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Foreword

The current period of progress in artificial intelli-
gence was triggered when Krizhevsky et al. [2012]
showed that an artificial neural network   with a
simple structure, which had been known for more
than twenty years [LeCun et al., 1989], could beat
complex state-of-the-art image recognition meth-
ods by a huge margin, simply by being a hun-
dred times larger and trained on a dataset similarly
scaled up.

This breakthrough was made possible thanks to
Graphical Processing Units   (GPUs), mass-market,
highly parallel computing devices developed for
real-time image synthesis and repurposed for arti-
ficial neural networks.

Since then, under the umbrella term of “deep learning
,” innovations in the structures of these net-
works, the strategies to train them, and dedicated
hardware have allowed for an exponential increase
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inboththeirsizeandthequantityoftrainingdata
theytakeadvantageof[Sevillaetal.,2022].This
hasresultedinawaveofsuccessfulapplications
acrosstechnicaldomains,fromcomputervision
androboticstospeechandnaturallanguagepro-
cessing.

Althoughthebulkofdeeplearningisnotdifficult
tounderstand,itcombinesdiversecomponents
suchaslinearalgebra,calculus,probabilities,op-
timization,signalprocessing,programming,algo-
rithmic,andhigh-performancecomputing,making
itcomplicatedtolearn.

Insteadoftryingtobeexhaustive,thislittlebookis
limitedtothebackgroundnecessarytounderstand
afewimportantmodels.Thisprovedtobeapopu-
larapproach,resultingin250,000downloadsofthe
PDFfileinthemonthfollowingitsannouncement
onTwitter.

Youcandownloadaphone-formattedPDFofthis
bookfrom

https://fleuret.org/public/lbdl.pdf

FrançoisFleuret,
June23,2023
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Chapter 1

Machine Learning

Deep learning  belongs historically to the larger
field of statistical machine learning , as it funda-
mentally concerns methods that are able to learn
representations from data. The techniques in-
volved come originally from artificial neural networks 
, and the “deep” qualifier highlights thatmod-
els are long compositions of mappings, now known
to achieve greater performance.

The modularity, versatility, and scalability of deep
models have resulted in a plethora of specific math-
ematical methods and software development tools,
establishing deep learning as a distinct and vast
technical field.
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1.1Learningfromdata

Thesimplestusecaseforamodeltrainedfromdata
iswhenasignalxisaccessible,forinstance,the
pictureofalicenseplate,fromwhichonewantsto
predictaquantityy,suchasthestringofcharacters
writtenontheplate.

Inmanyreal-worldsituationswherexisahigh-
dimensionalsignalcapturedinanuncontrolled
environment,itistoocomplicatedtocomeupwith
ananalyticalrecipethatrelatesxandy.

Whatonecandoistocollectalargetraining set                              𝒟
ofpairs(xn,yn),anddeviseaparametric model                                        f.
Thisisapieceofcomputercodethatincorporates
trainable parameters                               wthatmodulateitsbehavior,
andsuchthat,withthepropervaluesw∗,itisa
goodpredictor.“Good”heremeansthatifanxis
giventothispieceofcode,thevalueŷ=f(x;w∗)
itcomputesisagoodestimateoftheythatwould
havebeenassociatedwithxinthetrainingsethad
itbeenthere.

Thisnotionofgoodnessisusuallyformalizedwith
aloss          ℒ(w)whichissmallwhenf(·;w)isgood
on𝒟.Then,training                    themodelconsistsofcom-
putingavaluew∗thatminimizesℒ(w∗).

Mostofthecontentofthisbookisaboutthedefini-
tionoff,which,inrealisticscenarios,isacomplex

16
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combination of pre-defined sub-modules.

The trainable parameters that compose w are of-
ten called weights, by analogy with the synaptic
weights of biological neural networks. In addition
to these parameters, models usually depend on
meta-parameters, which are set according to do-
main prior knowledge, best practices, or resource
constraints. They may also be optimized in some
way, but with techniques different from those used
to optimize w.

1.2 Basis function regression

We can illustrate the training of a model in a simple
case where xn and yn are two real numbers, the

Figure 1.1: Given a basis of functions (blue curves)
and a training set (black dots), we can compute an
optimal linear combination of the former (red curve)
to approximate the latter for the mean squared error.
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lossisthemean squared error                                :

ℒ(w)=
1

N

N∑

n=1

(yn−f(xn;w))
2
,(1.1)

andf(·;w)isalinearcombinationofaprede-
finedbasisoffunctionsf1,...,fK,withw=
(w1,...,wK):

f(x;w)=
K∑

k=1

wkfk(x).

Sincef(xn;w)islinearwithrespecttothewksand
ℒ(w)isquadraticwithrespecttof(xn;w),the
lossℒ(w)isquadraticwithrespecttothewks,and
findingw∗thatminimizesitboilsdowntosolving
alinearsystem.SeeFigure1.1foranexamplewith
Gaussiankernelsasfk.

1.3Underandoverfitting

Akeyelementistheinterplaybetweenthecapacity         
    ofthemodel,thatisitsflexibilityandabilityto
fitdiversedata,andtheamountandqualityofthe
trainingdata.Whenthecapacityisinsufficient,the
modelcannotfitthedata,resultinginahigherror
duringtraining.Thisisreferredtoasunderfitting                              .

Onthecontrary,whentheamountofdataisin-
sufficient,asillustratedinFigure1.2,themodel
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Figure 1.2: If the amount of training data (black
dots) is small compared to the capacity of the model,
the empirical performance of the fitted model during
training (red curve) reflects poorly its actual fit to
the underlying data structure (thin black curve), and
consequently its usefulness for prediction.

will often learn characteristics specific to the train-
ing examples, resulting in excellent performance
during training, at the cost of a worse fit to the
global structure of the data, and poor performance
on new inputs. This phenomenon is referred to as
overfitting.

So, a large part of the art of applied machine learning
 is to design models that are not too flexible yet
still able to fit the data. This is done by crafting
the right inductive bias  in a model, which means
that its structure corresponds to the underlying
structure of the data at hand.

Even though this classical perspective is relevant
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forreasonably-sizeddeepmodels,thingsgetcon-
fusingwithlargeonesthathaveaverylargenum-
beroftrainableparametersandextremecapacity
yetstillperformwellonprediction.Wewillcome
backtothisin§3.6and§3.7.

1.4Categoriesofmodels

Wecanorganizetheuseofmachine learning                                        mod-
elsintothreebroadcategories:

Regression                         consistsofpredictingacontinuous-
valuedvectory∈RK,forinstance,ageometrical
positionofanobject,givenaninputsignalX.This
isamulti-dimensionalgeneralizationofthesetup
wesawin§1.2.Thetrainingsetiscomposedof
pairsofaninputsignalandaground-truth                    value.

Classification                         aimsatpredictingavaluefroma
finiteset{1,...,C},forinstance,thelabelYof
animageX.Aswithregression,thetrainingset
iscomposedofpairsofinputsignal,andground-
truthquantity,herealabelfromthatset.Thestan-
dardwayoftacklingthisistopredictonescore
perpotentialclass,suchthatthecorrectclasshas
themaximumscore.

Density modeling                                                hasasitsobjectivetomodel
theprobabilitydensityfunctionofthedataµXit-
self,forinstance,images.Inthatcase,thetraining
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set is composed of values xn without associated
quantities to predict, and the trained model should
allow for the evaluation of the probability den-
sity function, or sampling from the distribution, or
both.

Both regression and classification are generally re-
ferred to as supervised learning , since the value to
be predicted, which is required as a target during
training, has to be provided, for instance, by hu-
man experts. On the contrary, density modeling
is usually seen as unsupervised learning , since it
is sufficient to take existing data without the need
for producing an associated ground-truth.

These three categories are not disjoint; for instance,
classification can be cast as class-score regression,
or discrete sequence density modeling as iterated
classification. Furthermore, they do not cover all
cases. One may want to predict compounded quan-
tities, or multiple classes, or model a density con-
ditional on a signal.
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Chapter 2

Efficient computation

From an implementation standpoint, deep learning
is about executing heavy computations with large
amounts of data. The Graphical Processing Units 
(GPUs) have been instrumental in the success of
the field by allowing such computations to be run
on affordable hardware.

The importance of their use, and the resulting tech-
nical constraints on the computations that can be
done efficiently, force the research in the field to
constantly balance mathematical soundness and
implementability of novel methods.

2.1 GPUs, TPUs, and batches

Graphical Processing Units were originally de-
signed for real-time image synthesis, which re-
quires highly parallel architectures that happen
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genericstrategyistotrainamodeltorecoverparts
ofthesignalthathavebeenmasked[Devlinetal.,
2018;Zhouetal.,2021].
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tobewellsuitedfordeepmodels.Astheirusage
forAIhasincreased,GPUshavebeenequipped
withdedicatedtensor cores                              ,anddeep-learningspe-
cializedchipssuchasGoogle’sTensor Processing Units                                                 
          (TPUs          )havebeendeveloped.

AGPUpossessesseveralthousandparallelunits
anditsownfastmemory.Thelimitingfactoris
usuallynotthenumberofcomputingunits,but
theread-write operations to memory                                                    .Theslow-
estlinkisbetweentheCPUmemoryandtheGPU
memory,andconsequentlyoneshouldavoidcopy-
ingdataacrossdevices.Moreover,thestructure
oftheGPUitselfinvolvesmultiplelevelsofcache memory         
                    ,whicharesmallerbutfaster,andcompu-
tationshouldbeorganizedtoavoidcopiesbetween
thesedifferentcaches.

Thisisachieved,inparticular,byorganizingthe
computationinbatches of samples                            thatcanfiten-
tirelyintheGPUmemoryandareprocessedin
parallel.Whenanoperatorcombinesasample
andmodelparameters,bothhavetobemoved
tothecachememoryneartheactualcomputing
units.Proceedingbybatchesallowsforcopying
themodelparametersonlyonce,insteadofdoing
itforeachsample.Inpractice,aGPUprocessesa
batchthatfitsinmemoryalmostasquicklyasit
wouldprocessasinglesample.
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ing vertices. This operation is very similar to a
standard convolution, except that the data struc-
ture does not reflect any geometrical information
associated with the feature vectors they carry.

Self-supervised training

As stated in § 7.1, even though they are trained only
to predict the next word, Large Language Models 
trained on large unlabeled datasets such as GPT
(see § 5.3) are able to solve various tasks, such as
identifying the grammatical role of a word, an-
swering questions, or even translating from one
language to another [Radford et al., 2019].

Such models constitute one category of a larger
class of methods that fall under the name of self-supervised learning
 , and try to take advantage of
unlabeled datasets [Balestriero et al., 2023].

The key principle of these methods is to define a
task that does not require labels but necessitates
feature representations which are useful for the
real task of interest, for which a small labeled
dataset exists. In computer vision, for instance,
image features can be optimized so that they are invariant
 to data transformations that do not change
the semantic content of the image, while being
statistically uncorrelated [Zbontar et al., 2021].

In both NLP and computer vision, a powerful
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A standard GPU has a theoretical peak performance
 of 1013–1014 floating-point operations
(FLOPs) per second, and its memory typically
ranges from 8 to 80 gigabytes. The standard FP32
encoding of float numbers is on 32 bits, but empir-
ical results show that using encoding on 16 bits,
or even less for some operands, does not degrade
performance.

We will come back in § 3.7 to the large size of deep
architectures.

2.2 Tensors

GPUs and deep learning frameworks   such as Py-
Torch or JAX manipulate the quantities to be pro-
cessed by organizing them as tensors, which are
series of scalars arranged along several discrete
axes. They are elements of RN1×···×ND that gen-
eralize the notion of vector and matrix.

Tensors are used to represent both the signals to
be processed, the trainable parameters  of the mod-
els, and the intermediate quantities they compute.
The latter are called activations, in reference to
neuronal activations.

For instance, a time series is naturally encoded
as a T × D tensor, or, for historical reasons, as
a D × T tensor, where T is its duration and D

25



structuredsignalsuchasanimage,andadiscriminator                   
            ,whichtakesasampleasinputandpredicts
whetheritcomesfromthetrainingsetorifitwas
generatedbythegenerator.

Trainingoptimizesthediscriminatortominimize
astandardcross-entropyloss,andthegeneratorto
maximizethediscriminator’sloss.Itcanbeshown
that,atequilibrium,thegeneratorproducessam-
plesindistinguishablefromrealdata.Inpractice,
whenthegradientflowsthroughthediscriminator
tothegenerator,itinformsthelatteraboutthe
cuesthatthediscriminatorusesthatneedtobe
addressed.

GraphNeuralNetworks

Manyapplicationsrequireprocessingsignals
whicharenotorganizedregularlyonagrid.Forin-
stance,proteins,3Dmeshes,geographiclocations,
orsocialinteractionsaremorenaturallystructured
asgraphs.Standardconvolutionalnetworksor
evenattentionmodelsarepoorlyadaptedtopro-
cesssuchdata,andthetoolofchoiceforsucha
taskisGraph Neural Networks                                                  (GNN          )[Scarselli
etal.,2009].

