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Deep convolutional models

One key technology of “modern AI” are the convolutional models.

◦ They are powerful function approximators.
◦ Scale well with data set size and computation.
◦ Fitting for hierarchical signal structures.
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron 

shifted in parallel from cell to cell. Hence, all the cells in 
a single cell-plane have receptive fields of the same 
function, but at different positions. 

We will use notations Us~(k~,n ) to represent the 
output of an S-cell in the kr th  S-plane in the l-th 
module, and Ucl(k~, n) to represent the output of a C-cell 
in the kr th  C-plane in that module, where n is the two- 
dimensional co-ordinates representing the position of 
these cell's receptive fields in the input layer. 

Figure 2 is a schematic diagram illustrating the 
interconnections between layers. Each tetragon drawn 
with heavy lines represents an S-plane or a C-plane, 
and each vertical tetragon drawn with thin lines, in 
which S-planes or C-planes are enclosed, represents an 
S-layer or a C-layer. 

In Fig. 2, a cell of each layer receives afferent 
connections from the cells within the area enclosed by 
the elipse in its preceding layer. To be exact, as for the 
S-cells, the elipses in Fig. 2 does not show the connect- 
ing area but the connectable area to the S-cells. That is, 
all the interconnections coming from the elipses are 
not always formed, because the synaptic connections 
incoming to the S-cells have plasticity. 

In Fig. 2, for the sake of simplicity of the figure, 
only one cell is shown in each cell-plane. In fact, all the 
cells in a cell-plane have input synapses of the same 
spatial distribution as shown in Fig. 3, and only the 
positions of the presynaptic cells are shifted in parallel 
from cell to cell. 
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Since the cells in the network are interconnected in 
a cascade as shown in Fig. 2, the deeper the layer is, the 
larger becomes the receptive field of each cell of that 
layer. The density of the cells in each cell-plane is so 
determined as to decrease in accordance with the 
increase of the size of the receptive fields. Hence, the 
total number of the cells in each cell-plane decreases 
with the depth of the cell-plane in the network. In the 
last module, the receptive field of each C-cell becomes 
so large as to cover the whole area of input layer U0, 
and each C-plane is so determined as to have only one 
C-cell. 

The S-cells and C-cells are excitatory cells. That is, 
all the efferent synapses from these cells are excitatory. 
Although it is not shown in Fig. 2, we also have 

Fig. 3. Illustration showing the input interconnections to the cells 
within a single cell-plane 

Fig. 2. Schematic diagram illustrating the 
interconnections between layers in the 
neocognitron 

Neocognitron (Fukushima, 1980)
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Deep convolutional models

A convolution applies the same linear operation at every location in the signal.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient for image or sound processing where

◦ the signal is stationary, and
◦ local structures are very informative.
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Attention mechanisms

However some tasks involve more than composing local structures, e.g.
translation:

“An apple that had been on the tree in the garden for weeks had
finally been picked up.”

“Une pomme qui était sur l’arbre du jardin depuis des semaines
avait finalement été ramassée.”

It has motivated the development of attention-based processing to transport
information from parts of the signal to other parts dynamically identified.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS
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Attention mechanisms

Given a query sequence Q , a key sequence K , and a value sequence V , compute
an attention matrix A by matching Qs to Ks, and weight V with it to get the
sequence Y .

A = softmaxrow

(
QK⊤
√
d

)
Y = AV

V

Q

A

K

Y
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Attention mechanisms

A standard attention layer takes as input two sequences X and X ′ and computes

Q = XWQ⊤

K = X ′WK⊤

V = X ′W V⊤

A = softmaxrow

(
QK⊤
√
d

)
Y = AV

X

Q K V

A

Y

X ′X

Q K V

A

Y

When X = X ′, this is self attention, otherwise cross attention.
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Toy seq2seq example

Consider a task with 1d sequences composed of two triangles and two rectangles,
where the goal is to average heights in each pair of shapes.

Input Target
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Toy seq2seq example
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Toy seq2seq example

Sequential(
(0): Conv1d(1, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLU()
(4): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(5): ReLU()
(6): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(7): ReLU()
(8): Conv1d(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))

)
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Toy seq2seq example

The poor performance of this model is not surprising given its inability to channel
information from “far away” in the signal.

More layers, global averaging, or fully connected layers could possibly solve the
problem. However it is more natural to equip the model with the ability to fetch
information from parts of the signal that it actively identifies as relevant.

