6ed9dd23a384984374e8feff2ba489d103150606
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--random_regression_order", action="store_true", default=False)
68
69 parser.add_argument("--noncausal_prompt", action="store_true", default=False)
70
71 parser.add_argument("--no_checkpoint", action="store_true", default=False)
72
73 parser.add_argument("--overwrite_results", action="store_true", default=False)
74
75 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
76
77 ##############################
78 # maze options
79
80 parser.add_argument("--maze_height", type=int, default=13)
81
82 parser.add_argument("--maze_width", type=int, default=21)
83
84 parser.add_argument("--maze_nb_walls", type=int, default=15)
85
86 ##############################
87 # one-shot prediction
88
89 parser.add_argument("--oneshot", action="store_true", default=False)
90
91 parser.add_argument("--oneshot_input", type=str, default="head")
92
93 parser.add_argument("--oneshot_output", type=str, default="trace")
94
95 ######################################################################
96
97 args = parser.parse_args()
98
99 try:
100     os.mkdir(args.result_dir)
101 except FileExistsError:
102     if not args.overwrite_results:
103         print(f"result directory {args.result_dir} already exists")
104         exit(1)
105
106 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
107
108 if args.seed >= 0:
109     # torch.backends.cudnn.deterministic = True
110     # torch.backends.cudnn.benchmark = False
111     # torch.use_deterministic_algorithms(True)
112     torch.manual_seed(args.seed)
113     if torch.cuda.is_available():
114         torch.cuda.manual_seed_all(args.seed)
115
116 ######################################################################
117
118
119 def log_string(s):
120     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
121
122     if log_file is not None:
123         log_file.write(t + s + "\n")
124         log_file.flush()
125
126     print(t + s)
127     sys.stdout.flush()
128
129
130 for n in vars(args):
131     log_string(f"args.{n} {getattr(args, n)}")
132
133 ######################################################################
134
135
136 def reorder(x, order, reverse=False):  # x is NxTxD1x...xDk, order is NxT'
137     u = x.reshape(x.size()[:2] + (-1,))
138     order = order.unsqueeze(-1).expand(-1, -1, u.size(-1))
139     if reverse:
140         v = u.new(u.size()).scatter_(1, order, u)
141     else:
142         v = u.gather(1, order)
143     v = v.reshape(v.size()[:2] + x.size()[2:])
144     return v
145
146
147 def shuffle(x, prompt_len):
148     if args.random_regression_order:
149         order = torch.rand(x.size(), device=x.device)
150         order[:, :prompt_len] = torch.arange(-prompt_len, 0, device=x.device)
151         order = order.sort(1).indices
152     else:
153         order = (
154             torch.arange(x.size(1), device=x.device).unsqueeze(0).expand(x.size(0), -1)
155         )
156     return reorder(x, order), order
157
158
159 def eval_mygpt(model, input, mode="standard", prompt_len=0):
160     x, order = shuffle(input, prompt_len)
161     x = model(mygpt.BracketedSequence(x), mode=mode, order=order).x
162     return reorder(x, order, reverse=True)
163
164
165 ######################################################################
166
167 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
168 # tokens that should be generated
169
170
171 def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
172     for input, ar_mask, order in zip(
173         input.split(batch_size), ar_mask.split(batch_size), order.split(batch_size)
174     ):
175         i = (ar_mask.sum(0) > 0).nonzero()
176         if i.min() > 0:
177             # Needed to initialize the model's cache
178             model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
179         for s in range(i.min(), i.max() + 1):
180             output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
181             logits = output[:, s]
182             if args.deterministic_synthesis:
183                 t_next = logits.argmax(1)
184             else:
185                 dist = torch.distributions.categorical.Categorical(logits=logits)
186                 t_next = dist.sample()
187             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
188
189
190 ######################################################################
191
192
193 def compute_perplexity(model, task, prompt_len, split="train"):
194     with torch.autograd.no_grad():
195         t = model.training
196         model.eval()
197
198         nb_samples, acc_loss = 0, 0.0
199
200         for input in task.batches(split=split):
201             input = input.to(device)
202             output = eval_mygpt(model, input, prompt_len=prompt_len)
203             if args.noncausal_prompt:
204                 d = input.size(1) // 2
205                 loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:])
206             else:
207                 loss = F.cross_entropy(output.transpose(1, 2), input)
208             acc_loss += loss.item() * input.size(0)
209             nb_samples += input.size(0)
210
211         model.train(t)
212
213         return math.exp(min(100, acc_loss / nb_samples))
214
215
216 ######################################################################
217
218
219 def oneshot_policy_loss(mazes, output, policies, height, width):
220     masks = (mazes == maze.v_empty).unsqueeze(-1)
221     targets = policies.permute(0, 2, 1) * masks