Thesemodelsarecomposedoflayersthatcompute
activationsateachvertexbycombininglinearly
theactivationslocatedatitsimmediateneighbor-
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isthedimensionofthefeaturerepresentationat
everytimestep,oftenreferredtoasthenumberof
channels                    .Similarly,a2D-structuredsignalcanbe
representedasaD×H×Wtensor,whereHand
Wareitsheightandwidth.AnRGBimagewould
correspondtoD=3,butthenumberofchannels
cangrowuptoseveralthousandsinlargemodels.

Addingmoredimensionsallowsfortherepresen-
tationofseriesofobjects.Forexample,fiftyRGB
imagesofresolution32×24canbeencodedasa
50×3×24×32tensor.

Deeplearninglibrariesprovidealargenumberof
operationsthatencompassstandardlinearalge-
bra,complexreshapingandextraction,anddeep-
learningspecificoperations,someofwhichwewill
seeinChapter4.Theimplementationoftensors
separatestheshaperepresentationfromthestor-
agelayoutofthecoefficientsinmemory,whichal-
lowsmanyreshaping,transposing,andextraction
operationstobedonewithoutcoefficientcopying,
henceextremelyrapidly.

Inpractice,virtuallyanycomputationcanbe
decomposedintoelementarytensoroperations,
whichavoidsnon-parallelloopsatthelanguage
levelandpoormemorymanagement.

Besidesbeingconvenienttools,tensorsareinstru-
mentalinachievingcomputationalefficiency.All
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of skip connections  which are modulated dynami-
cally.

Autoencoder

An autoencoder is a model that maps an input sig-
nal, possibly of high dimension, to a low-dimension
latent representation, and then maps it back to the
original signal, ensuring that information has been
preserved. We saw it in § 6.1 for denoising, but it
can also be used to automatically discover a mean-
ingful low-dimension parameterization of the data
manifold.

The Variational Autoencoder  (VAE) proposed by
Kingma and Welling [2013] is a generative model
with a similar structure. It imposes, through the
loss, a pre-defined distribution on the latent rep-
resentation. This allows, after training, the gener-
ation of new samples by sampling the latent rep-
resentation according to this imposed distribution
and then mapping back through the decoder.

Generative Adversarial Networks

Another approach to density modeling is the Generative Adversarial Networks
   (GAN) introduced
by Goodfellow et al. [2014]. This method combines
a generator, which takes a random input follow-
ing a fixed distribution as input and produces a

138

the people involved in the development of an op-
erational deep model, from the designers of the
drivers, libraries, and models to those of the com-
puters and chips, know that the data will be ma-
nipulated as tensors. The resulting constraints on
locality and block decomposability enable all the
actors in this chain to come up with optimal de-
signs.
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Themissingbits

Forthesakeofconcision,thisvolumeskipsmany
importanttopics,inparticular:

RecurrentNeuralNetworks

Beforeattentionmodelsshowedgreaterperfor-
mance,Recurrent Neural Networks                                                                 (RNN          )were
thestandardapproachfordealingwithtemporalse-
quencessuchastextorsoundsamples.Thesearchi-
tecturespossessaninternalhidden state                              thatgets
updatedeachtimeacomponentofthesequenceis
processed.Theirmaincomponentsarelayerssuch
asLSTM[HochreiterandSchmidhuber,1997]or
GRU[Choetal.,2014].

Trainingarecurrentarchitectureamountstoun-
foldingitintime,whichresultsinalongcomposi-
tionofoperators.Thishashistoricallyprompted
thedesignofkeytechniquesnowusedfordeep
architecturessuchasrectifiers                        andgating,aform
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Chapter 3

Training

As introduced in § 1.1, training a model consists of
minimizing a loss ℒ (w) which reflects the perfor-
mance of the predictor f( · ;w) on a training set
𝒟 .

Since models are usually extremely complex, and
their performance is directly related to how well
the loss is minimized, this minimization is a key
challenge, which involves both computational and
mathematical difficulties.

3.1 Losses

The example of the mean squared error   from Equa-
tion 1.1 is a standard loss for predicting a continu-
ous value.

For density modeling, the standard loss is the likeli-
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ineach,andmaximizing
∑

n

logf
(
x
(n)
tn−1,x

(n)
tn,tn;w

)
.

Giventheirdiffusionprocess,Hoetal.[2020]have
adenoisingoftheform:

xt−1|xt∼𝒩(xt+f(xt,t;w);σt),(7.1)

whereσtisdefinedanalytically.

Inpractice,suchamodelinitiallyhallucinates
structuresbypureluckintherandomnoise,and
thengraduallybuildsmoreelementsthatemerge
fromthenoisebyreinforcingthemostlikelycon-
tinuationoftheimageobtainedthusfar.

Thisapproachcanbeextendedtotext-conditioned
synthesis,togenerateimagesthatmatchadescrip-
tion.Forinstance,Nicholetal.[2021]addtothe
meanofthedenoisingdistributionofEquation7.1
abiasthatgoesinthedirectionofincreasingthe
CLIPmatchingscore(see§6.6)betweenthepro-
ducedimageandtheconditioningtextdescription.
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hoodofthedata.Iff(x;w)istobeinterpretedasa
normalizedlog-probabilityorlog-density,theloss
istheoppositeofthesumofitsvaluesovertrain-
ingsamples,whichcorrespondstothelikelihood
ofthedata-set.

Cross-entropy

Forclassification                         ,theusualstrategyisthattheout-
putofthemodelisavectorwithonecomponent
f(x;w)yperclassy,interpretedasthelogarithm
ofanon-normalizedprobability,orlogit          .

WithXtheinputsignalandYtheclasstopredict,
wecanthencomputefromfanestimateofthe
posterior probabilities                                                  :

P̂(Y=y|X=x)=
expf(x;w)y

∑
zexpf(x;w)z

.

Thisexpressionisgenerallycalledthesoftmax                    ,or
moreadequately,thesoftargmax                    ,ofthelogits.

Tobeconsistentwiththisinterpretation,themodel
shouldbetrainedtomaximizetheprobabilityof
thetrueclasses,hencetominimizethecross-entropy         





      
      
      
             
       
       
       
      
  

       
           
       
      
    
      
 

      
    
         
   variational bound , that if this one-step
reverse process is accurate enough, sampling
xT ∼ p(xT ) and denoising T steps with f results
in x0 that follows p(x0).

Training f can be achieved by generating a large
number of sequences x(n)0 , . . . , x

(n)
T , picking a tn
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tropytropytropytropytropytropytropytropytropytropytropy, expressed as:

ℒce(w) = − 1

N

N∑

n=1

log P̂ (Y = yn | X = xn)

=
1

N

N∑

n=1

− log
exp f(xn;w)yn∑
z exp f(xn;w)z︸ ︷︷ ︸

Lce(f(xn;w),yn)

.

Contrastive loss

In certain setups, even though the value to be pre-
dicted is continuous, the supervision takes the form
of ranking constraints. The typical domain where
this is the case is metric learning , where the ob-
jective is to learn a measure of distance between
samples such that a sample xa from a certain se-
mantic class is closer to any sample xb of the same
class than to any sample xc from another class. For
instance, xa and xb can be two pictures of a certain
person, and xc a picture of someone else.

The standard approach for such cases is to mini-
mize a contrastive loss , in that case, for instance,
the sum over triplets (xa, xb, xc), such that ya =
yb ̸= yc, of

max(0, 1− f(xa, xc;w) + f(xa, xb;w)).

This quantity will be strictly positive unless
f(xa, xc;w) ≥ 1 + f(xa, xb;w).
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xT

x0

Figure7.2:Imagesynthesiswithdenoisingdiffusion
[Hoetal.,2020].Eachsamplestartsasawhitenoise
xT(top),andisgraduallyde-noisedbysampling
iterativelyxt−1|xt∼𝒩(xt+f(xt,t;w),σt).
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Engineeringtheloss

Usually,thelossminimizedduringtrainingisnot
theactualquantityonewantstooptimizeulti-
mately,butaproxyforwhichfindingthebest
modelparametersiseasier.Forinstance,cross-
entropyisthestandardlossforclassification,even
thoughtheactualperformancemeasureisaclassi-
ficationerrorrate,becausethelatterhasnoinfor-
mativegradient,akeyrequirementaswewillsee
in§3.3.

Itisalsopossibletoaddtermstothelossthat
dependonthetrainableparametersofthemodel
themselvestofavorcertainconfigurations.

Theweight decay                     regularization,forinstance,con-
sistsofaddingtothelossatermproportionalto
thesumofthesquaredparameters.Thiscanbe
interpretedashavingaGaussianBayesianprior
ontheparameters,whichfavorssmallervalues
andtherebyreducestheinfluenceofthedata.This
degradesperformanceonthetrainingset,butre-
ducesthegapbetweentheperformanceintraining
andthatonnew,unseendata.

3.2Autoregressivemodels

Akeyclassofmethods,particularlyfordealing
withdiscretesequencesinnaturallanguagepro-
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either write responses or provide ratings of gen-
erated responses. The former can be used as-is to
fine-tune the language model, and the latter can
be used to train a reward network that predicts
the rating and use it as a target to fine-tune the
language model with a standard Reinforcement Learning
 approach.

Due to the dramatic increase in the size of architec-
tures of language models, training a single model
can cost several million dollars (see Figure 3.7), and
fine-tuning is often the only way to achieve high
performance on a specific task.

7.2 Image generation

Multiple deep methods have been developed to
model and sample from a high-dimensional density.
A powerful approach for image synthesis  relies on
inverting a diffusion process .

The principle consists of defining analytically a pro-
cess that gradually degrades any sample, and con-
sequently transforms the complex and unknown
density of the data into a simple and well-known
density such as a normal, and training a deep ar-
chitecture to invert this degradation process [Ho
et al., 2020].

Given a fixed T , the diffusion process defines a
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cessing and computer vision, are the autoregressive models
 ,

The chain rule for probabilities

Such models put to use the chain rule  from proba-
bility theory:

P (X1 = x1, X2 = x2, . . . , XT = xT ) =

P (X1 = x1)

× P (X2 = x2 | X1 = x1)

. . .

× P (XT = xT | X1 = x1, . . . , XT−1 = xT−1).

Although this decomposition is valid for a random
sequence of any type, it is particularly efficient
when the signal of interest is a sequence of tokens
from a finite vocabulary {1, . . .K}.

With the convention that the additional token ∅
stands for an “unknown” quantity, we can repre-
sent the event {X1 = x1, . . . , Xt = xt} as the
vector (x1, . . . , xt, ∅, . . . , ∅).

Then, a model

f : {∅, 1, . . . ,K}T → RK

which, given such an input, computes a vector lt
ofK logits corresponding to

P̂ (Xt | X1 = x1, . . . , Xt−1 = xt−1),
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siusdegreesitturnsinto”,or“becauseherpuppy
wassick,Janewas”.

Thisresultsinparticularintheabilitytosolve
few-shot prediction                                        ,whereonlyahandfuloftrain-
ingexamplesareavailable,asillustratedinFig-
ure7.1.Moresurprisingly,whengivenacarefully
craftedprompt          ,itcanexhibitabilitiesforquestion
answering,problemsolving,andchain-of-thought
thatappeareerilyclosetohigh-levelreasoning
[Chowdheryetal.,2022;Bubecketal.,2023].

Duetotheseremarkablecapabilities,thesemod-
elsaresometimescalledfoundation models                                        [Bom-
masanietal.,2021].

However,eventhoughitintegratesaverylarge
bodyofknowledge,suchamodelmaybeinade-
quateforpracticalapplications,inparticularwhen
interactingwithhumanusers.Inmanysituations,
oneneedsresponsesthatfollowthestatisticsofa
helpfuldialogwithanassistant.Thisdiffersfrom
thestatisticsofavailablelargetrainingsets,which
combinenovels,encyclopedias,forummessages,
andblogposts.

Thisdiscrepancyisaddressedbyfine-tuning                              such
alanguagemodel.Thecurrentdominantstrategy
isReinforcement Learning from Human Feedback                                                                                         
(RLHF          )[Ouyangetal.,2022],whichconsistsofcre-
atingsmalllabeledtrainingsetsbyaskingusersto
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allowstosampleonetokengiventheprevious
ones.

ThechainruleensuresthatbysamplingTtokens
xt,oneatatimegiventhepreviouslysampled
x1,...,xt−1,wegetasequencethatfollowsthe
jointdistribution.Thisisanautoregressive                              gener-
ativemodel.

Trainingsuchamodelcanbedonebyminimizing
thesumacrosstrainingsequencesandtimesteps
ofthecross-entropy loss                             

Lce

(
f(x1,...,xt−1,∅,...,∅;w),xt

)
,

whichisformallyequivalenttomaximizingthe
likelihoodofthetruexts.

