1408f0b2b2b1a0705916b8ebb74676a47e7a4e7b
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
68
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
70
71 parser.add_argument("--one_shot", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ######################################################################
85
86 args = parser.parse_args()
87
88 try:
89     os.mkdir(args.result_dir)
90 except FileExistsError:
91     if not args.overwrite_results:
92         print(f"result directory {args.result_dir} already exists")
93         exit(1)
94
95 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
96
97 if args.seed >= 0:
98     # torch.backends.cudnn.deterministic = True
99     # torch.backends.cudnn.benchmark = False
100     # torch.use_deterministic_algorithms(True)
101     torch.manual_seed(args.seed)
102     if torch.cuda.is_available():
103         torch.cuda.manual_seed_all(args.seed)
104
105 ######################################################################
106
107
108 def log_string(s):
109     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
110
111     if log_file is not None:
112         log_file.write(t + s + "\n")
113         log_file.flush()
114
115     print(t + s)
116     sys.stdout.flush()
117
118
119 for n in vars(args):
120     log_string(f"args.{n} {getattr(args, n)}")
121
122 ######################################################################
123
124
125 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
126 # tokens that should be generated
127
128
129 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
130     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
131         i = (ar_mask.sum(0) > 0).nonzero()
132         if i.min() > 0:
133             # Needed to initialize the model's cache
134             model(mygpt.BracketedSequence(input, 0, i.min()))
135         for s in range(i.min(), i.max() + 1):
136             output = model(mygpt.BracketedSequence(input, s, 1)).x
137             logits = output[:, s]
138             if args.deterministic_synthesis:
139                 t_next = logits.argmax(1)
140             else:
141                 dist = torch.distributions.categorical.Categorical(logits=logits)
142                 t_next = dist.sample()
143             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
144
145
146 ######################################################################
147
148
149 def compute_perplexity(model, split="train"):
150     with torch.autograd.no_grad():
151         t = model.training
152         model.eval()
153
154         nb_samples, acc_loss = 0, 0.0
155
156         for input in task.batches(split=split):
157             input = input.to(device)
158
159             output = model(mygpt.BracketedSequence(input)).x
160             loss = F.cross_entropy(output.transpose(1, 2), input)
161             acc_loss += loss.item() * input.size(0)
162             nb_samples += input.size(0)
163
164         model.train(t)
165
166         return math.exp(min(100, acc_loss / nb_samples))
167
168
169 ######################################################################
170
171
172 def one_shot(gpt, task):
173     t = gpt.training
174     gpt.eval()
175     model = nn.Sequential(
176         nn.Linear(args.dim_model, args.dim_model),
177         nn.ReLU(),
178         nn.Linear(args.dim_model, 4)
179     ).to(device)
180
181     for n_epoch in range(args.nb_epochs):
182         learning_rate = learning_rate_schedule[n_epoch]
183         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
184
185         acc_train_loss, nb_train_samples = 0, 0
186         for input, targets in task.policy_batches(split="train"):
187             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
188             output = model(output_gpt)
189             loss = (
190                 -(output.log_softmax(-1) * targets).sum(-1).mean()
191                 + targets.xlogy(targets).sum(-1).mean()
192             )
193             acc_train_loss += loss.item() * input.size(0)
194             nb_train_samples += input.size(0)
195
196             optimizer.zero_grad()
197             loss.backward()
198             optimizer.step()
199
200         acc_test_loss, nb_test_samples = 0, 0
201         for input, targets in task.policy_batches(split="test"):
202             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
203             output = model(output_gpt)
204             loss = (
205                 -(output.log_softmax(-1) * targets).sum(-1).mean()
206                 + targets.xlogy(targets).sum(-1).mean()
207             )
208             acc_test_loss += loss.item() * input.size(0)
209             nb_test_samples += input.size(0)
210
211         log_string(
212             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
213         )
214
215     gpt.train(t)
216
217
218 ######################################################################
219
220
221 class Task:
222     def batches(self, split="train"):
223         pass
224
225     def vocabulary_size(self):
226         pass
227
228     def produce_results(self, n_epoch, model):
229         pass
230
231
232 ######################################################################
233
234 import maze
235
236
237 class TaskMaze(Task):
238     def map2seq(self, *m):
239         return torch.cat([x.flatten(1) for x in m], 1)
240
241     def seq2map(self, s):
242         s = s.reshape(s.size(0), -1, self.height, self.width)
243         return (s[:, k] for k in range(s.size(1)))
244
245     def __init__(
246         self,
247         nb_train_samples,
248         nb_test_samples,
249         batch_size,
250         height,
251         width,