This is exactly what an attention layer does.
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Toy seq2seq example

class SelfAttentionLayer(nn.Module):
def __init__(self, in_dim, out_dim, key_dim):

super().__init__()
self.conv_Q = nn.Conv1d(in_dim, key_dim, kernel_size = 1, bias = False)
self.conv_K = nn.Conv1d(in_dim, key_dim, kernel_size = 1, bias = False)
self.conv_V = nn.Conv1d(in_dim, out_dim, kernel_size = 1, bias = False)

def forward(self, x):
Q = self.conv_Q(x)
K = self.conv_K(x)
V = self.conv_V(x)
A = torch.einsum(’nct,ncs->nts’, Q, K).softmax(2)
y = torch.einsum(’nts,ncs->nct’, A, V)
return y

Sequential(
(0): Conv1d(1, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLU()
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLU()
(4): SelfAttentionLayer(in_channels=64, out_channels=64, key_channels=64)
(5): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(6): ReLU()
(7): Conv1d(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))

)
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Toy seq2seq example
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Transformers

The original transformer combines a stack of self-attention layers in an encoder,
and a stack of causal self-attention and cross-attention layers in a decoder.

The
GPT model keeps only a causal encoder.

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3
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Transformers

Large language models have been shown to exhibit some “zero shot learning”
capabilities when they are properly “primed” (Brown et al., 2020).

For instance using Hugging Face’s gpt2 model with 120M parameters, we can get
these sentence completions, where the generated parts are in bold:

I: water boils at 100 degrees, O: physics, I: the square root of two is irrational, O:
mathematics, I: the set of prime numbers is infinite, O: mathematics, I: gravity
is proportional to the mass, O: physics,

I: water boils at 100 degrees, O: physics, I: the square root of two is irrational, O:
mathematics, I: the set of prime numbers is infinite, O: mathematics, I: squares
are rectangles, O: mathematics,

I: I love apples, O: positive, I: music is my passion, O: positive, I: my job is boring,
O: negative, I: frozen pizzas are awesome, O: positive,

I: I love apples, O: positive, I: music is my passion, O: positive, I: my job is boring,
O: negative, I: frozen pizzas taste like cardboard, O: negative,
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Transformers

Transformer Encoder
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(Dosovitskiy et al., 2020)
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GPTS FOR WORLD MODELS



World model

Reinforcement learning is in general sample-inefficient, since learning a policy

π : S → A

Xt 7→ At

to maximize an accumulated reward requires to propagate back rewards from the
sparse states where it occurs.

A solution is to train a world model that is a model of

P(Xt+1 | As ,Xs , s ≤ t)

that does not need a sophisticated “lookahead”, and then to train an agent in that
model. For image-based RL, this is close to next-frame prediction.
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World model

We focus on training with limited samples, in particular Atari with 100k frames.

(fleuret.org/vid)

This is a standard benchmark with varied dynamics and “semantics”.

François Fleuret Attention Models, World Models, and Going Beyond World Understanding 17 / 52

./vid/iris/iris/IRIS_large.gif
./vid/iris/iris/IRIS_large.gif


IRIS

We developed IRIS, that combines a discrete autoencoder (VQ-GAN) with a GPT.
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IRIS
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. . . z
K−1
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zK3

r̂0

d̂0

r̂1

d̂1

r̂2

d̂2

x1

x̂1 x̂2 x̂3

(Micheli et al., 2023)

The agent is an LSTM-based model entirely trained in generated episodes.
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IRIS

Repeat 500 times:

◦ From the current state, execute 200 steps in the environment (≃ 3s) with an
ϵ-greedy policy.

◦ Add the frames/actions to the sample set.
◦ Improve the autoencoder and the GPT world model from the collected

samples.
◦ Optimize the value network and the policy from generated trajectories.
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IRIS