Thevaluethatisclassicallymonitoredisnotthe
cross-entropyitself,buttheperplexity                        ,whichis
definedastheexponentialofthecross-entropy.
Itcorrespondstothenumberofvaluesofauni-
formdistributionwiththesameentropy,whichis
generallymoreinterpretable.

Causalmodels

Thetrainingprocedurewedescribedrequiresa
differentinputforeacht,andthebulkofthecom-
putationdonefort<t′isrepeatedfort′.Thisis
extremelyinefficientsinceTisoftenoftheorder
ofhundredsorthousands.
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I: I love apples, O: positive, I: music is my passion, O: pos-
itive, I: my job is boring, O: negative, I: frozen pizzas are
awesome, O: positive,

I: I love apples, O: positive, I: music is my passion, O: posi-
tive, I: my job is boring, O: negative, I: frozen pizzas taste
like cardboard, O: negative,

I: water boils at 100 degrees, O: physics, I: the square root
of two is irrational, O: mathematics, I: the set of prime
numbers is infinite, O: mathematics, I: gravity is propor-
tional to the mass, O: physics,

I: water boils at 100 degrees, O: physics, I: the square root
of two is irrational, O: mathematics, I: the set of prime
numbers is infinite, O: mathematics, I: squares are rectan-
gles, O: mathematics,

Figure 7.1: Examples of few-shot prediction with
a 120 million parameter GPT model from Hugging
Face. In each example, the beginning of the sentence
was given as a prompt, and the model generated the
part in bold.

blocks.

When such a model is trained on a very large
dataset, it results in a Large Language Model 
(LLM), which exhibits extremely powerful proper-
ties. Besides the syntactic and grammatical struc-
ture of the language, it has to integrate very diverse
knowledge, e.g. to predict the word following “The
capital of Japan is”, “if water is heated to 100 Cel-
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x1 x2 . . . xT−2 xT−1

l1 l2 l3 . . . lT−1 lT

f

Figure 3.1: An autoregressive model f , is causal if
a time step xt of the input sequence modulates the
predicted logits ls only if s > t, as depicted by the
blue arrows. This allows computing the distributions
at all the time steps in one pass during training. Dur-
ing sampling, however, the lt and xt are computed
sequentially, the latter sampled with the former, as
depicted by the red arrows.

The standard strategy to address this issue is to
design a model f that predicts all the vectors of
logits l1, . . . , lT at once, that is:

f : {1, . . . ,K}T → RT×K ,

but with a computational structure such that the
computed logits lt for xt depend only on the input
values x1, . . . , xt−1.

Such a model is called causal, since it corresponds,
in the case of temporal series, to not letting the
future influence the past, as illustrated in Figure
3.1.
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Chapter7

Synthesis

Asecondcategoryofapplicationsdistinctfrompre-
dictionissynthesis.Itconsistsoffittingadensity
modeltotrainingsamplesandprovidingmeansto
samplefromthismodel.

7.1Textgeneration

Thestandardapproachtotext synthesis                                        istouse
anattention-based,autoregressive model                                        .Avery
successfulmodelproposedbyRadfordetal.[2018],
istheGPT          whichwedescribedin§5.3.

Thisarchitecturehasbeenusedtocreateverylarge
models,suchasOpenAI’s175-billion-parameter
GPT-3[Brownetal.,2020].Itiscomposedof96
self-attentionblocks,eachwith96heads,andpro-
cessestokensofdimension12,288,withahidden
dimensionof49,512intheMLPsoftheattention
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Theconsequenceisthattheoutputateveryposi-
tionistheonethatwouldbeobtainediftheinput
wereonlyavailableuptobeforethatposition.Dur-
ingtraining,itallowsonetocomputetheoutputfor
afullsequenceandtomaximizethepredictedprob-
abilitiesofallthetokensofthatsamesequence,
whichagainboilsdowntominimizingthesumof
theper-tokencross-entropy.

Notethat,forthesakeofsimplicity,wehavede-
finedfasoperatingonsequencesofafixedlength
T.However,modelsusedinpractice,suchasthe
transformerswewillseein§5.3,areabletoprocess
sequencesofarbitrarylength.

Tokenizer

Oneimportanttechnicaldetailwhendealingwith
naturallanguagesisthattherepresentationasto-
kenscanbedoneinmultipleways,rangingfrom
thefinestgranularityofindividualsymbolstoen-
tirewords.Theconversiontoandfromthetoken
representationiscarriedoutbyaseparatealgo-
rithmcalledatokenizer          .

AstandardmethodistheByte Pair Encoding                                        (BPE          )
[Sennrichetal.,2015]thatconstructstokensby
hierarchicallymerginggroupsofcharacters,trying
togettokensthatrepresentfragmentsofwordsof
variouslengthsbutofsimilarfrequencies,allocat-
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ing tokens to long frequent fragments as well as to
rare individual symbols.

3.3 Gradient descent

Except in specific cases like the linear regression
we saw in § 1.2, the optimal parameters w∗ do not
have a closed-form expression. In the general case,
the tool of choice to minimize a function is gradient descent
 . It starts by initializing the parameters
with a randomw0, and then improves this estimate
by iterating gradient steps , each consisting of com-
puting the gradient of the loss with respect to the
parameters, and subtracting a fraction of it:

wn+1 = wn − η∇ℒ |w(wn). (3.1)

This procedure corresponds to moving the current
estimate a bit in the direction that locally decreases
ℒ (w) maximally, as illustrated in Figure 3.2.

Learning rate

The meta-parameter η is called the learning rate .
It is a positive value that modulates how quickly
the minimization is done, and must be chosen care-
fully.

If it is too small, the optimization will be slow
at best, and may be trapped in a local minimum
early. If it is too large, the optimizationmay bounce
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Framenumber

Value

Figure6.5:Thisgraphshowstheevolutionofthe
statevalueV(St)=maxaQ(St,a)duringagame
ofBreakout.Thespikesattimepoints(1)and(2)
correspondtoclearingabrick,attimepoint(3)it
isabouttobreakthroughtothetopline,andat(4)
itdoes,whichensuresahighfuturereward[Mnih
etal.,2015].
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w

w

ℒ(w)

Figure3.2:Ateverypointw,thegradient∇ℒ|w(w)
isinthedirectionthatmaximizestheincreaseofℒ,
orthogonaltothelevelcurves(top).Thegradient
descentminimizesℒ(w)iterativelybysubtracting
afractionofthegradientateverystep,resultingina
trajectorythatfollowsthesteepestdescent(bottom).
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mizing

ℒ (w) =
1

N

N∑

n=1

(Q (sn, an;w)− yn)
2 (6.2)

with one iteration of SGD, where yn = rn if this
tuple is the end of the episode, and yn = rn +
γmaxaQ (s′n, a; w̄) otherwise.

Here w̄ is a constant copy of w, i.e. the gradient
does not propagate through it to w. This is neces-
sary since the target value in Equation 6.1 is the
expectation of yn, while it is yn itself which is used
in Equation 6.2. Fixing w in yn results in a better
approximation of the desirable gradient.

A key issue is the policy used to collect episodes.
Mnih et al. [2015] simply use the ϵ-greedy strat-
egy, which consists of taking an action completely
at random with probability ϵ, and the optimal ac-
tion argmaxaQ(s, a) otherwise. Injecting a bit of
randomness is necessary to favor exploration.

Training is done with ten million frames corre-
sponding to a bit less than eight days of gameplay.
The trained network computes accurate estimates
of the state values (see Figure 6.5), and reaches hu-
man performance on a majority of the 49 games
used in the experimental validation.
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around a good minimum and never descend into
it. As we will see in § 3.6, it can depend on the
iteration number n.

Stochastic Gradient Descent

All the losses used in practice can be expressed as
an average of a loss per small group of samples, or
per sample such as:

ℒ (w) =
1

N

N∑

n=1

𝓁n(w),

where 𝓁n(w) = L(f(xn;w), yn) for some L, and
the gradient is then:

∇ℒ |w(w) =
1

N

N∑

n=1

∇𝓁n|w(w). (3.2)

The resulting gradient descent  would compute ex-
actly the sum in Equation 3.2, which is usually
computationally heavy, and then update the pa-
rameters according to Equation 3.1. However, un-
der reasonable assumptions of exchangeability, for
instance, if the samples have been properly shuf-
fled, any partial sum of Equation 3.2 is an unbiased
estimator of the full sum, albeit noisy. So, updat-
ing the parameters from partial sums corresponds
to doing more gradient steps for the same com-
putational budget, with noisier estimates of the
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ThisisthestandardsetupofReinforcement Learning                                  
          (RL),anditcanbeworkedoutbyintroduc-
ingtheoptimalstate-actionvaluefunctionQ(s,a)
whichistheexpectedreturnifweexecuteaction
ainstates,andthenfollowtheoptimal policy                                .
Itprovidesameanstocomputetheoptimalpol-
icyasπ(s)=argmaxaQ(s,a),and,thanksto
theMarkovianassumption,itverifiestheBellman equation                   
                    :

Q(s,a)=(6.1)

E

[
Rt+γmax

a′Q(St+1,a′)

∣∣
∣∣St=s,At=a

]
,

fromwhichwecandesignaproceduretotraina
parametricmodelQ(·,·;w).

ToapplythisframeworktoplayclassicalAtari
videogames,Mnihetal.[2015]useforStthecon-
catenationoftheframeattimetandthethree
thatprecede,sothattheMarkovianassumption
isreasonable,anduseforQamodeldubbedthe
Deep Q-Network                              (DQN          ),composedoftwoconvo-
lutionallayersandonefullyconnectedlayerwith
oneoutputvalueperaction,followingtheclassical
structureofaLeNet(see§5.2).

Trainingisachievedbyalternativelyplayingand
recordingepisodes,andbuildingmini-batchesof
tuples(sn,an,rn,s′n)∼(St,At,Rt,St+1)taken
acrossstoredepisodesandtimesteps,andmini-
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gradient.Duetotheredundancyinthedata,this
happenstobeafarmoreefficientstrategy.

Wesawin§2.1thatprocessingabatchofsamples
smallenoughtofitinthecomputingdevice’smem-
oryisgenerallyasfastasprocessingasingleone.
Hence,thestandardapproachistosplitthefull
set𝒟intobatches          ,andtoupdatetheparameters
fromtheestimateofthegradientcomputedfrom
each.Thisiscalledmini-batchstochasticgradient
descent,orstochastic gradient descent                                                          (SGD          )for
short.

Itisimportanttonotethatthisprocessisextremely
gradual,andthatthenumberofmini-batchesand
gradientstepsaretypicallyoftheorderofseveral
million.

Aswithmanyalgorithms,intuitionbreaksdown
inhighdimensions,andalthoughitmayseemthat
thisprocedurewouldbeeasilytrappedinalocal
minimum,inreality,duetothenumberofparame-
ters,thedesignofthemodels,andthestochasticity
ofthedata,itsefficiencyisfargreaterthanone
mightexpect.

Plentyofvariationsofthisstandardstrategyhave
beenproposed.ThemostpopularoneisAdam         
[KingmaandBa,2014],whichkeepsrunningesti-
matesofthemeanandvarianceofeachcomponent
ofthegradient,andnormalizesthemautomati-
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Additionally, since the textual descriptions are of-
ten detailed, such a model has to capture a richer
representation of images and pick up cues beyond
what is necessary for instance for classification.
This translates to excellent performance on chal-
lenging datasets such as ImageNet Adversarial
[Hendrycks et al., 2019] which was specifically de-
signed to degrade or erase cues on which standard
predictors rely.

6.7 Reinforcement learning

Many problems, such as strategy games or robotic
control, can be formalized with a discrete-time
state process St and reward process Rt that can be
modulated by choosing actions At. If St is Markovian
, meaning that it carries alone as much infor-
mation about the future as all the past states until
that instant, such an object is a Markovian Decision Process
  (MDP).

Given an MDP, the objective is classically to find
a policy π such that At = π(St) maximizes the
expectation of the return, which is an accumulated
discounted reward:

E


∑

t≥0

γtRt


 ,

for a discount factor 0 < γ < 1.
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cally, avoiding scaling issues and different training
speeds in different parts of a model.

3.4 Backpropagation

Using gradient descent  requires a technical means
to compute ∇𝓁|w(w) where 𝓁 = L(f(x;w); y).
Given that f and L are both compositions of stan-
dard tensor operations, as for any mathematical
expression, the chain rule  from differential calcu-
lus allows us to get an expression of it.

For the sake of making notation lighter, we will
not specify at which point gradients are computed,
since the context makes it clear.

Forward and backward passes

Consider the simple case of a composition of map-
pings:

f = f (D) ◦ f (D−1) ◦ · · · ◦ f (1).
The output of f(x;w) can be computed by starting
with x(0) = x and applying iteratively:

x(d) = f (d)
(
x(d−1);wd

)
,

with x(D) as the final value.

