, model):
441         with torch.autograd.no_grad():
442             t = model.training
443             model.eval()
444
445             train_nb_total, train_nb_correct = self.compute_error(
446                 model, "train", nb_to_use=1000
447             )
448             log_string(
449                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
450             )
451
452             test_nb_total, test_nb_correct = self.compute_error(
453                 model, "test", nb_to_use=1000
454             )
455             log_string(
456                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
457             )
458
459             input = self.test_input[:32]
460             result = input.clone()
461             ar_mask = result.new_zeros(result.size())
462             ar_mask[:, self.height * self.width :] = 1
463             result *= 1 - ar_mask
464             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
465
466             mazes, paths = self.seq2map(input)
467             _, predicted_paths = self.seq2map(result)
468             maze.save_image(
469                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
470                 mazes=mazes,
471                 target_paths=paths,
472                 predicted_paths=predicted_paths,
473                 path_correct=maze.path_correctness(mazes, predicted_paths),
474             )
475
476             model.train(t)
477
478
479 ######################################################################
480
481 log_string(f"device {device}")
482
483
484 task = TaskMaze(
485     nb_train_samples=args.nb_train_samples,
486     nb_test_samples=args.nb_test_samples,
487     batch_size=args.batch_size,
488     height=args.maze_height,
489     width=args.maze_width,
490     nb_walls=args.maze_nb_walls,
491     device=device,
492 )
493
494
495 vocabulary_size = task.vocabulary_size()
496
497 log_string(f"vocabulary_size {vocabulary_size}")
498
499 ##############################
500
501 model = mygpt.MyGPT(
502     vocabulary_size=vocabulary_size,
503     dim_model=args.dim_model,
504     dim_keys=args.dim_keys,
505     dim_hidden=args.dim_hidden,
506     nb_heads=args.nb_heads,
507     nb_blocks=args.nb_blocks,
508     causal=True,
509     dropout=args.dropout,
510 )
511
512 model.to(device)
513
514 nb_parameters = sum(p.numel() for p in model.parameters())
515 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
516
517 ######################################################################
518
519 nb_epochs_finished = 0
520
521 if args.no_checkpoint:
522     log_string(f"not trying to load checkpoint.")
523
524 else:
525     try:
526         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
527         checkpoint = torch.load(checkpoint_name)
528         nb_epochs_finished = checkpoint["nb_epochs_finished"]
529         model.load_state_dict(checkpoint["model_state"])
530         torch.set_rng_state(checkpoint["rng_state"])
531         if torch.cuda.is_available():
532             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
533
534         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
535
536     except FileNotFoundError:
537         log_string("starting from scratch.")
538
539     except:
540         log_string("error when loading the checkpoint.")
541         exit(1)
542
543 ######################################################################
544
545 token_count = 0
546 for input in task.batches(split="train"):
547     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
548 token_probas = token_count / token_count.sum()
549 entropy = -torch.xlogy(token_probas, token_probas).sum()
550 train_set_perplexity = math.exp(entropy)
551
552 ##############################
553
554 if args.learning_rate_schedule == "cos":
555     learning_rate_schedule = {}
556     for n_epoch in range(args.nb_epochs):
557         u = n_epoch / args.nb_epochs * math.pi
558         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
559 else:
560     u = {
561         int(k): float(v)
562         for k, v in [
563             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
564         ]
565     }
566
567     learning_rate_schedule = {}
568     learning_rate = args.learning_rate
569     for n_epoch in range(args.nb_epochs):
570         if n_epoch in u:
571             learning_rate = u[n_epoch]
572         learning_rate_schedule[n_epoch] = learning_rate
573
574 log_string(f"learning_rate_schedule {learning_rate_schedule}")
575
576 ##############################
577
578 if nb_epochs_finished >= args.nb_epochs:
579     n_epoch = nb_epochs_finished
580     train_perplexity = compute_perplexity(model, split="train")
581     test_perplexity = compute_perplexity(model, split="test")
582
583     log_string(
584         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
585     )
586
587     task.produce_results(n_epoch, model)
588
589 ##############################
590
591 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
592     learning_rate = learning_rate_schedule[n_epoch]
593
594     log_string(f"learning_rate {learning_rate}")
595
596     if args.optim == "sgd":
597         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
598     elif args.optim == "adam":
599         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
600     elif args.optim == "adamw":
601         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
602     else:
603         raise ValueError(f"{args.optim=}")
604
605     model.train()
606
607     nb_train_samples, acc_train_loss = 0, 0.0
608
609     for input in task.batches(split="train"):
610         input = input.to(device)
611         order = generation_order(input, task.height * task.width)
612         input = shuffle(input, order)
613         output = model(mygpt.BracketedSequence(input), order=order).x
614         loss = F.cross_entropy(output.transpose(1, 2), input)
615         acc_train_loss += loss.item() * input.size(0)
616         nb_train_samples += input.size(0)
617
618         optimizer.zero_grad()
619         loss.backward()
620         optimizer.step()
621
622     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
623     test_perplexity = compute_perplexity(model, split="test")
624
625     log_string(
626         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
627     )
628
629     task.produce_results(n_epoch, model)
630
631     checkpoint = {
632         "nb_epochs_finished": n_epoch + 1,
633         "model_state": model.state_dict(),
634         "rng_state": torch.get_rng_state(),
635     }
636
637     if torch.cuda.is_available():
638         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
639
640     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
641     torch.save(checkpoint, checkpoint_name)
642     log_string(f"saved checkpoint {checkpoint_name}")
643
644 ######################################################################
645
646 if args.oneshot:
647     oneshot(model, task)
648
649 ######################################################################