222     output = output * masks
223     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
224
225
226 def oneshot_trace_loss(mazes, output, policies, height, width):
227     masks = mazes == maze.v_empty
228     targets = maze.stationary_densities(
229         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
230     ).flatten(-2)
231     targets = targets * masks
232     output = output.squeeze(-1) * masks
233     return (output - targets).abs().sum() / masks.sum()
234
235
236 def oneshot(model, learning_rate_scheduler, task):
237     t = model.training
238     model.eval()
239     mazes = task.test_input[:32].clone()
240     mazes[:, task.height * task.width :] = 0
241     output = eval_mygpt(model, mazes, prompt_len=task.height * task.width)
242     output = F.softmax(output, dim=2)
243     print(f"{output.size()=}")
244     proba_path = output[:, task.height * task.width :, 4].reshape(
245         -1, task.height, task.width
246     )
247     mazes = mazes[:, : task.height * task.width].reshape(-1, task.height, task.width)
248     # targets = targets.reshape(-1, task.height, task.width)
249     filename = f"oneshot.png"
250     maze.save_image(
251         os.path.join(args.result_dir, filename),
252         mazes=mazes,
253         score_paths=proba_path,
254         # score_truth=targets,
255     )
256     log_string(f"wrote {filename}")
257
258
259 def oneshot_old(gpt, learning_rate_scheduler, task):
260     t = gpt.training
261     gpt.eval()
262
263     if args.oneshot_input == "head":
264         dim_in = args.dim_model
265     elif args.oneshot_input == "deep":
266         dim_in = args.dim_model * args.nb_blocks * 2
267     else:
268         raise ValueError(f"{args.oneshot_input=}")
269
270     if args.oneshot_output == "policy":
271         dim_out = 4
272         compute_loss = oneshot_policy_loss
273     elif args.oneshot_output == "trace":
274         dim_out = 1
275         compute_loss = oneshot_trace_loss
276     else:
277         raise ValueError(f"{args.oneshot_output=}")
278
279     model = nn.Sequential(
280         nn.Linear(dim_in, args.dim_model),
281         nn.ReLU(),
282         nn.Linear(args.dim_model, args.dim_model),
283         nn.ReLU(),
284         nn.Linear(args.dim_model, dim_out),
285     ).to(device)
286
287     learning_rate_scheduler.reset()
288
289     for n_epoch in range(args.nb_epochs):
290         learning_rate = learning_rate_scheduler.get_learning_rate()
291         log_string(f"learning_rate {n_epoch} {learning_rate}")
292
293         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
294
295         acc_train_loss, nb_train_samples = 0, 0
296         for mazes, policies in task.policy_batches(split="train"):
297             output_gpt = eval_mygpt(
298                 gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
299             )
300             output = model(output_gpt)
301
302             loss = compute_loss(mazes, output, policies, task.height, task.width)
303             acc_train_loss += loss.item() * mazes.size(0)
304             nb_train_samples += mazes.size(0)
305
306             optimizer.zero_grad()
307             loss.backward()
308             optimizer.step()
309
310         learning_rate_scheduler.update(n_epoch + 1, acc_train_loss)
311
312         acc_test_loss, nb_test_samples = 0, 0
313         for mazes, policies in task.policy_batches(split="test"):
314             output_gpt = eval_mygpt(
315                 gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
316             )
317             output = model(output_gpt)
318             loss = compute_loss(mazes, output, policies, task.height, task.width)
319             acc_test_loss += loss.item() * mazes.size(0)
320             nb_test_samples += mazes.size(0)
321
322         log_string(
323             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
324         )
325
326         # -------------------
327         mazes = task.test_input[:32, : task.height * task.width]
328         policies = task.test_policies[:32]
329         output_gpt = eval_mygpt(
330             gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
331         )
332         output = model(output_gpt)
333         if args.oneshot_output == "policy":
334             targets = policies.permute(0, 2, 1)
335             scores = (
336                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
337             ).float()
338         elif args.oneshot_output == "trace":
339             targets = maze.stationary_densities(
340                 mazes.view(-1, task.height, task.width),
341                 policies.view(-1, 4, task.height, task.width),
342             ).flatten(-2)
343             scores = output
344         else:
345             raise ValueError(f"{args.oneshot_output=}")
346
347         scores = scores.reshape(-1, task.height, task.width)
348         mazes = mazes.reshape(-1, task.height, task.width)
349         targets = targets.reshape(-1, task.height, task.width)
350         filename = (
351             f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png"
352         )
353         maze.save_image(
354             os.path.join(args.result_dir, filename),
355             mazes=mazes,
356             score_paths=scores,
357             score_truth=targets,
358         )
359         log_string(f"wrote {filename}")
360
361         # -------------------
362
363     gpt.train(t)
364
365
366 ######################################################################