The individual scalar values of these intermediate
results x(d) are traditionally called activations in
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Figure6.4:TheCLIPtext-imageembedding[Rad-
fordetal.,2021]allowsforzero-shotpredictionby
predictingwhichclassdescriptionembeddingisthe
mostconsistentwiththeimageembedding.
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x(d−1)x(d)
f(d)(·;wd)

∇𝓁|x(d−1)∇𝓁|x(d)

×Jf(d)|x

∇𝓁|wd

×Jf(d)|w

Figure3.3:Givenamodelf=f(D)◦···◦f(1),the
forwardpass(top)consistsofcomputingtheoutputs
x(d)ofthemappingsf(d)inorder.Thebackward
pass(bottom)computesthegradientsofthelosswith
respecttotheactivationx(d)andtheparameterswd

backwardbymultiplyingthembytheJacobians.

referencetoneuronactivations,thevalueDisthe
depth          ofthemodel,theindividualmappingsf(d)
arereferredtoaslayers                   ,aswewillseein§4.1,and
theirsequentialevaluationistheforward pass                              (see
Figure3.3,top).

Conversely,thegradient∇𝓁|x(d−1)ofthelosswith
respecttotheoutputx(d−1)off(d−1)istheprod-
uctofthegradient∇𝓁|x(d)withrespecttotheout-
putoff(d)multipliedbytheJacobianJf(d−1)|xof
f(d−1)withrespecttoitsvariablex.Thus,thegra-
dientswithrespecttotheoutputsofallthef(d)s
canbecomputedrecursivelybackward,starting
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1024, depending on the configuration.

Those two models are trained from scratch using
a dataset of 400 million image-text pairs (ik, tk)
collected from the internet. The training procedure
follows the standardmini-batch stochastic gradient
descent approach but relies on a contrastive loss .
The embeddings are computed for every image and
every text of the N pairs in the mini-batch, and
a cosine similarity measure is computed not only
between text and image embeddings from each
pair, but also across pairs, resulting in an N ×N
matrix of similarity scores:

lm,n = f(im)·g(tn), m = 1, . . . , N, n = 1, . . . , N.

The model is trained with cross-entropy so that,
∀n the values l1,n, . . . , lN,n interpreted as logit
scores predict n, and similarly for ln,1, . . . , ln,N .
This means that ∀n,m, s.t. n ̸= m the similarity
ln,n is unambiguously greater than both ln,m and
lm,n.

When it has been trained, this model can be used to
do zero-shot prediction , that is, classifying a signal
in the absence of training examples by defining a
series of candidate classes with text descriptions,
and computing the similarity of the embedding
of an image with the embedding of each of those
descriptions (see Figure 6.4).
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with∇𝓁|x(D) = ∇L|x.

And the gradient that we are interested in for train-
ing, that is ∇𝓁|wd

, is the gradient with respect
to the output of f (d) multiplied by the Jacobian
Jf (d)|w of f (d) with respect to the parameters.

This iterative computation of the gradients with
respect to the intermediate activations, combined
with that of the gradients with respect to the lay-
ers’ parameters, is the backward pass  (see Figure
3.3, bottom). The combination of this computation
with the procedure of gradient descent is called
backpropagation.

In practice, the implementation details of the for-
ward and backward passes are hidden from pro-
grammers. Deep learning frameworks are able to
automatically construct the sequence of operations
to compute gradients.

A particularly convenient algorithm is Autograd
[Baydin et al., 2015], which tracks tensor opera-
tions and builds, on the fly, the combination of
operators for gradients. Thanks to this, a piece
of imperative programming that manipulates ten-
sors can automatically compute the gradient of any
quantity with respect to any other.
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suchasbackgroundmusicorambientnoise.

Thisapproachallowsleveragingextremelylarge
datasetsthatcombinemultipletypesofsound
sourceswithdiversegroundtruths.

Itisnoteworthythateventhoughtheultimate
goalofthisapproachistoproduceatranslation
asdeterministicaspossiblegiventheinputsignal,
itisformallythesamplingofatextdistribution
conditionedonasoundsample,henceasynthesis
process.Thedecoderis,infact,extremelysimilar
tothegenerativemodelof§7.1.

6.6Text-imagerepresentations

Apowerfulapproachtoimageunderstandingcon-
sistsoflearningconsistentimageandtextrepresen-
tations,suchthatanimage,oratextualdescription
ofit,wouldbemappedtothesamefeaturevector.

TheContrastive Language-Image Pre-training                                                                               
(CLIP          )proposedbyRadfordetal.[2021]combines
animageencoderf,whichisaViT          ,andatext
encoderg,whichisaGPT          .See§5.3forboth.

TorepurposeaGPTasatextencoder,insteadofa
standardautoregressivemodel,theyaddan“end
ofsentence”tokentotheinputsequence,anduse
therepresentationofthistokeninthelastlayeras
theembedding.Itsdimensionisbetween512and
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Resourceusage

Regardingthecomputational cost                         ,aswewillsee,
thebulkofthecomputationgoesintolinearoper-
ations,eachrequiringonematrixproductforthe
forwardpassandtwofortheproductsbytheJa-
cobiansforthebackwardpass,makingthelatter
roughlytwiceascostlyastheformer.

Thememory requirement                                        duringinferenceis
roughlyequaltothatofthemostdemandingindi-
viduallayer.Fortraining,however,thebackward
passrequireskeepingtheactivationscomputed
duringtheforwardpasstocomputetheJacobians,
whichresultsinamemoryusagethatgrowspro-
portionallytothemodel’sdepth.Techniquesexist
totradethememoryusageforcomputationby
eitherrelyingonreversible layers                             [Gomezetal.,
2017],orusingcheckpointing                              ,whichconsistsof
storingactivationsforsomelayersonlyandrecom-
putingtheothersontheflywithpartialforward
passesduringthebackwardpass[Chenetal.,2016].

Vanishinggradient

Akeyhistoricalissuewhentrainingalargenet-
workisthatwhenthegradientpropagatesback-
wardsthroughanoperator,itmaybescaledbya
multiplicativefactor,andconsequentlydecrease
orincreaseexponentiallywhenittraversesmany
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a large-scale image classification dataset to com-
pensate for the limited availability of segmentation
ground truth.

6.5 Speech recognition

Speech recognition  consists of converting a sound
sample into a sequence of words. There have been
plenty of approaches to this problem historically,
but a conceptually simple and recent one proposed
by Radford et al. [2022] consists of casting it as a
sequence-to-sequence translation and then solving
it with a standard attention-based Transformer, as
described in § 5.3.

Their model first converts the sound signal into
a spectrogram, which is a one-dimensional series
T × D, that encodes at every time step a vector
of energies in D frequency bands. The associated
text is encoded with the BPE tokenizer (see § 3.2).

The spectrogram is processed through a few 1D
convolutional layers , and the resulting represen-
tation is fed into the encoder of the Transformer.
The decoder directly generates a discrete sequence
of tokens, that correspond to one of the possible
tasks considered during training. Multiple objec-
tives are considered: transcription of English or
non-English text, translation from any language
to English, or detection of non-speech sequences,
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layers. A standard method to prevent it from ex-
ploding is gradient norm clipping  , which consists
of re-scaling the gradient to set its norm to a fixed
threshold if it is above it [Pascanu et al., 2013].

When the gradient decreases exponentially, this is
called the vanishing gradient , and it may make the
training impossible, or, in its milder form, cause
different parts of the model to be updated at differ-
ent speeds, degrading their co-adaptation [Glorot
and Bengio, 2010].

As we will see in Chapter 4, multiple techniques
have been developed to prevent this from happen-
ing, reflecting a change in perspective that was
crucial to the success of deep-learning: instead of
trying to improve generic optimization methods,
the effort shifted to engineering the models them-
selves to make them optimizable.

3.5 The value of depth

As the term “deep learning” indicates, useful mod-
els are generally compositions of long series of
mappings. Training them with gradient descent
results in a sophisticated co-adaptation of the map-
pings, even though this procedure is gradual and
local.

We can illustrate this behavior with a simple model
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requiresoperatingatmultiplescales.Thisisneces-
sarysothatanyobject,orsufficientlyinformative
sub-part,regardlessofitssize,iscapturedsome-
whereinthemodelbythefeaturerepresentation
atasingletensorposition.Hence,standardarchi-
tecturesforthistaskdownscaletheimagewitha
seriesofconvolutional layers                                       toincreasetherecep-
tivefieldoftheactivations,andre-upscaleitwitha
seriesoftransposed convolutional layers                                                           ,orother
upscalingmethodssuchasbilinearinterpolation,
tomakethepredictionathighresolution.

However,astrictdownscaling-upscalingarchitec-
turedoesnotallowforoperatingatafinegrain
whenmakingthefinalprediction,sinceallthesig-
nalhasbeentransmittedthroughalow-resolution
representationatsomepoint.Modelsthatapply
suchdownscaling-upscalingseriallymitigatethese
issueswithskip connections                                        fromlayersatacer-
tainresolution,beforedownscaling,tolayersat
thesameresolution,afterupscaling[Longetal.,
2014;Ronnebergeretal.,2015].Modelsthatdo
itinparallel,afteraconvolutionalbackbone,con-
catenatetheresultingmulti-scalerepresentation
afterupscaling,beforemakingthefinalper-pixel
prediction[Zhaoetal.,2016].

Trainingisachievedwithastandardcross-entropy
summedoverallthepixels.Asforobjectdetection,
trainingcanstartfromanetwork pre-trained                                        on
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R2→R2thatcombineseightlayers,eachmulti-
plyingitsinputbya2×2matrixandapplyingTanh
percomponent,withafinallinearclassifier.This
isasimplifiedversionofthestandardMulti-Layer Perceptron                   
                              thatwewillseein§5.1.

IfwetrainthismodelwithSGD          andcross-entropy                   
onatoybinaryclassificationtask(Figure3.4,top
left),thematricesco-adapttodeformthespace
untiltheclassificationiscorrect,whichimplies
thatthedatahavebeenmadelinearlyseparable
beforethefinalaffineoperation(Figure3.4,bottom
right).

Suchanexamplegivesaglimpseofwhatadeep
modelcanachieve;however,itispartiallymislead-
ingduetothelowdimensionofboththesignalto
processandtheinternalrepresentations.Every-
thingiskeptin2Dhereforthesakeofvisualiza-
tion,whilerealmodelstakeadvantageofrepresen-
tationsinhighdimensions,which,inparticular,
facilitatestheoptimizationbyprovidingmanyde-
greesoffreedom.

Empiricalevidenceaccumulatedovertwentyyears
demonstratesthatstate-of-the-artperformance
acrossapplicationdomainsnecessitatesmodels
withtensoflayers,suchasresidual networks                                        (see
§5.2)orTransformers                              (see§5.3).

Theoreticalresultsshowthat,forafixedcomputa-
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Figure 6.3: Semantic segmentation results with the
Pyramid Scene Parsing Network [Zhao et al., 2016].

to which it belongs. This can be achieved with a
standard convolutional neural network that out-
puts a convolutional map with as many channels
as classes, carrying the estimated logits for every
pixel.

While a standard residual network, for instance,
can generate a dense output of the same resolu-
tion as its input, as for object detection, this task
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d = 0 d = 1 d = 2

d = 3 d = 4 d = 5

d = 6 d = 7 d = 8

Figure 3.4: Each plot shows the deformation of the
space and the resulting positioning of the training
points in R2 after d layers of processing, starting
with the input to the model itself (top left). The
oblique line in the last plot (bottom right) shows the
final affine decision.
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eratesseveralboundingboxespers,h,w,each
dedicatedtoahard-codedrangeofaspectratios.

Trainingsetsforobjectdetectionarecostlytocre-
ate,sincethelabelingwithboundingboxesre-
quiresaslowhumanintervention.Tomitigate
thisissue,thestandardapproachistostartwith
aconvolutionalmodelthathasbeenpre-trained                   
onalargeclassificationdatasetsuchasVGG-16
fortheoriginalSSD,andtoreplaceitsfinalfully-
connectedlayerswithadditionalconvolutional
ones.Surprisingly,modelstrainedforclassifica-
tiononlylearnfeaturerepresentationsthatcanbe
repurposedforobjectdetection,eventhoughthat
taskinvolvestheregressionofgeometricquanti-
ties.

Duringtraining,everyground-truthboundingbox
isassociatedwithitss,h,w,andinducesaloss
termcomposedofacross-entropylossforthelog-
its,andaregressionlosssuchasMSEforthebound-
ingboxcoordinates.Everyothers,h,wfreeof
bounding-boxmatchinducesacross-entropyonly
penaltytopredicttheclass“noobject”.

6.4Semanticsegmentation

Thefinest-grainpredictiontaskforimageunder-
standingissemantic segmentation                                               ,whichconsists
ofpredicting,foreachpixel,theclassoftheobject
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tionalbudgetornumberofparameters,increasing
thedepthleadstoagreatercomplexityofthere-
sultingmapping[Telgarsky,2016].

3.6Trainingprotocols

Trainingadeepnetworkrequiresdefiningaproto-
coltomakethemostofcomputationanddata,and
toensurethatperformancewillbegoodonnew
data.