252         nb_walls,
253         device=torch.device("cpu"),
254     ):
255         self.batch_size = batch_size
256         self.height = height
257         self.width = width
258         self.device = device
259
260         train_mazes, train_paths, train_policies = maze.create_maze_data(
261             nb_train_samples,
262             height=height,
263             width=width,
264             nb_walls=nb_walls,
265             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
266         )
267         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
268         self.train_policies = train_policies.flatten(-2).permute(0, 2, 1).to(device)
269
270         test_mazes, test_paths, test_policies = maze.create_maze_data(
271             nb_test_samples,
272             height=height,
273             width=width,
274             nb_walls=nb_walls,
275             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
276         )
277         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
278         self.test_policies = test_policies.flatten(-2).permute(0, 2, 1).to(device)
279
280         self.nb_codes = self.train_input.max() + 1
281
282     def batches(self, split="train", nb_to_use=-1):
283         assert split in {"train", "test"}
284         input = self.train_input if split == "train" else self.test_input
285         if nb_to_use > 0:
286             input = input[:nb_to_use]
287         for batch in tqdm.tqdm(
288             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
289         ):
290             yield batch
291
292     def policy_batches(self, split="train", nb_to_use=-1):
293         assert split in {"train", "test"}
294         input = self.train_input if split == "train" else self.test_input
295         targets = self.train_policies if split == "train" else self.test_policies
296         input = input[:, : self.height * self.width]
297         targets = targets * (input != maze.v_wall)[:, :, None]
298
299         if nb_to_use > 0:
300             input = input[:nb_to_use]
301             targets = targets[:nb_to_use]
302
303         for batch in tqdm.tqdm(
304             zip(input.split(self.batch_size), targets.split(self.batch_size)),
305             dynamic_ncols=True,
306             desc=f"epoch-{split}",
307         ):
308             yield batch
309
310     def vocabulary_size(self):
311         return self.nb_codes
312
313     def compute_error(self, model, split="train", nb_to_use=-1):
314         nb_total, nb_correct = 0, 0
315         for input in task.batches(split, nb_to_use):
316             result = input.clone()
317             ar_mask = result.new_zeros(result.size())
318             ar_mask[:, self.height * self.width :] = 1
319             result *= 1 - ar_mask
320             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
321             mazes, paths = self.seq2map(result)
322             nb_correct += maze.path_correctness(mazes, paths).long().sum()
323             nb_total += mazes.size(0)
324
325         return nb_total, nb_correct
326
327     def produce_results(self, n_epoch, model):
328         with torch.autograd.no_grad():
329             t = model.training
330             model.eval()
331
332             train_nb_total, train_nb_correct = self.compute_error(
333                 model, "train", nb_to_use=1000
334             )
335             log_string(
336                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
337             )
338
339             test_nb_total, test_nb_correct = self.compute_error(
340                 model, "test", nb_to_use=1000
341             )
342             log_string(
343                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
344             )
345
346             input = self.test_input[:32]
347             result = input.clone()
348             ar_mask = result.new_zeros(result.size())
349             ar_mask[:, self.height * self.width :] = 1
350             result *= 1 - ar_mask
351             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
352
353             mazes, paths = self.seq2map(input)
354             _, predicted_paths = self.seq2map(result)
355             maze.save_image(
356                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
357                 mazes,
358                 paths,
359                 predicted_paths,
360                 maze.path_correctness(mazes, predicted_paths),
361             )
362
363             model.train(t)
364
365
366 ######################################################################
367
368 log_string(f"device {device}")
369
370
371 task = TaskMaze(
372     nb_train_samples=args.nb_train_samples,
373     nb_test_samples=args.nb_test_samples,
374     batch_size=args.batch_size,
375     height=args.maze_height,
376     width=args.maze_width,
377     nb_walls=args.maze_nb_walls,
378     device=device,
379 )
380
381
382 vocabulary_size = task.vocabulary_size()
383
384 log_string(f"vocabulary_size {vocabulary_size}")
385
386 ##############################
387
388 model = mygpt.MyGPT(
389     vocabulary_size=vocabulary_size,
390     dim_model=args.dim_model,
391     dim_keys=args.dim_keys,
392     dim_hidden=args.dim_hidden,
393     nb_heads=args.nb_heads,
394     nb_blocks=args.nb_blocks,
395     causal=True,
396     dropout=args.dropout,
397 )
398
399 model.to(device)
400
401 nb_parameters = sum(p.numel() for p in model.parameters())
402 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
403
404 ######################################################################
405
406 nb_epochs_finished = 0
407
408 if args.no_checkpoint:
409     log_string(f"not trying to load checkpoint.")