With lookahead Without lookahead
Game Random Human MuZero EfficientZero SimPLe CURL DrQ SPR IRIS
Alien 227.8 7127.7 530.0 808.5 616.9 711.0 865.2 841.9 420.0
Amidar 5.8 1719.5 38.8 148.6 74.3 113.7 137.8 179.7 143.0
Assault 222.4 742.0 500.1 1263.1 527.2 500.9 579.6 565.6 1524.4
Asterix 210.0 8503.3 1734.0 25557.8 1128.3 567.2 763.6 962.5 853.6
BankHeist 14.2 753.1 192.5 351.0 34.2 65.3 232.9 345.4 53.1
BattleZone 2360.0 37187.5 7687.5 13871.2 4031.2 8997.8 10165.3 14834.1 13074.0
Boxing 0.1 12.1 15.1 52.7 7.8 0.9 9.0 35.7 70.1
Breakout 1.7 30.5 48.0 414.1 16.4 2.6 19.8 19.6 83.7
ChopperCommand 811.0 7387.8 1350.0 1117.3 979.4 783.5 844.6 946.3 1565.0
CrazyClimber 10780.5 35829.4 56937.0 83940.2 62583.6 9154.4 21539.0 36700.5 59324.2
DemonAttack 152.1 1971.0 3527.0 13003.9 208.1 646.5 1321.5 517.6 2034.4
Freeway 0.0 29.6 21.8 21.8 16.7 28.3 20.3 19.3 31.1
Frostbite 65.2 4334.7 255.0 296.3 236.9 1226.5 1014.2 1170.7 259.1
Gopher 257.6 2412.5 1256.0 3260.3 596.8 400.9 621.6 660.6 2236.1
Hero 1027.0 30826.4 3095.0 9315.9 2656.6 4987.7 4167.9 5858.6 7037.4
Jamesbond 29.0 302.8 87.5 517.0 100.5 331.0 349.1 366.5 462.7
Kangaroo 52.0 3035.0 62.5 724.1 51.2 740.2 1088.4 3617.4 838.2
Krull 1598.0 2665.5 4890.8 5663.3 2204.8 3049.2 4402.1 3681.6 6616.4
KungFuMaster 258.5 22736.3 18813.0 30944.8 14862.5 8155.6 11467.4 14783.2 21759.8
MsPacman 307.3 6951.6 1265.6 1281.2 1480.0 1064.0 1218.1 1318.4 999.1
Pong -20.7 14.6 -6.7 20.1 12.8 -18.5 -9.1 -5.4 14.6
PrivateEye 24.9 69571.3 56.3 96.7 35.0 81.9 3.5 86.0 100.0
Qbert 163.9 13455.0 3952.0 13781.9 1288.8 727.0 1810.7 866.3 745.7
RoadRunner 11.5 7845.0 2500.0 17751.3 5640.6 5006.1 11211.4 12213.1 9614.6
Seaquest 68.4 42054.7 208.0 1100.2 683.3 315.2 352.3 558.1 661.3
UpNDown 533.4 11693.2 2896.9 17264.2 3350.3 2646.4 4324.5 10859.2 3546.2
# Superhuman 0 N/A 5 14 1 2 3 6 10
Mean 0.000 1.000 0.562 1.943 0.332 0.261 0.465 0.616 1.046
Median 0.000 1.000 0.227 1.090 0.134 0.092 0.313 0.396 0.289
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IRIS
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IRIS

(fleuret.org/vid)

(fleuret.org/vid)
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∆-IRIS

The core issue with IRIS is the number of tokens per frame. We had to use 16

tokens, leading to a substantial degradation of performance.

We address this with ∆-IRIS, which encodes a frame as a small number of discrete
tokens given the four previous frames and actions.

x0 a0 z11
. . . zK1

x1 a1 z12
. . . zK2

x1 x2x0 a0 a1 a2

x̂1 x̂2

Encoder

Decoder
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∆-IRIS

A GPT generates the zkt , but attend to image tokens produced with the zks , s < t.
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∆-IRIS

We benchmark ∆-IRIS on Crafter. The zkt encode the residual randomness, given
previous frames and actions.

GPT-generated ∆-tokens

Random ∆-tokens
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∆-IRIS

GPT

GPT vs. random tokens
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∆-IRIS

Two key realizations:

◦ discrete tokens are needed for prediction to benefit from cross-entropy
and deal with multi-modality, but past information can be processed and
integrated into continuous tokens.

◦ A perfect differential encoder would generate totally random delta
embeddings and be in itself a world model.
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∆-IRIS

Crafter 10M frames, ∆-IRIS solves 17 out of Crafter’s 22 tasks.