Aswesawin§1.3,theperformanceonthetrain-
ingsamplesmaybemisleading,sointhesimplest
setuponeneedsatleasttwosetsofsamples:oneis
atraining set                              ,usedtooptimizethemodelparam-
eters,andtheotherisatest set                    ,toevaluatethe
performanceofthetrainedmodel.

Additionally,thereareusuallymeta-parameters                     to
adapt,inparticular,thoserelatedtothemodelar-
chitecture,thelearningrate,andtheregularization
termsintheloss.Inthatcase,oneneedsavalidation set         
                    thatisdisjointfromboththetrainingand
testsetstoassessthebestconfiguration.

Thefulltrainingisusuallydecomposedinto
epochs          ,eachofwhichcorrespondstogoing
throughallthetrainingexamplesonce.Theusual
dynamicofthelossesisthatthetraininglossde-
creasesaslongastheoptimizationruns,whilethe
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The standard approach to solve this task, for in-
stance, by the Single Shot Detector   (SSD) [Liu et al.,
2015]), is to use a convolutional neural network
that produces a sequence of image representations
Zs of size Ds × Hs × Ws, s = 1, . . . , S, with
decreasing spatial resolution Hs × Ws down to
1 × 1 for s = S (see Figure 6.1). Each of these
tensors covers the input image in full, so the h,w
indices correspond to a partitioning of the image
lattice into regular squares that gets coarser when
s increases.

As seen in § 4.2, and illustrated in Figure 4.4, due
to the succession of convolutional layers , a feature
vector (Zs[0, h, w], . . . , Zs[Ds − 1, h, w]) is a de-
scriptor of an area of the image, called its receptive field
, that is larger than this square but centered
on it. This results in a non-ambiguous matching
of any bounding box (x1, x2, y1, y2) to a s, h, w,
determined respectively bymax(x2−x1, y2−y1),
y1+y2

2 , and x1+x2
2 .

Detection is achieved by adding S convolutional
layers, each processing a Zs and computing, for ev-
ery tensor indices h,w, the coordinates of a bound-
ing box and the associated logits. If there are C
object classes, there are C + 1 logits, the addi-
tional one standing for “no object.” Hence, each
additional convolution layer has 4 +C + 1 output
channels. The SSD algorithm in particular gen-
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Loss

Number of epochs

Overfitting

Training

Validation

Figure 3.5: As training progresses, a model’s per-
formance is usually monitored through losses. The
training loss is the one driving the optimization pro-
cess and goes down, while the validation loss is es-
timated on an other set of examples to assess the
overfitting of the model. Overfitting appears when
the model starts to take into account random struc-
tures specific to the training set at hand, resulting in
the validation loss starting to increase.
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Figure6.2:Examplesofobjectdetectionwiththe
Single-ShotDetector[Liuetal.,2015].
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validationlossmayreachaminimumafteracer-
tainnumberofepochsandthenstarttoincrease,
reflectinganoverfitting                              regime,asintroducedin
§1.3andillustratedinFigure3.5.

Paradoxically,althoughtheyshouldsufferfromse-
vereoverfittingduetotheircapacity,largemodels
usuallycontinuetoimproveastrainingprogresses.
Thismaybeduetotheinductive bias                              ofthemodel
becomingthemaindriverofoptimizationwhen
performanceisnearperfectonthetrainingset
[Belkinetal.,2018].

Animportantdesignchoiceisthelearning rate schedule                             
                    duringtraining,thatis,thespecification
ofthevalueofthelearning rate                              ateachiterationof
thegradientdescent.Thegeneralpolicyisthatthe
learningrateshouldbeinitiallylargetoavoidhav-
ingtheoptimizationbeingtrappedinabadlocal
minimumearly,andthatitshouldgetsmallerso
thattheoptimizedparametervaluesdonotbounce
aroundandreachagoodminimuminanarrow
valleyofthelosslandscape.

Thetrainingofextremelylargemodelsmaytake
monthsonthousandsofpowerfulGPUsandhave
afinancialcostofseveralmilliondollars.Atthis
scale,thetrainingmayinvolvemanymanualinter-
ventions,informed,inparticular,bythedynamics
ofthelossevolution.
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X

Z1

Z2
ZS−1 ZS

. . .

. . .

Figure 6.1: A convolutional object detector processes
the input image to generate a sequence of represen-
tations of decreasing resolutions. It computes for
every h,w, at every scale s, a pre-defined number
of bounding boxes whose centers are in the image
area corresponding to that cell, and whose sizes are
such that they fit in its receptive field. Each predic-
tion takes the form of the estimates (x̂1, x̂2, ŷ1, ŷ2),
represented by the red boxes above, and a vector of
C + 1 logits for the C classes of interest, and an
additional “no object” class.
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3.7 The benefits of scale

There is an accumulation of empirical results
showing that performance, for instance, estimated
through the loss on test data, improves with the
amount of data according to remarkable scaling laws
, as long as the model size increases corre-
spondingly [Kaplan et al., 2020] (see Figure 3.6).

Benefiting from these scaling laws in the multi-
billion sample regime is possible in part thanks to
the structural plasticity of models, which allows
them to be scaled up arbitrarily, as we will see, by
increasing the number of layers or feature dimen-
sions. But it is also made possible by the distributed
nature of the computation implemented by these
models and by stochastic gradient descent  , which
requires only a tiny fraction of the data at a time
and can operate with datasets whose size is orders
of magnitude greater than that of the computing
device’s memory. This has resulted in an exponen-
tial growth of the models, as illustrated in Figure
3.7.

Typical vision models have 10–100 million trainable parameters
  and require 1018–1019 FLOPs for
training [He et al., 2015; Sevilla et al., 2022]. Lan-
guagemodels have from 100million to hundreds of
billions of trainable parameters and require 1020–
1023 FLOPs for training [Devlin et al., 2018; Brown
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predictingaclassfromafinite,predefinednumber
ofclasses,givenaninputimage.

Thestandardmodelsforthistaskareconvolutional
networks,suchasResNets(see§5.2),andattention-
basedmodelssuchasViT(see§5.3).Thesemodels
generateavectoroflogitswithasmanydimen-
sionsasthereareclasses.

Thetrainingproceduresimplyminimizesthecross-
entropyloss(see§3.1).Usually,performance
canbeimprovedwithdata augmentation                                        ,which
consistsofmodifyingthetrainingsampleswith
hand-designedrandomtransformationsthatdonot
changethesemanticcontentoftheimage,suchas
cropping,scaling,mirroring,orcolorchanges.

6.3Objectdetection

Amorecomplextaskforimageunderstandingis
object detection                               ,inwhichtheobjectiveis,given
aninputimage,topredicttheclassesandpositions
ofobjectsofinterest.

Anobjectpositionisformalizedasthefourcoor-
dinates(x1,y1,x2,y2)ofarectangularbounding
box,andthegroundtruthassociatedwitheach
trainingimageisalistofsuchboundingboxes,
eachlabeledwiththeclassoftheobjectcontained
therein.
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Testloss
Testloss

Testloss

Compute(peta-FLOP/s-day)

Datasetsize(tokens)

Numberofparameters

Figure3.6:Testlossofalanguagemodelvs.the
amountofcomputationinpetaflop/s-day,thedataset
sizeintokens,thatisfragmentsofwords,andthe
modelsizeinparameters[Kaplanetal.,2020].
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timate of the original signal X . For images, it is
a convolutional network that may integrate skip-
connections, in particular to combine representa-
tions at the same resolution obtained early and late
in the model, as well as attention layers to facili-
tate taking into account elements that are far away
from each other.

Such a model is trained by collecting a large num-
ber of clean samples paired with their degraded
inputs. The latter can be captured in degraded
conditions, such as low-light or inadequate focus,
or generated algorithmically, for instance, by con-
verting the clean sample to grayscale, reducing its
size, or aggressively compressing it with a lossy
compression method.

The standard training procedure for denoising au-
toencoders uses the MSE loss summed across all
pixels, in which case the model aims at computing
the best average clean picture, given the degraded
one, that is E[X | X̃]. This quantity may be prob-
lematic when X is not completely determined by
X̃ , in which case some parts of the generated signal
may be an unrealistic, blurry average.

6.2 Image classification

Image classification is the simplest strategy for ex-
tracting semantics from an image and consists of
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Dataset Year Nb. of images Size
ImageNet 2012 1.2M 150Gb
Cityscape 2016 25K 60Gb
LAION-5B 2022 5.8B 240Tb

Dataset Year Nb. of books Size
WMT-18-de-en 2018 14M 8Gb
The Pile 2020 1.6B 825Gb
OSCAR 2020 12B 6Tb

Table 3.1: Some examples of publicly available
datasets. The equivalent number of books is an in-
dicative estimate for 250 pages of 2000 characters per
book.

et al., 2020; Chowdhery et al., 2022; Sevilla et al.,
2022]. These latter models require machines with
multiple high-end GPUs.

Training these large models is impossible using
datasets with a detailed ground-truth costly to pro-
duce, which can only be of moderate size. Instead,
it is done with datasets automatically produced by
combining data available on the internet with min-
imal curation, if any. These sets may combine mul-
tiple modalities, such as text and images from web
pages, or sound and images from videos, which
can be used for large-scale supervised training.

The most impressive current successes of artificial
intelligence rely on the so-called Large Language Models
 (LLMs), which we will see in § 5.3 and § 7.1,
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Chapter6

Prediction

Afirstcategoryofapplications,suchasfacerecog-
nition,sentimentanalysis,objectdetection,or
speechrecognition,requirespredictinganun-
knownvaluefromanavailablesignal.

6.1Imagedenoising

Adirectapplicationofdeepmodelstoimagepro-
cessingistorecoverfromdegradationbyutiliz-
ingtheredundancyinthestatisticalstructureof
images.Thepetalsofasunflowerinagrayscale
picturecanbecoloredwithhighconfidence,and
thetextureofageometricshapesuchasatable
onalow-light,grainypicturecanbecorrectedby
averagingitoveralargearealikelytobeuniform.

Adenoising autoencoder                                         isamodelthattakesa
degradedsignalX̃asinputandcomputesanes-
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Figure3.7:TrainingcostsinnumberofFLOPofsome
landmarkmodels[Sevillaetal.,2023].Thecolorsin-
dicatethedomainsofapplication:ComputerVision
(blue),NaturalLanguageProcessing(red),orother
(black).Thedashedlinescorrespondtotheenergy
consumptionusingA100sSXMin16-bitprecision.
Forreference,thetotalelectricityconsumptioninthe
USin2021was3920TWh.
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trained on extremely large text datasets (see Table
3.1).
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PartIII

Applications



Vision Transformer

Transformers have been put to use for image classi-
fication with the Vision Transformer  (ViT) model
[Dosovitskiy et al., 2020] (see Figure 5.9).

It splits the three-channel input image into M
patches of resolution P × P , which are then flat-
tened to create a sequence of vectors X1, . . . , XM

of shapeM × 3P 2. This sequence is multiplied by
a trainable matrixW E of shape 3P 2 ×D to map it
to anM ×D sequence, to which is concatenated
one trainable vectorE0. The resulting (M+1)×D
sequence E0, . . . , EM is then processed through
multiple self-attention blocks. See § 5.3 and Figure
5.6.

The first element Z0 in the resultant sequence,
which corresponds toE0 and is not associated with
any part of the image, is finally processed by a two-
hidden-layer MLP to get the final C logits. Such
a token, added for a readout of a class prediction,
was introduced by Devlin et al. [2018] in the BERT
model and is referred to as a CLS token .
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Part II

Deep models



×N

E0,E1,...,EM

+

self-att

ffw

Z0,Z1,...,ZM

fully-conn

gelu

fully-conn

gelu

fully-conn

P̂(Y)

×W
E

X1,...,XM

E0

pos-enc

MLP
readout

Image
encoderM×3P

2

(M+1)×D

(M+1)×D

D

C

Figure5.9:VisionTransformermodel[Dosovitskiy
etal.,2020].
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×N

0, X1, . . . , XT−1

embed

+

causal
self-att

ffw

fully-conn

P̂ (X1), . . . , P̂ (XT | Xt<T )

pos-enc

T

T ×D

T ×D

T × V

Figure 5.8: GPT model [Radford et al., 2018].

Generative Pre-trained Transformer

The Generative Pre-trained Transformer   (GPT)
[Radford et al., 2018, 2019], pictured in Figure 5.8
is a pure autoregressive model that consists of a
succession of causal self-attention blocks, hence a
causal version of the original Transformer encoder.

This class of models scales extremely well, up
to hundreds of billions of trainable parameters
[Brown et al., 2020]. We will come back to their
use for text generation in § 7.1.
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Chapter 4

Model components

A deep model is nothing more than a complex ten-
sorial computation that can ultimately be decom-
posed into standard mathematical operations from
linear algebra and analysis. Over the years, the
field has developed a large collection of high-level
modules with a clear semantic, and complex mod-
els combining these modules, which have proven
to be effective in specific application domains.