410
411 else:
412     try:
413         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
414         checkpoint = torch.load(checkpoint_name)
415         nb_epochs_finished = checkpoint["nb_epochs_finished"]
416         model.load_state_dict(checkpoint["model_state"])
417         torch.set_rng_state(checkpoint["rng_state"])
418         if torch.cuda.is_available():
419             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
420
421         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
422
423     except FileNotFoundError:
424         log_string("starting from scratch.")
425
426     except:
427         log_string("error when loading the checkpoint.")
428         exit(1)
429
430 ######################################################################
431
432 token_count = 0
433 for input in task.batches(split="train"):
434     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
435 token_probas = token_count / token_count.sum()
436 entropy = -torch.xlogy(token_probas, token_probas).sum()
437 train_set_perplexity = math.exp(entropy)
438
439 ##############################
440
441 if args.learning_rate_schedule == "cos":
442     learning_rate_schedule = {}
443     for n_epoch in range(args.nb_epochs):
444         u = n_epoch / args.nb_epochs * math.pi
445         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
446 else:
447     u = {
448         int(k): float(v)
449         for k, v in [
450             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
451         ]
452     }
453
454     learning_rate_schedule = {}
455     learning_rate = args.learning_rate
456     for n_epoch in range(args.nb_epochs):
457         if n_epoch in u:
458             learning_rate = u[n_epoch]
459         learning_rate_schedule[n_epoch] = learning_rate
460
461 log_string(f"learning_rate_schedule {learning_rate_schedule}")
462
463 ##############################
464
465 if args.one_shot:
466     one_shot(model, task)
467     exit(0)
468
469 ##############################
470
471 if nb_epochs_finished >= args.nb_epochs:
472     n_epoch = nb_epochs_finished
473     train_perplexity = compute_perplexity(model, split="train")
474     test_perplexity = compute_perplexity(model, split="test")
475
476     log_string(
477         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
478     )
479
480     task.produce_results(n_epoch, model)
481
482     exit(0)
483
484 ##############################
485
486 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
487     learning_rate = learning_rate_schedule[n_epoch]
488
489     log_string(f"learning_rate {learning_rate}")
490
491     if args.optim == "sgd":
492         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
493     elif args.optim == "adam":
494         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
495     elif args.optim == "adamw":
496         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
497     else:
498         raise ValueError(f"Unknown optimizer {args.optim}.")
499
500     model.train()
501
502     nb_train_samples, acc_train_loss = 0, 0.0
503
504     for input in task.batches(split="train"):
505         input = input.to(device)
506         output = model(mygpt.BracketedSequence(input)).x
507         loss = F.cross_entropy(output.transpose(1, 2), input)
508         acc_train_loss += loss.item() * input.size(0)
509         nb_train_samples += input.size(0)
510
511         optimizer.zero_grad()
512         loss.backward()
513         optimizer.step()
514
515     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
516     test_perplexity = compute_perplexity(model, split="test")
517
518     log_string(
519         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
520     )
521
522     task.produce_results(n_epoch, model)
523
524     checkpoint = {
525         "nb_epochs_finished": n_epoch + 1,
526         "model_state": model.state_dict(),
527         "rng_state": torch.get_rng_state(),
528     }
529
530     if torch.cuda.is_available():
531         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
532
533     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
534     torch.save(checkpoint, checkpoint_name)
535     log_string(f"saved checkpoint {checkpoint_name}")
536
537 ######################################################################