367
368
369 class LearningRateScheduler:
370     def get_learning_rate(self):
371         pass
372
373     def update(self, nb_finished_epochs, loss):
374         pass
375
376     def reset(self):
377         pass
378
379     def get_state(self):
380         return vars(self)
381
382     def set_state(self, state):
383         print(f"{state=}")
384         for k, v in state.items():
385             setattr(self, k, v)
386
387
388 class StepWiseScheduler(LearningRateScheduler):
389     def __init__(self, schedule):
390         self.nb_finished_epochs = 0
391         self.schedule = schedule
392
393     def get_learning_rate(self):
394         return self.schedule[self.nb_finished_epochs]
395
396     def update(self, nb_finished_epochs, loss):
397         self.nb_finished_epochs = nb_finished_epochs
398
399     def reset(self):
400         self.nb_finished_epochs = 0
401
402     def get_state(self):
403         return {"nb_finished_epochs": self.nb_finished_epochs}
404
405
406 class AutoScheduler(LearningRateScheduler):
407     def __init__(self, learning_rate_init, growth=1.0, degrowth=0.2):
408         self.learning_rate_init = learning_rate_init
409         self.learning_rate = learning_rate_init
410         self.growth = growth
411         self.degrowth = degrowth
412         self.pred_loss = None
413
414     def get_learning_rate(self):
415         return self.learning_rate
416
417     def update(self, nb_finished_epochs, loss):
418         if self.pred_loss is not None:
419             if loss >= self.pred_loss:
420                 self.learning_rate *= self.degrowth
421             else:
422                 self.learning_rate *= self.growth
423         self.pred_loss = loss
424
425     def reset(self):
426         self.learning_rate = self.learning_rate_init
427
428     def get_state(self):
429         return {
430             "learning_rate_init": self.learning_rate_init,
431             "pred_loss": self.pred_loss,
432         }
433
434
435 ######################################################################
436
437
438 class Task:
439     def batches(self, split="train", nb_to_use=-1, desc=None):
440         pass
441
442     def vocabulary_size(self):
443         pass
444
445     def produce_results(self, n_epoch, model):
446         pass
447
448
449 ######################################################################
450
451 import maze
452
453
454 class TaskMaze(Task):
455     def map2seq(self, *m):
456         return torch.cat([x.flatten(1) for x in m], 1)
457
458     def seq2map(self, s):
459         s = s.reshape(s.size(0), -1, self.height, self.width)
460         return (s[:, k] for k in range(s.size(1)))
461
462     def __init__(
463         self,
464         nb_train_samples,
465         nb_test_samples,
466         batch_size,
467         height,
468         width,
469         nb_walls,
470         device=torch.device("cpu"),
471     ):
472         self.batch_size = batch_size
473         self.height = height
474         self.width = width
475         self.device = device
476
477         train_mazes, train_paths, train_policies = maze.create_maze_data(
478             nb_train_samples,
479             height=height,
480             width=width,
481             nb_walls=nb_walls,
482             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
483         )
484         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
485         self.train_policies = train_policies.flatten(-2).to(device)
486
487         test_mazes, test_paths, test_policies = maze.create_maze_data(
488             nb_test_samples,
489             height=height,
490             width=width,
491             nb_walls=nb_walls,
492             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
493         )
494         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
495         self.test_policies = test_policies.flatten(-2).to(device)
496
497         self.nb_codes = self.train_input.max() + 1
498
499     def batches(self, split="train", nb_to_use=-1, desc=None):
500         assert split in {"train", "test"}
501         input = self.train_input if split == "train" else self.test_input
502         if nb_to_use > 0:
503             input = input[:nb_to_use]
504         if desc is None:
505             desc = f"epoch-{split}"
506         for batch in tqdm.tqdm(
507             input.split(self.batch_size), dynamic_ncols=True, desc=desc
508         ):
509             yield batch
510
511     def policy_batches(self, split="train", nb_to_use=-1, desc=None):
512         assert split in {"train", "test"}
513         input = self.train_input if split == "train" else self.test_input
514         policies = self.train_policies if split == "train" else self.test_policies
515         input = input[:, : self.height * self.width]
516         policies = policies * (input != maze.v_wall)[:, None]
517
518         if nb_to_use > 0:
519             input = input[:nb_to_use]
520             policies = policies[:nb_to_use]
521
522         if desc is None:
523             desc = f"epoch-{split}"
524         for batch in tqdm.tqdm(
525             zip(input.split(self.batch_size), policies.split(self.batch_size)),
526             dynamic_ncols=True,
527             desc=desc,
528         ):
529             yield batch
530
531     def vocabulary_size(self):
532         return self.nb_codes
533
534     def compute_error(self, model, split="train", nb_to_use=-1):
535         nb_total, nb_correct = 0, 0