Empirical evidence and theoretical results show
that greater performance is achieved with deeper
architectures, that is, long compositions of map-
pings. As we saw in section § 3.4, training such
a model is challenging due to the vanishing gradient
, and multiple important technical contribu-
tions have mitigated this issue.
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tomrightofFigure5.6,issimilarexceptthatit
takesasinputtwosequences,onetocomputethe
queriesandonetocomputethekeysandvalues.

TheencoderoftheTransformer(seeFigure5.7,bot-
tom),recodestheinputsequenceofdiscretetokens
X1,...XTwithanembedding layer                              (see§4.9),
andaddsapositional encoding                                   (see§4.10),before
processingitwithseveralself-attentionblocksto
generatearefinedrepresentationZ1,...,ZT.

Thedecoder(seeFigure5.7,top),takesasin-
putthesequenceY1,...,YS−1ofresulttokens
producedsofar,similarlyrecodesthemthrough
anembeddinglayer,addsapositionalencod-
ing,andprocessesitthroughalternatingcausal         
self-attentionblocksandcross-attentionblocks
toproducethelogitspredictingthenexttokens.
Thesecross-attentionblockscomputetheirkeys
andvaluesfromtheencoder’sresultrepresenta-
tionZ1,...,ZT,whichallowstheresultingse-
quencetobeafunctionoftheoriginalsequence
X1,...,XT.

Aswesawin§3.2beingcausal          ensuresthatsuch
amodelcanbetrainedbyminimizingthecross-
entropysummedacrossthefullsequence.
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4.1Thenotionoflayer

Wecalllayers                   standardcomplexcompoundedten-
soroperationsthathavebeendesignedandem-
piricallyidentifiedasbeinggenericandefficient.
Theyoftenincorporatetrainableparametersand
correspondtoaconvenientlevelofgranularityfor
designinganddescribinglargedeepmodels.The
termisinheritedfromsimplemulti-layerneural
networks,eventhoughmodernmodelsmaytake
theformofacomplexgraphofsuchmodules,in-
corporatingmultipleparallelpathways.

×K

X

f

gn=4

Y

32×32

4×4

Inthefollowingpages,Itrytosticktotheconven-
tionformodeldepictionillustratedabove:

•operators/layersaredepictedasboxes,

•darkercoloringindicatesthattheyembedtrain-
ableparameters,

•non-defaultvaluedmeta-parametersareadded
inblueontheirright,
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Transformer

The original Transformer, pictured in Figure 5.7,
was designed for sequence-to-sequence translation.
It combines an encoder that processes the input
sequence to get a refined representation, and an au-
toregressive decoder that generates each token of
the result sequence, given the encoder’s represen-
tation of the input sequence and the output tokens
generated so far.

As the residual convolutional networks of § 5.2,
both the encoder and the decoder of the Trans-
former are sequences of compounded blocks built
with residual connections.

• The feed-forward block , pictured at the top of
Figure 5.6 is a one hidden layer MLP, preceded by a
layer normalization . It can update representations
at every position separately.

• The self-attention block , pictured on the bottom
left of Figure 5.6, is a Multi-Head Attention layer 
(see § 4.8), that recombines information globally,
allowing any position to collect information from
any other positions, preceded by a layer normalization
. This block can be made causal by using an
adequate mask in the attention layer, as described
in § 4.8

• The cross-attention block , pictured on the bot-
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• a dashed outer frame with a multiplicative factor
indicates that a group of layers is replicated in se-
ries, each with its own set of trainable parameters,
if any, and

• in some cases, the dimension of their output is
specified on the right when it differs from their
input.

Additionally, layers that have a complex internal
structure are depicted with a greater height.

4.2 Linear layers

The most important modules in terms of compu-
tation and number of parameters are the Linear layers
. They benefit from decades of research and
engineering in algorithmic and chip design for ma-
trix operations.

Note that the term “linear” in deep learning gener-
ally refers improperly to an affine operation , which
is the sum of a linear expression and a constant
bias.

Fully connected layers

The most basic linear layer is the fully connected layer
, parameterized by a trainable weight matrix
W of size D′ ×D and bias vector  b of dimension
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+

causal
self-att

QKV

cross-att
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T

T×D

T×D

S

S×D

S×D

S×V

Figure5.7:Originalencoder-decoderTransformer model         
                    forsequence-to-sequencetranslation
[Vaswanietal.,2017].
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D′.Itimplementsanaffinetransformationgener-
alizedtoarbitrarytensorshapes,wherethesup-
plementarydimensionsareinterpretedasvector
indexes.Formally,givenaninputXofdimension
D1×···×DK×D,itcomputesanoutputYof
dimensionD1×···×DK×D′with

∀d1,...,dK,
Y[d1,...,dK]=WX[d1,...,dK]+b.

Whileatfirstsightsuchanaffineoperationseems
limitedtogeometrictransformationssuchasrota-
tions,symmetries,andtranslations,itcaninfacts
domorethanthat.Inparticular,projectionsfor
dimensionreductionorsignalfiltering,butalso,
fromtheperspectiveofthedotproductbeinga
measureofsimilarity,amatrix-vectorproductcan
beinterpretedascomputingmatchingscoresbe-
tweenthequeries,asencodedbytheinputvectors,
andkeys,asencodedbythematrixrows.

Aswesawin§3.3,thegradientdescentstartswith
theparameters' random initialization                                                                    .Ifthisis
donetoonaively,asseenin§3.4,thenetworkmay
sufferfromexplodingorvanishingactivationsand
gradients[GlorotandBengio,2010].Deeplearn-
ingframeworksimplementinitializationmethods
thatinparticularscaletherandomparametersac-
cordingtothedimensionoftheinputtokeepthe
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XQKV

layernorm

fully-conn

gelu

fully-conn

dropout

+

Y

XQKV

layernorm

Q K V

mha

+

Y

XQ

layernorm

Q K V

mha

+

Y

XKV

Figure 5.6: Feed-forward block (top)  , self-attention block
 (bottom left) and cross-attention block  (bottom
right). These specific structures proposed by Radford
et al. [2018] differ slightly from the original architec-
ture of Vaswani et al. [2017], in particular by having
the layer normalization first in the residual blocks.
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variance of the activations constant and prevent
pathological behaviors.

Convolutional layers

A linear layer can take as input an arbitrarily-
shaped tensor by reshaping it into a vector, as long
as it has the correct number of coefficients. How-
ever, such a layer is poorly adapted to dealing with
large tensors, since the number of parameters and
number of operations are proportional to the prod-
uct of the input and output dimensions. For in-
stance, to process an RGB image of size 256× 256
as input and compute a result of the same size, it
would require approximately 4× 1010 parameters
and multiplications.

Besides these practical issues, most of the high-
dimension signals are strongly structured. For in-
stance, images exhibit short-term correlations and
statistical stationarity with respect to translation,
scaling, and certain symmetries. This is not re-
flected in the inductive bias  of a fully connected
layer, which completely ignores the signal struc-
ture.

To leverage these regularities, the tool of choice
is convolutional layers , which are also affine, but
process time-series or 2D signals locally, with the
same operator everywhere.
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requiresaresidualconnectionthatchangestheten-
sorshape.Thisisachievedwitha1×1convolution
withastrideoftwo(seeFigure5.4).

TheoverallstructureoftheResNet-50ispresented
inFigure5.5.Itstartswitha7×7convolutional
layerthatconvertsthethree-channelinputimage
toa64-channelimageofhalfthesize,followedby
foursectionsofresidualblocks.Surprisingly,in
thefirstsection,thereisnodownscaling,onlyan
increaseofthenumberofchannelsbyafactorof4.
Theoutputofthelastresidualblockis2048×7×7,
whichisconvertedtoavectorofdimension2048
byanaveragepoolingofkernelsize7×7,and
thenprocessedthroughafully-connectedlayerto
getthefinallogits,herefor1000classes.

5.3Attentionmodels

Asstatedin§4.8,manyapplications,particularly
fromnaturallanguageprocessing,benefitgreatly
frommodelsthatincludeattentionmechanisms.
Thearchitectureofchoiceforsuchtasks,which
hasbeeninstrumentalinrecentadvancesindeep
learning,istheTransformer                    proposedbyVaswani
etal.[2017].
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ϕ

X

Y

ψ

Y

X

ϕ

X

Y

ψ

Y

X

ϕ

X

Y

ψ

Y

X

...

1Dconvolution

...

1Dtransposed
convolution

Figure4.1:A1Dconvolution(left)takesasinputa
D×TtensorX,appliesthesameaffinemapping
ϕ(·;w)toeverysub-tensorofshapeD×K,and
storestheresultingD′×1tensorsintoY.A1D
transposedconvolution(right)takesasinputaD×T
tensor,appliesthesameaffinemappingψ(·;w)to
everysub-tensorofshapeD×1,andsumstheshifted
resultingD′×Ktensors.Bothcanprocessinputs
ofdifferentsizes.
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classification.

As other ResNets, it is composed of a series of
residual blocks , each combining several convolutional layers
 , batch norm  layers, and ReLU layers,
wrapped in a residual connection. Such a block is
pictured in Figure 5.3.

A key requirement for high performance with real
images is to propagate a signal with a large num-
ber of channels, to allow for a rich representation.
However, the parameter count of a convolutional
layer, and its computational cost, are quadratic
with the number of channels. This residual block
mitigates this problem by first reducing the num-
ber of channels with a 1 × 1 convolution, then
operating spatially with a 3 × 3 convolution on
this reduced number of channels, and then upscal-
ing the number of channels, again with a 1 × 1
convolution.

The network reduces the dimensionality of the
signal to finally compute the logits for the clas-
sification. This is done thanks to an architecture
composed of several sections, each starting with a
downscaling residual block   that halves the height
and width of the signal, and doubles the number
of channels, followed by a series of residual blocks.
Such a downscaling residual block has a structure
similar to a standard residual block, except that it
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X
Y

ϕ

2D convolution

Y
X

ψ

2D transposed
convolution

Figure 4.2: A 2D convolution (left) takes as input
a D × H ×W tensor X , applies the same affine
mapping ϕ( · ;w) to every sub-tensor of shape D ×
K × L, and stores the resulting D′ × 1× 1 tensors
into Y . A 2D transposed convolution (right) takes as
input a D ×H ×W tensor, applies the same affine
mapping ψ( · ;w) to everyD×1×1 sub-tensor, and
sums the shifted resulting D′ ×K × L tensors into
Y .

A 1D convolution  is mainly defined by three meta-parameters
: its kernel size K , its number of input
channelsD, its number of output channelsD′, and
by the trainable parametersw of an affine mapping
ϕ( · ;w) : RD×K → RD′×1.

It can process any tensor X of size D × T with
T ≥ K , and applies ϕ( · ;w) to every sub-tensor
of sizeD ×K ofX , storing the results in a tensor
Y of sizeD′ × (T −K + 1), as pictured in Figure
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Figure5.5:StructureoftheResNet-50[Heetal.,
2015].
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Figure4.3:Besideitskernelsizeandnumberofinput
/outputchannels,aconvolutionadmitsthreemeta-
parameters:thestrides(left)modulatesthestepsize
whengoingthroughtheinputtensor,thepaddingp
(topright)specifieshowmanyzeroentriesareadded
aroundtheinputtensorbeforeprocessingit,andthe
dilationd(bottomright)parameterizestheindex
countbetweencoefficientsofthefilter.
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Figure 5.4: A downscaling residual block. It admits a
meta-parameter S, the stride of the first convolution
layer, which modulates the reduction of the tensor
size.

98

4.1 (left).

A 2D convolution  is similar but has aK×L kernel
and takes as input aD×H×W tensor (see Figure
4.2, left).

Both operators have for trainable parameters those
of ϕ that can be envisioned as D′ filters of size
D × K or D × K × L respectively, and a bias vector
 of dimension D′.

Such a layer is equivariant to translation, meaning
that if the input signal is translated, the output is
similarly transformed. This property results in a
desirable inductive bias  when dealing with a signal
whose distribution is invariant to translation.

They also admit three additional meta-parameters,
illustrated on Figure 4.3:

• The padding specifies how many zero coeffi-
cients should be added around the input tensor
before processing it, particularly to maintain the
tensor size when the kernel size is greater than one.
Its default value is 0.

• The stride specifies the step size used when go-
ing through the input, allowing one to reduce the
output size geometrically by using large steps. Its
default value is 1.