 4

 6

 8

 10

 12

 14

 16

 18

1M 2M 3M 4M 5M 7M 8M 9M

R
e
tu

rn

Nb of frames

DreamerV3 S
DreamerV3 M

DreamerV3 XL
IRIS (16 tokens)
IRIS (64 tokens)

Δ-IRIS w/o I-tokens
Δ-IRIS

Atari 100k frames, ∆-IRIS is SOTA for # Superhuman.
Game Random Human SimPLe DreamerV3 STORM IRIS ∆-IRIS
Boxing 0 12 8 78 80 70 71
Breakout 2 30 16 31 16 84 379
Freeway 0 30 17 0 0 31 31
Gopher 258 2413 597 3730 8240 2236 12916
Krull 1598 2666 2204 7782 8413 6616 5681
KungFuMaster 259 22736 14862 21420 26182 21760 22051
Pong -21 15 13 18 11 15 19
RoadRunner 12 7845 5641 15565 17564 9615 13526
# Superhuman 0 N/A 0 6 5 6 7
Mean 0.00 1.00 0.60 2.37 2.69 2.32 4.24
Median 0.00 1.00 0.61 1.35 1.70 1.13 2.77
Interquartile Mean 0.00 1.00 0.61 1.43 2.00 1.55 3.13
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Conclusion

◦ The computational abilities of auto-regressive models are amazing.
◦ The inductive bias of transformers as auto-regressive models is amazing.
◦ Are the computational abilities leveraged by LLMs?
◦ Should spatial and motor understanding be learned first as a foundation for

abstract reasoning?
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BEYOND WORLD UNDERSTANDING
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Reasoning Competition

[ Warning! Computer scientist’s armchair philosophy ]

How can we go beyond reasoning tools for planing in the environment?

How to get high-level abstract “thinking” (mathematics, humor, poetry?)

An hypothesis is that this happens through reasoning challenges in social
competition.

This allows to transfer capabilities from one model to the others and could trigger
a “cognitive arm race” and go beyond reasoning tools to model the environment.
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Reasoning Competition

If, to operate in its environment, an agent has to solve

{ , , , } 7→ ( , ), ( , )

it can do it by being only “color aware”

{ , , , } 7→ ( , ), ( , )

or “shape aware”

{ , , , } 7→ ( , ), ( , ).
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Reasoning Competition

A “shape aware” agent could craft a challenge that those who are not would fail

{ , , , } 7→ ( , ), ( , )

and similarly for a “color aware” agent

{ , , , } 7→ ( , ), ( , ).
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Reasoning Competition

To test this experimentally we use GPT models as agents and “quizzes” as
elements of reasoning.

Let G = {“white”, “red”, . . . }10×10 be the set of colored 10× 10 grids. A quiz consists
of four grids that should be interpreted as

(A, f (A),B, f (B))

where f : G → G is a latent function.

Such a quiz should be interpreted as a prompt composed of three 10× 10 colored
cell grids, and a solution which is a single grid.
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World and Culture quizzes

We define seven “tasks”, each of them being a distribution of “world quizzes”, such
that the solution is unique given the prompt.

“Replace Color”

“Frame”

“Detect”
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World and Culture quizzes

“Half Fill”

“Translate”

“Grow”

“Motion”
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World and Culture quizzes

We differentiate:

◦ “world quizzes” whose distributions are those predefined tasks, and play the
role of the cognitive challenges from the environment, and

◦ “culture quizzes” which are generated by agents, and whose role is to prove
that its author masters certain concepts that its opponents do not.
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World and Culture quizzes

Experiments are done with a 37 millions parameter GPT trained from scratch.

◦ dim_model: 512
◦ dim_keys: 64
◦ dim_hidden: 2048
◦ nb_heads: 8
◦ nb_blocks: 12
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World and Culture quizzes

Given a quiz composed of three 10× 10 grids for the prompt and one 10× 10 grid
for the solution

R9(A)
R8(A)
R7(A)
R6(A)
R5(A)
R4(A)
R3(A)
R2(A)
R1(A)
R0(A)

R9(f (A))
R8(f (A))
R7(f (A))
R6(f (A))
R5(f (A))
R4(f (A))
R3(f (A))
R2(f (A))
R1(f (A))
R0(f (A))

R9(B)

R8(B)

R7(B)

R6(B)

R5(B)

R4(B)

R3(B)

R2(B)

R1(B)

R0(B)

>

R9(f (B))

R8(f (B))

R7(f (B))

R6(f (B))

R5(f (B))

R4(f (B))

R3(f (B))

R2(f (B))

R1(f (B))

R0(f (B))

we can represent the prompt as a sequence of 300 tokens

R0(A), . . . ,R9(A),R0(f (A)), . . . ,R9(f (A)),R0(B), . . . ,R9(B)

and the solution as a sequence of 100 tokens

R0(f (B)), . . . ,R9(f (B))
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World and Culture quizzes

We can train a GPT on a complete sequence composed of the prompt followed by
the solution, and then use it to “solve” a quiz, that it to generate the solution given
the prompt.