536         for input in task.batches(split, nb_to_use):
537             result = input.clone()
538             ar_mask = result.new_zeros(result.size())
539             ar_mask[:, self.height * self.width :] = 1
540             result *= 1 - ar_mask
541             x, order = shuffle(result, self.height * self.width)
542             masked_inplace_autoregression(
543                 model, self.batch_size, x, ar_mask, order=order
544             )
545             result = reorder(x, order, reverse=True)
546             mazes, paths = self.seq2map(result)
547             nb_correct += maze.path_correctness(mazes, paths).long().sum()
548             nb_total += mazes.size(0)
549
550         return nb_total, nb_correct
551
552     def produce_results(self, n_epoch, model):
553         with torch.autograd.no_grad():
554             t = model.training
555             model.eval()
556
557             train_nb_total, train_nb_correct = self.compute_error(
558                 model, "train", nb_to_use=1000
559             )
560             log_string(
561                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
562             )
563
564             test_nb_total, test_nb_correct = self.compute_error(
565                 model, "test", nb_to_use=1000
566             )
567             log_string(
568                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
569             )
570
571             input = self.test_input[:32]
572             result = input.clone()
573             ar_mask = result.new_zeros(result.size())
574             ar_mask[:, self.height * self.width :] = 1
575             result *= 1 - ar_mask
576             x, order = shuffle(result, self.height * self.width)
577             masked_inplace_autoregression(
578                 model, self.batch_size, x, ar_mask, order=order
579             )
580             result = reorder(x, order, reverse=True)
581
582             mazes, paths = self.seq2map(input)
583             _, predicted_paths = self.seq2map(result)
584             filename = f"result_{n_epoch:04d}.png"
585             maze.save_image(
586                 os.path.join(args.result_dir, filename),
587                 mazes=mazes,
588                 target_paths=paths,
589                 predicted_paths=predicted_paths,
590                 path_correct=maze.path_correctness(mazes, predicted_paths),
591             )
592             log_string(f"wrote {filename}")
593
594             model.train(t)
595
596
597 ######################################################################
598
599 log_string(f"device {device}")
600
601
602 task = TaskMaze(
603     nb_train_samples=args.nb_train_samples,
604     nb_test_samples=args.nb_test_samples,
605     batch_size=args.batch_size,
606     height=args.maze_height,
607     width=args.maze_width,
608     nb_walls=args.maze_nb_walls,
609     device=device,
610 )
611
612
613 vocabulary_size = task.vocabulary_size()
614
615 log_string(f"vocabulary_size {vocabulary_size}")
616
617 ##############################
618
619
620 def noncausal_prompt_amm_generator(d):
621     q = torch.arange(d)[:, None]
622     k = torch.arange(d)[None, :]
623     s = args.maze_height * args.maze_width
624     return torch.logical_and(q < k, torch.logical_or(q >= s, k >= s))
625     # return q < k
626
627
628 def noncausal_prompt_oneshot_amm_generator(d):
629     q = torch.arange(d)[:, None]
630     k = torch.arange(d)[None, :]
631     s = args.maze_height * args.maze_width
632     return k >= s
633     # return q < k
634
635
636 if args.oneshot:
637     amm_generator = noncausal_prompt_oneshot_amm_generator
638 elif args.noncausal_prompt:
639     amm_generator = noncausal_prompt_amm_generator
640 else:
641     amm_generator = None
642
643 model = mygpt.MyGPT(
644     vocabulary_size=vocabulary_size,
645     dim_model=args.dim_model,
646     dim_keys=args.dim_keys,
647     dim_hidden=args.dim_hidden,
648     nb_heads=args.nb_heads,
649     nb_blocks=args.nb_blocks,
650     causal=True,
651     dropout=args.dropout,
652     amm_generator=amm_generator,
653 )
654
655 model.to(device)
656
657 nb_parameters = sum(p.numel() for p in model.parameters())
658 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
659
660 ######################################################################
661
662 if args.learning_rate_schedule == "auto":
663     learning_rate_scheduler = AutoScheduler(args.learning_rate)
664
665 elif args.learning_rate_schedule == "cos":
666     schedule = {}
667     for n_epoch in range(args.nb_epochs):
668         u = n_epoch / args.nb_epochs * math.pi
669         schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
670     learning_rate_scheduler = StepWiseScheduler(schedule)
671     log_string(f"learning_rate_schedule {schedule}")
672
673 else:
674     u = {
675         int(k): float(v)
676         for k, v in [
677             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
678         ]
679     }
680
681     schedule = {}
682     learning_rate = args.learning_rate
683     for n_epoch in range(args.nb_epochs):
684         if n_epoch in u:
685             learning_rate = u[n_epoch]
686         schedule[n_epoch] = learning_rate
687     learning_rate_scheduler = StepWiseScheduler(schedule)
688     log_string(f"learning_rate_schedule {schedule}")
689
690 ######################################################################
691
692 nb_epochs_finished = 0
693
694 if args.no_checkpoint:
695     log_string(f"not trying to load checkpoint.")