• The dilation specifies the index count between
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X

conv-2dk=1

batchnorm

relu

conv-2dk=3p=1

batchnorm
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Figure5.3:Aresidualblock.

easilyextendedtodeeparchitecturesandsuffer
fromthevanishinggradientproblem.Theresidual networks         
                              ,orResNets,proposedbyHeetal.
[2015]explicitlyaddresstheissueofthevanish-
inggradientwithresidual connections                                                  (see§4.7),
whichallowhundredsoflayers.Theyhavebecome
standardarchitecturesforcomputervisionappli-
cations,andexistinmultipleversionsdepending
onthenumberoflayers.Wearegoingtolook
indetailatthearchitectureoftheResNet-50          for
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Figure4.4:Givenanactivationinaseriesofconvolu-
tionlayers,hereinred,itsreceptive field                              isthearea
intheinputsignal,inblue,thatmodulatesitsvalue.
Eachintermediateconvolutionallayerincreasesthe
widthandheightofthatareabyroughlythoseof
thekernel.

thefiltercoefficientsofthelocalaffineoperator.Its
defaultvalueis1,andgreatervaluescorrespond
toinsertingzerosbetweenthecoefficients,which
increasesthefilter/kernelsizewhilekeepingthe
numberoftrainableparametersunchanged.

Exceptforthenumberofchannels,aconvolution’s
outputisusuallysmallerthanitsinput.Inthe1D
casewithoutpaddingnordilation,iftheinputis
ofsizeT,thekernelofsizeK,andthestrideisS,
theoutputisofsizeT′=(T−K)/S+1.
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X

conv-2d k=5

maxpool k=3

relu

conv-2d k=5

maxpool k=2

relu

reshape

fully-conn

relu

fully-conn

P̂ (Y )

1× 28× 28
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Figure 5.2: Example of a small LeNet-like network
for classifying 28 × 28 grayscale images of hand-
written digits [LeCun et al., 1998]. Its first half is
convolutional, and alternates convolutional layers
per se and max pooling layers, reducing the signal
dimension from 28 × 28 scalars to 256. Its second
half processes this 256-dimensional feature vector
through a one hidden layer perceptron to compute 10
logit scores corresponding to the ten possible digits.
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Given an activation computed by a convolutional
layer, or the vector of values for all the channels at a
certain location, the portion of the input signal that
it depends on is called its receptive field  (see Figure
4.4). One of theH×W sub-tensors corresponding
to a single channel of a D × H ×W activation
tensor is called an activation map .

Convolutions are used to recombine information,
generally to reduce the spatial size of the repre-
sentation, in exchange for a greater number of
channels, which translates into a richer local rep-
resentation. They can implement differential oper-
ators such as edge-detectors, or template matching
mechanisms. A succession of such layers can also
be envisioned as a compositional and hierarchi-
cal representation [Zeiler and Fergus, 2014], or as
a diffusion process in which information can be
transported by half the kernel size when passing
through a layer.

A converse operation is the transposed convolution
 that also consists of a localized affine operator,
defined by similarmeta and trainable parameters as
the convolution, but which, for instance, in the 1D
case, applies an affinemappingψ( · ;w) : RD×1 →
RD′×K , to every D × 1 sub-tensor of the input,
and sums the shifted D′ ×K resulting tensors to
compute its output. Such an operator increases the
size of the signal and can be understood intuitively
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tanttoolwhenthedimensionofthesignaltobe
processedisnottoolarge.

5.2Convolutionalnetworks

Thestandardarchitectureforprocessing images                                       
isaconvolutional network                                        ,orconvnet                    ,thatcom-
binesmultipleconvolutional layers                                       ,eithertore-
ducethesignalsizebeforeitcanbeprocessedby
fully connected layers                                                 ,ortooutputa2Dsignal
alsooflargesize.

LeNet-like

TheoriginalLeNet          modelforimageclassification                        
[LeCunetal.,1998]combinesaseriesof2Dconvolutional layers         
                             andmax pooling                              layersthatplay
theroleoffeatureextractor,withaseriesoffully connected layers         
                                       whichactasaMLP          andperform
theclassificationperse(seeFigure5.2).

Thisarchitecturewastheblueprintformanymod-
elsthatshareitsstructureandaresimplylarger,
suchasAlexNet[Krizhevskyetal.,2012]orthe
VGGfamily[SimonyanandZisserman,2014].

Residualnetworks

Standardconvolutionalneuralnetworksthatfol-
lowthearchitectureoftheLeNetfamilyarenot
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asasynthesisprocess(seeFigure4.1,right,and
Figure4.2,right).

Aseriesofconvolutionallayersistheusualarchi-
tectureformappingalarge-dimensionsignal,such
asanimageorasoundsample,toalow-dimension
tensor.Thiscanbeused,forinstance,togetclass
scoresforclassificationoracompressedrepresen-
tation.Transposedconvolutionlayersareused
theoppositewaytobuildalarge-dimensionsignal
fromacompressedrepresentation,eithertoas-
sessthatthecompressedrepresentationcontains
enoughinformationtoreconstructthesignalorfor
synthesis,asitiseasiertolearnadensitymodel
overalow-dimensionrepresentation.Wewillre-
visitthisin§5.2.

4.3Activationfunctions

Ifanetworkwerecombiningonlylinearcompo-
nents,itwoulditselfbealinearoperator,soit
isessentialtohavenon-linear operations                                .These
areimplementedinparticularwithactivation functions                       
          ,whicharelayersthattransformeachcom-
ponentoftheinputtensorindividuallythrougha
mapping,resultinginatensorofthesameshape.

Therearemanydifferentactivationfunctions,but
themostusedistheRectified Linear Unit                                                      (ReLU          )
[Glorotetal.,2011],whichsetsnegativevalues
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X

fully-conn

relu
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relu
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10

2

Hidden
layers

Figure 5.1: This multi-layer perceptron takes as in-
put a one-dimensional tensor of size 50, is composed
of three fully connected layers with outputs of di-
mensions respectively 25, 10, and 2, the two first
followed by ReLU layers.

tiontiontiontiontiontiontiontiontiontiontion thethethethethethethethethethetheoooooooooooremremremremremremremremremremrem [Cybenko, 1989] which states that,
if the activation function σ is continuous and not
polynomial, any continuous function f can be ap-
proximated arbitrarily well uniformly on a com-
pact domain, which is bounded and contains its
boundary, by a model of the form l2◦σ◦l1 where l1
and l2 are affine. Such a model is a MLP with a sin-
gle hidden layer, and this result implies that it can
approximate anything of practical value. However,
this approximation holds if the dimension of the
first linear layer’s output can be arbitrarily large.

In spite of their simplicity, MLPs remain an impor-
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Tanh ReLU

Leaky ReLU GELU

Figure 4.5: Activation functions.

to zero and keeps positive values unchanged (see
Figure 4.5, top right):

relu(x) =

{
0 if x < 0,

x otherwise.

Given that the core training strategy of deep-
learning relies on the gradient, it may seem prob-
lematic to have a mapping that is not differentiable
at zero and constant on half the real line. However,
the main property gradient descent requires is that
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Chapter5

Architectures

Thefieldofdeeplearninghasdevelopedoverthe
yearsforeachapplicationdomainmultipledeep
architecturesthatexhibitgoodtrade-offswithre-
specttomultiplecriteriaofinterest:e.g.easeof
training,accuracyofprediction,memoryfootprint,
computationalcost,scalability.

5.1Multi-LayerPerceptrons

ThesimplestdeeparchitectureistheMulti-Layer Perceptron                   
                              (MLP          ),whichtakestheformofasuc-
cessionoffully connected layers                                                 separatedbyactivation functions   
                              .SeeanexampleinFigure5.1.For
historicalreasons,insuchamodel,thenumberof
hidden layers                                       referstothenumberoflinearlayers,
excludingthelastone.

Akeytheoreticalresultistheuniversal approximation theorem                                                 









hyperbolic tangent                                       
(Tanh          ,seeFigure4.5,topleft)whichsaturatesex-
ponentiallyfastonboththenegativeandpositive
sides,aggravatingthevanishinggradient.

Otherpopularactivationfunctionsfollowthesame
ideaofkeepingpositivevaluesunchangedand
squashingthenegativevalues.Leaky ReLU                    [Maas
etal.,2013]appliesasmallpositivemultiplyingfac-
tortothenegativevalues(seeFigure4.5,bottom
left):

leakyrelu(x)=

{
axifx<0,

xotherwise.

AndGELU          [HendrycksandGimpel,2016]isde-
finedusingthecumulativedistributionfunctionof
theGaussiandistribution,thatis:

gelu(x)=xP(Z≤x),

whereZ∼𝒩(0,1).Itroughlybehaveslikea
smoothReLU(seeFigure4.5,bottomright).

Thechoiceofanactivationfunction,inparticular
amongthevariantsofReLU,isgenerallydrivenby
empiricalperformance.
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ersersersersersersersersersersers and Multi-Head Attention layers   are oblivious
to the absolute position in the tensor. This is key to
their strong invariance and inductive bias , which
is beneficial for dealing with a stationary signal.

However, this can be an issue in certain situations
where proper processing has to access the abso-
lute positioning. This is the case, for instance, for
image synthesis, where the statistics of a scene
are not totally stationary, or in natural language
processing, where the relative positions of words
strongly modulate the meaning of a sentence.

The standard way of coping with this problem is to
add or concatenate to the feature representation,
at every position, a positional encoding , which is a
feature vector that depends on the position in the
tensor. This positional encoding can be learned as
other layer parameters, or defined analytically.

For instance, in the original Transformer model,
for a series of vectors of dimension D, Vaswani
et al. [2017] add an encoding of the sequence index
as a series of sines and cosines at various frequen-
cies:

pos-enc[t, d] =





sin
(

t
T d/D

)
if d ∈ 2N

cos
(

t
T (d−1)/D

)
otherwise,

with T = 104.
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Figure 4.6: A 1Dmax pooling takes as input aD×T
tensor X , computes the max over non-overlapping
1× L sub-tensors (in blue) and stores the resulting
values (in red) in a D × (T/L) tensor Y .
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ofthekeysandvalues,andequivariant                              toaper-
mutationofthequeries,asitwouldpermutethe
resultingtensorsimilarly.

4.9Tokenembedding

Inmanysituations,weneedtoconvertdiscrete
tokensintovectors.Thiscanbedonewithanembedding layer
                              ,whichconsistsofalookuptablethat
directlymapsintegerstovectors.

Suchalayerisdefinedbytwometa-parameters                     :
thenumberNofpossibletokenvalues,andthedi-
mensionDoftheoutputvectors,andonetrainable
N×DweightmatrixM.

GivenasinputanintegertensorXofdimension
D1×···×DKandvaluesin{0,...,N−1}such
alayerreturnsareal-valuedtensorYofdimension
D1×···×DK×Dwith

∀d1,...,dK,
Y[d1,...,dK]=M[X[d1,...,dK]].

4.10Positionalencoding

Whiletheprocessingofafully connected layer                                        is
specifictoboththepositionsofthefeaturesinthe
inputtensorandtothepositionsoftheresulting
activationsintheoutputtensor,convolutional layers                            






pooling                    operationthatcombinesmultiple
activationsintoonethatideallysummarizesthe
information.Themoststandardoperationofthis
classisthemax pooling                              layer,which,similarly
toconvolution,canoperatein1Dand2Dandis
definedbyakernel size                              .

Initsstandardform,thislayercomputesthemaxi-
mumactivationperchannel,overnon-overlapping
sub-tensorsofspatialsizeequaltothekernelsize.
Thesevaluesarestoredinaresulttensorwiththe
samenumberofchannelsastheinput,andwhose
spatialsizeisdividedbythekernelsize.Aswith
theconvolution,thisoperatorhasthreemeta-parameters          
          :padding          ,stride          ,anddilation                    ,withthe
stridebeingequaltothekernelsizebydefault.A
smallerstrideresultsinalargerresultingtensor,
followingthesameformulaasforconvolutions
(see§4.2).

Themaxoperationcanbeintuitivelyinterpreted
asalogicaldisjunction,or,whenitfollowsaseries
ofconvolutional layers                                       thatcomputelocalscores
forthepresenceofparts,asawayofencoding
thatatleastoneinstanceofapartispresent.It
losespreciselocation,makingitinvariant                    tolocal
deformations.
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to compute respectively the queries, the keys, and
the values from the input, and a final weight matrix
W O of size HDV × D to aggregate the per-head
results.

It takes as input three sequences

• XQ of size NQ ×D,
• XK of size NKV ×D, and
• XV of size NKV ×D,

from which it computes, for h = 1, . . . ,H ,

Yh = att
(
XQW Q

h , X
KW K

h , X
VW V

h

)
.

These sequences Y1, . . . , YH are concatenated
along the feature dimension and each individual
element of the resulting sequence is multiplied by
W O to get the final result:

Y = (Y1 | · · · | YH)W O.

As we will see in § 5.3 and in Figure 5.6, this layer
is used to build two model sub-structures: self-attention blocks
 , in which the three input sequences
XQ,XK, andXV are the same, and cross-attention blocks
, where XK and XV are the same.

It is noteworthy that the attention operator, and
consequently the multi-head attention layer when
there is no masking, is invariant to a permutation
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A standard alternative is the average pooling  layer
that computes the average instead of the maximum
over the sub-tensors. This is a linear operation,
whereas max pooling is not.

4.5 Dropout

Some layers have been designed to explicitly facil-
itate training or improve the learned representa-
tions.