A f (A) B f (B)

Prompt Solution

We re-sample the training examples at every epoch, so there is no over-fitting.

The accuracy of a GPT trained on all the tasks combined gets easily above 99%.
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World and Culture quizzes

Our main objective is to generate new meaningful quizzes, which are both
outside the domain of the training examples and consistent with them.

A GPT can produce a full quiz by generating all the tokens without conditioning.

However, if the GPT is properly trained, such a quiz follows the data-distribution,
and there would be no novelty beside unstructured sampling noise.

We propose to train N GPTs in parallel, to generate quizzes with structured noise,
and to “validate” and keep a generated quiz only if exactly N − 1 GPTs solve it
correctly.
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World and Culture quizzes

To generate quizzes with a structured noise, we

1. generate a solution at high temperature,
2. generate a consistent prompt at low temperature, and
3. re-generate the solution given this prompt at low temperature.

That way we get a quiz that may be slightly outside the support of the training
samples, but it should be “functionally consistent.”

François Fleuret Attention Models, World Models, and Going Beyond World Understanding 43 / 52



World and Culture quizzes

Hence we also need to generate prompts given solutions. To do that we train the
model on two types of sequences, with additional tokens to indicate the direction.

⟨ fwd ⟩ A ⟨ fwd ⟩ f (A) ⟨ fwd ⟩ B ⟨ fwd ⟩ f (B)

Solution Prompt

⟨ bck ⟩ f (B) ⟨ bck ⟩ B ⟨ bck ⟩ f (A) ⟨ bck ⟩ A

Prompt Solution
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Given a model trained that way, we implement the sampling of new quizzes as
follows:

⟨ bck ⟩ f (B)

Solution

1. Generate a solution at high temperature

⟨ bck ⟩ f (B) ⟨ bck ⟩ B ⟨ bck ⟩ f (A) ⟨ bck ⟩ A

Solution Prompt

⟨ fwd ⟩ A ⟨ fwd ⟩ f (A) ⟨ fwd ⟩ B ⟨ fwd ⟩ f (B)

Prompt Solution
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Given a model trained that way, we implement the sampling of new quizzes as
follows:

⟨ bck ⟩ f (B)

Solution

⟨ bck ⟩ f (B) ⟨ bck ⟩ B ⟨ bck ⟩ f (A) ⟨ bck ⟩ A

Solution Prompt

2. Generate a prompt at low temperature

⟨ fwd ⟩ A ⟨ fwd ⟩ f (A) ⟨ fwd ⟩ B ⟨ fwd ⟩ f (B)

Prompt Solution
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Given a model trained that way, we implement the sampling of new quizzes as
follows:

⟨ bck ⟩ f (B)

Solution

⟨ bck ⟩ f (B) ⟨ bck ⟩ B ⟨ bck ⟩ f (A) ⟨ bck ⟩ A

Solution Prompt

⟨ fwd ⟩ A ⟨ fwd ⟩ f (A) ⟨ fwd ⟩ B ⟨ fwd ⟩ f (B)

Prompt Solution

3. Re-generate the solution at low temperature
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Given a model trained that way, we implement the sampling of new quizzes as
follows:

⟨ bck ⟩ f (B)

Solution

⟨ bck ⟩ f (B) ⟨ bck ⟩ B ⟨ bck ⟩ f (A) ⟨ bck ⟩ A

Solution Prompt

⟨ fwd ⟩ A ⟨ fwd ⟩ f (A) ⟨ fwd ⟩ B ⟨ fwd ⟩ f (B)

Prompt Solution

We then evaluate the quiz with each of the N models and count the number of
correct prediction M and “validate” the new quiz only if M = N − 1.
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World and Culture quizzes

The global loop proceeds as follows at each iteration:

1. If all the models have an accuracy above a threshold (e.g. 0.95), generate
culture quizzes and add them to the culture.

2. Select the model with the lowest accuracy, build a training set with up to 50%

culture quizzes, and completed with fresh world quizzes, proceed with one
epoch of training with this set.
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Culture Quizzes

Various number of rectangles.
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Culture Quizzes

“Half Fill” with complex coloring.
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Culture Quizzes

“Half Fill” with non-rectangular shapes.
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Culture Quizzes

“Half Fill” with two colors or two rectangles to fill.
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Culture Quizzes

“Translate” with the moving part occluded.

“Frame” and “Half fill” combined.

“Frame” generalized to non-rectangular shapes.
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Culture Quizzes

“Detect” with location markers colored according to the rectangle colors.
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Questions?
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