696
697 else:
698     try:
699         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
700         checkpoint = torch.load(checkpoint_name)
701         nb_epochs_finished = checkpoint["nb_epochs_finished"]
702         model.load_state_dict(checkpoint["model_state"])
703         learning_rate_scheduler.set_state(checkpoint["learning_rate_scheduler_state"])
704         torch.set_rng_state(checkpoint["rng_state"])
705         if torch.cuda.is_available():
706             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
707
708         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
709
710     except FileNotFoundError:
711         log_string("starting from scratch.")
712
713     # except:
714     # log_string("error when loading the checkpoint.")
715     # exit(1)
716
717 ######################################################################
718
719 if args.oneshot:
720     oneshot(model, learning_rate_scheduler, task)
721     exit(0)
722
723 ######################################################################
724
725 token_count = 0
726 for input in task.batches(split="train"):
727     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
728 token_probas = token_count / token_count.sum()
729 entropy = -torch.xlogy(token_probas, token_probas).sum()
730 train_set_perplexity = math.exp(entropy)
731
732 ##############################
733
734 if nb_epochs_finished >= args.nb_epochs:
735     n_epoch = nb_epochs_finished
736     train_perplexity = compute_perplexity(
737         model, task, prompt_len=task.height * task.width, split="train"
738     )
739     test_perplexity = compute_perplexity(
740         model, task, prompt_len=task.height * task.width, split="test"
741     )
742
743     log_string(
744         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
745     )
746
747     task.produce_results(n_epoch, model)
748
749 ##############################
750
751 learning_rate_scheduler.reset()
752
753 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
754     learning_rate = learning_rate_scheduler.get_learning_rate()
755     log_string(f"learning_rate {n_epoch} {learning_rate}")
756
757     if args.optim == "sgd":
758         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
759     elif args.optim == "adam":
760         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
761     elif args.optim == "adamw":
762         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
763     else:
764         raise ValueError(f"{args.optim=}")
765
766     model.train()
767
768     nb_train_samples, acc_train_loss = 0, 0.0
769
770     for input in task.batches(split="train"):
771         input = input.to(device)
772         output = eval_mygpt(model, input, prompt_len=task.height * task.width)
773         if args.noncausal_prompt:
774             d = input.size(1) // 2
775             loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:])
776         else:
777             loss = F.cross_entropy(output.transpose(1, 2), input)
778         acc_train_loss += loss.item() * input.size(0)
779         nb_train_samples += input.size(0)
780
781         optimizer.zero_grad()
782         loss.backward()
783         optimizer.step()
784
785     learning_rate_scheduler.update(n_epoch + 1, acc_train_loss)
786
787     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
788     test_perplexity = compute_perplexity(
789         model, task, prompt_len=task.height * task.width, split="test"
790     )
791
792     log_string(
793         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
794     )
795
796     task.produce_results(n_epoch, model)
797
798     checkpoint = {
799         "nb_epochs_finished": n_epoch + 1,
800         "model_state": model.state_dict(),
801         "learning_rate_scheduler_state": learning_rate_scheduler.get_state(),
802         "rng_state": torch.get_rng_state(),
803     }
804
805     if torch.cuda.is_available():
806         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
807
808     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
809     torch.save(checkpoint, checkpoint_name)
810     log_string(f"saved checkpoint {checkpoint_name}")
811
812 ######################################################################