One of the main contributions of that sort was
dropout [Srivastava et al., 2014]. Such a layer has
no trainable parameters, but one meta-parameter,
p, and takes as input a tensor of arbitrary shape.

It is usually switched off during testing, in which
case its output is equal to its input. When it is
active, it has a probability p of setting to zero each
activation of the input tensor independently, and
it re-scales all the activations by a factor of 1

1−p to
maintain the expected value unchanged (see Figure
4.7).

The motivation behind dropout is to favor mean-
ingful individual activation and discourage group
representation. Since the probability that a group
of k activations remains intact through a dropout
layer is (1− p)k , joint representations become un-
reliable, making the training procedure avoid them.
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Figure4.13:TheMulti-headAttentionlayerapplies
foreachofitsh=1,...,Hheadsaparametrized
lineartransformationtoindividualelementsof
theinputsequencesX

Q
,X

K
,X

V
togetsequences

Q,K,Vthatareprocessedbytheattentionoperator
tocomputeYh.TheseHsequencesareconcatenated
alongfeatures,andindividualelementsarepassed
throughonelastlinearoperatortogetthefinalresult
sequenceY.
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Figure4.7:Dropoutcanprocessatensorofarbi-
traryshape.Duringtraining(left),itsetsactivations
atrandomtozerowithprobabilitypandappliesa
multiplyingfactortokeeptheexpectedvaluesun-
changed.Duringtest(right),itkeepsalltheactiva-
tionsunchanged.

Itcanalsobeseenasanoiseinjectionthatmakes
thetrainingmorerobust.

Whendealingwithimagesand2Dtensors,the
short-termcorrelationofthesignalsandthere-
sultingredundancynegatetheeffectofdropout,
sinceactivationssettozerocanbeinferredfrom
theirneighbors.Hence,dropoutfor2Dtensors
setsentirechannelstozeroinsteadofindividual
activations(seeFigure4.8).
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This can be implemented as

att(Q,K, V ) = softargmax

(
QK⊤
√
DQK

)

︸ ︷︷ ︸
A

V.

This operator is usually extended in two ways, as
depicted in Figure 4.12. First, the attention ma-
trix can be masked by multiplying it before the
softargmax normalization by a Boolean matrixM .
This allows, for instance, to make the operator
causal by takingM full of 1s below the diagonal
and zero above, preventing Yq from depending on
keys and values of indices k greater than q. Sec-
ond, the attention matrix is processed by a dropout layer
 (see § 4.5) before being multiplied by V , pro-
viding the usual benefits during training.

Multi-head Attention Layer

This parameterless attention operator is the key el-
ement in the Multi-Head Attention layer   depicted
in Figure 4.13. The structure of this layer is de-
fined by several meta-parameters: a number H of
heads, and the shapes of three series ofH trainable
weight matrices

• W Q of size H ×D ×DQK,
• W K of size H ×D ×DQK, and
• W V of size H ×D ×DV,
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B

D
H,W

1 1 0 1 0 0 1× × 1
1−p

Train Test

Figure 4.8: 2D signals such as images generally ex-
hibit strong short-term correlation and individual
activations can be inferred from their neighbors. This
redundancy nullifies the effect of the standard un-
structured dropout, so the usual dropout layer for 2D
tensors drops entire channels instead of individual
values.

Although dropout is generally used to improve
training and is inactive during inference, it can be
used in certain setups as a randomization strategy,
for instance, to estimate empirically confidence
scores [Gal and Ghahramani, 2015].
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QKV

⊤

×

exp

⊙
1/Σk

dropout

A

M

×

Y

Masked
softargmax

Figure4.12:TheattentionoperatorY=
att(Q,K,V)computesfirstanattentionmatrixA
astheper-querysoftargmaxofQK⊤,whichmay
bemaskedbyaconstantmatrixMbeforethenor-
malization.Thisattentionmatrixgoesthrougha
dropoutlayerbeforebeingmultipliedbyVtoget
theresultingY.Thisoperatorcanbemadecausal         
bytakingMfullof1sbelowthediagonalandzeros
above.
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4.6Normalizinglayers

Animportantclassofoperatorstofacilitatethe
trainingofdeeparchitecturesarethenormalizing layers                   
                             ,whichforcetheempiricalmeanand
varianceofgroupsofactivations.

Themainlayerinthatfamilyisbatch normalization                                       
          [IoffeandSzegedy,2015],whichistheonly
standardlayertoprocessbatchesinsteadofin-
dividualsamples.Itisparameterizedbyameta-
parameterDandtwoseriesoftrainablescalarpa-
rametersβ1,...,βDandγ1,...,γD.

GivenabatchofBsamplesx1,...,xBofdimen-
sionD,itfirstcomputesforeachoftheDcom-
ponentsanempiricalmeanm̂dandvariancev̂d
acrossthebatch:

m̂d=
1

B

B∑

b=1

xb,d

v̂d=
1

B

B∑

b=1

(xb,d−m̂d)
2
,

fromwhichitcomputesforeverycomponentxb,d
anormalizedvaluezb,d,withempiricalmean0and
variance1,andfromitthefinalresultvalueyb,d
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the attention operator  computes a tensor

Y = att(K,Q, V )

of dimension NQ ×DV. To do so, it first computes
for every query index q and every key index k an
attention score Aq,k as the softargmax of the dot
products between the query Qq and the keys:

Aq,k =
exp

(
1√
DQK Qq ·Kk

)

∑
l exp

(
1√
DQK Qq ·Kl

) , (4.1)

where the scaling factor 1√
DQK keeps the range of

values roughly unchanged even for large DQK.

Then a retrieved value is computed for each query
by averaging the values according to the attention
scores (see Figure 4.11):

Yq =
∑

k

Aq,kVk. (4.2)

So if a query Qn matches one key Km far more
than all the others, the corresponding attention
score An,m will be close to one, and the retrieved
value Yn will be the value Vm associated to that
key. But, if it matches several keys equally, then
Yn will be the average of the associated values.
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B

D
H,W

( · − m̂d)/
√
v̂d + ϵ

γd · +βd

( · − m̂b)/
√
v̂b + ϵ

γd,h,w · +βd,h,w

batchnorm layernorm

Figure 4.9: Batch normalization (left) normalizes in
mean and variance each group of activations for a
given d, and scales/shifts that same group of acti-
vation with learned parameters for each d. Layer
normalization (right) normalizes each group of acti-
vations for a certain b, and scales/shifts each group
of activations for a given d, h, w with learned pa-
rameters indexed by the same.
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K
Q

V
Y

AA

ComputesAq,1,...,Aq,NKVComputesYq

Figure4.11:Theattentionoperatorcanbeinter-
pretedasmatchingeveryqueryQqwithallthekeys
K1,...,KNKVtogetnormalizedattentionscores
Aq,1,...,Aq,NKV(left,andEquation4.1),andthen
averagingthevaluesV1,...,VNKVwiththesescores
tocomputetheresultingYq(right,andEquation4.2).

catedthanotherlayers,theyhavebecomeastan-
dardelementinmanyrecentmodels.Theyare,
inparticular,thekeybuildingblockofTransformers                   
          ,thedominantarchitectureforLarge Language Models                             
                    .See§5.3and§7.1.

Attentionoperator

Given

•atensorQofqueries          ofsizeN
Q
×D

QK
,

•atensorKofkeys          ofsizeN
KV
×D

QK
,and

•atensorVofvalues                    ofsizeN
KV
×D

V
,
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withmeanβdandstandarddeviationγd:

∀b,zb,d=
xb,d−m̂d
√v̂

d+ϵ

yb,d=γdzb,d+βd.

Becausethisnormalizationisdefinedacrossa
batch,itisdoneonlyduringtraining.Duringtest-
ing,thelayertransformsindividualsamplesaccord-
ingtothem̂dsandv̂dsestimatedwithamoving
averageoverthefulltrainingset,whichboilsdown
toafixedaffinetransformationpercomponent.

Themotivationbehindbatchnormalizationwas
toavoidthatachangeinscalinginanearlylayer
ofthenetworkduringtrainingimpactsallthelay-
ersthatfollow,whichthenhavetoadapttheir
trainableparametersaccordingly.Althoughthe
actualmodeofactionmaybemorecomplicated
thanthisinitialmotivation,thislayerconsiderably
facilitatesthetrainingofdeepmodels.

Inthecaseof2Dtensors,tofollowtheprinciple
ofconvolutionallayersofprocessingalllocations
similarly,thenormalizationisdoneper-channel
acrossall2Dpositions,andβandγremainvectors
ofdimensionDsothatthescaling/shiftdoesnot
dependonthe2Dposition.Hence,ifthetensor
tobeprocessedisofshapeB×D×H×W,the
layercomputes(m̂d,v̂d),ford=1,...,Dfrom
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to finding a differential improvement instead of a
full update.

4.8 Attention layers

In many applications, there is a need for an op-
eration able to combine local information at loca-
tions far apart in a tensor. For instance, this could
be distant details for coherent and realistic image synthesis
, or words at different positions in a para-
graph to make a grammatical or semantic decision
in natural language processing  .

Fully connected layers   cannot process large-
dimension signals, nor signals of variable size, and
convolutional layers  are not able to propagate in-
formation quickly. Strategies that aggregate the
results of convolutions, for instance, by averaging
them over large spatial areas, suffer from mixing
multiple signals into a limited number of dimen-
sions.

Attention layers  specifically address this problem
by computing an attention score for each compo-
nent of the resulting tensor to each component
of the input tensor, without locality constraints,
and averaging the features across the full tensor
accordingly [Vaswani et al., 2017].

Even though they are substantially more compli-
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the corresponding B ×H ×W slice, normalizes
it accordingly, and finally scales and shifts its com-
ponents with the trainable parameters βd and γd.

So, given a B × D tensor, batch normalization
normalizes it across b and scales/shifts it according
to d, which can be implemented as a component-
wise product by γ and a sum with β. Given a
B×D×H×W tensor, it normalizes across b, h, w
and scales/shifts according to d (see Figure 4.9, left).

This can be generalized depending on these dimen-
sions. For instance, layer normalization  [Ba et al.,
2016] computes moments and normalizes across
all components of individual samples, and scales
and shifts components individually (see Figure 4.9,
right). So, given a B × D tensor, it normalizes
across d and scales/shifts also according to the
same. Given a B ×D ×H ×W tensor, it normal-
izes it across d, h, w and scales/shifts according to
the same.

Contrary to batch normalization, since it processes
samples individually, layer normalization behaves
the same during training and testing.

4.7 Skip connections

Another technique that mitigates the vanishing
gradient and allows the training of deep architec-
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turesareskip connections                                        [Longetal.,2014;Ron-
nebergeretal.,2015].Theyarenotlayersperse,
butanarchitecturaldesigninwhichoutputsof
somelayersaretransportedas-istootherlayers
furtherinthemodel,bypassingprocessinginbe-
tween.Thisunmodifiedsignalcanbeconcatenated
oraddedtotheinputofthelayertheconnection
branchesinto(seeFigure4.10).Aparticulartype
ofskipconnectionsaretheresidual connections                                                 
whichcombinethesignalwithasum,andusually
skiponlyafewlayers(seeFigure4.10,right).

Themostdesirablepropertyofthisdesignisto
ensurethat,eveninthecaseofgradient-killing
processingatacertainstage,thegradientwillstill
propagatethroughtheskipconnections.Residual
connections,inparticular,allowforthebuilding
ofdeepmodelswithuptoseveralhundredlayers,
andkeymodels,suchastheresidual networks                                        [He
etal.,2015]incomputervision(see§5.2),andthe
Transformers                              [Vaswanietal.,2017]innaturallan-
guageprocessing(see§5.3),areentirelycomposed
ofblocksoflayerswithresidualconnections.

Theirrolecanalsobetofacilitatemulti-scalerea-
soninginmodelsthatreducethesignalsizebefore
re-expandingit,byconnectinglayerswithcompat-
iblesizes,forinstanceforsemantic segmentation                                              
(see§6.4).Inthecaseofresidualconnections,they
mayalsofacilitatelearningbysimplifyingthetask

83

···

f
(1)

f
(2)

f
(3)

f
(4)

f
(5)

f
(6)

f
(7)

f
(8)

···

···

f
(1)

f
(2)

f
(3)

f
(4)

f
(5)

f
(6)

···

···

f
(1)

f
(2)

+

f
(3)

f
(4)

+

···

Figure4.10:Skipconnections,highlightedinredon
thisfigure,transportthesignalunchangedacross
multiplelayers.Somearchitectures(center)that
downscaleandre-upscaletherepresentationsizeto
operateatmultiplescales,haveskipconnectionsto
feedoutputsfromtheearlypartsofthenetworkto
laterlayersoperatingatthesamescales[Longetal.,
2014;Ronnebergeretal.,2015].Theresidualconnec-
tions(right)areaspecialtypeofskipconnections
thatsumtheoriginalsignaltothetransformedone,
andusuallybypassatmostahandfuloflayers[He
etal.,2015].
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