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AlphaFold Changed Science.
After 5 Years, It’s Still Evolving

WIRED spoke with DeepMind’s Pushmeet Kohli about
the recent past—and promising future—of the Nobel

Prize-winning research project that changed biology
and chemistry forever.

NewsScientist

Mathematics

DeepMind and OpenAl claim gold in
International Mathematical Olympiad

Two Al models have achieved gold medal standard for the first time in a prestigious competition for young
mathematicians - and their developers claim these Als could soon crack tough scientific problems
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Frank Rosenblatt working on the Mark | perceptron (1956)

1949 - Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).
1951 - Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).
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Frank Rosenblatt working on the Mark | perceptron (1956)

1949 - Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).
1951 - Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).
1958 - Frank Rosenblatt creates a perceptron to classify 20 x 20 images.
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(Hubel and Wiesel, 1962)

1959 - David H. Hubel and Torsten Wiesel demonstrate orientation
selectivity and columnar organization in the cat’s visual cortex
(Hubel and Wiesel, 1962).
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(Hubel and Wiesel, 1962)

1959 - David H. Hubel and Torsten Wiesel demonstrate orientation
selectivity and columnar organization in the cat’s visual cortex
(Hubel and Wiesel, 1962).

1982 - Paul Werbos proposes back-propagation for ANNs (Werbos, 1981).
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(Fukushima, 1980)

This model follows Hubel and Wiesel's results.
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Cognition and learning can be engineered

LeNet family

10 output units
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layer H3
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(LeCun et al., 1989)
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A trainable model is a composition of mappings
¢(iw) = h(;w) o g(;;w) o f(:; w)
and training aims at minimizing an error

w* = argmin L(¢(-; w); D).

w
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In the general case, computing the proper parameters has to be done
numerically through gradient descent.
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We need to compute

ViwL(¢(+; w); D)

The chain rule leads to a training procedure that goes through the
components backward, this is the “backpropagation” of the gradient.
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model = nn.Sequential(
nn.Conv2d( 1, 32, 5), nn.MaxPool2d(3), nn.ReLU(),
nn.Conv2d (32, 64, 5), nn.MaxPool2d(2), nn.ReLU(),
Model nn.Flatten(),
nn.Linear (256, 200), nn.ReLU(Q),
nn.Linear (200, 10)

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), 1lr = le-2)

for e in range(nb_epochs):

Training for input, target in data_loader_iterator(train_loader):
output = model (input)

loss = criterion(output, target)
optimizer.zero_grad()

loss.backward ()

optimizer.step()

Stupid learning leads to smart models 14
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Quantity has a quality of its own

192

2048 2088

pooling

Very large models + GPUs (AlexNet, 2012)
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The last decade of progress in Al corresponds to a vast increase of the
“training sets” sizes. The most successful deployed methods rely on
human-labeled data.

Quantity has a quality of its own

Data-set Year Nb. images Size
MNIST 1998 60K 12Mb
Caltech 256 2007 30K 1.2Gb
ImageNet 2012 1.2M 150Gb
LAION-5B 2022 5.85B 240Tb
Data-set Year Nb. books (250p) Size*
SST2 2013 40K 20Mb
WMT-18 2018 14M 7Gb
The Pile 2020 1.6B 825Gb
OSCAR 2020 12B 6Tb

(* all the text of Wikipedia is 45Gb)



A $1'500 GPU executes ~ 35’000 billions operations per second.

Training compute (FLOPs) of milestone Machine Learning systems over time
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The performance of large models when the amount of compute and
data set size increase follows very regular scaling laws.
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(Dubey et al., 2024)
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The performance of large models when the amount of compute and
data set size increase follows very regular scaling laws.

1.400 1.0
@ Scaling Law Models

- 1.375 0.9 ® Llama 2 Models
© A Scaling Law Prediction
<
S 1.350 0.8 B Llama 3 405B
1
9 1.32
j‘ 325 307
=1 1.300 ©
z 306
T 1.275 E
= 0.5
® 1.250 '
E
5 1.225 0.4
2

1.200 0.3

|
10%° 102 10?2 10% 10* 10% 1.40 1.35 1.30 1.25 1.20
Compute (FLOPs) Normalized NLL per Char.

(Dubey et al., 2024)

Quantity has a quality of its own 19



Optimizability trumps optimality



Using deeper architectures has been key in improving performance in
many applications.

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38
plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

(He et al., 2015)
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Using deeper architectures has been key in improving performance in

many applications.

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38
plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

(He et al., 2015)

“We did not depart from the classical ConvNet architecture of LeCun
et al. (1989), but improved it by substantially increasing the depth. ”

Optimizability trumps optimality

(Simonyan and Zisserman, 2014)
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Optimizability trumps optimality
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Considering ReLU MLPs with a single input/output, there exists a
network f with D* layers, and 2D* internal units, such that, with g a
single hidden layer network

w®@
If —gll > 1—227-

To approximate f properly, the width W) of g’s hidden layer has to
increase exponentially with f's depth D*.

(Telgarsky, 2015, 2016).

Optimizability trumps optimality 23



The gradient “vanishes” exponentially with the depth if the ws are
ill-conditioned or the activations are in the saturating domain of o.

100 T I
—Layer 1
Layer 2
—Layer 3

501 —Layer 4|
f Layer 5
“_%&:. ; "3" -
0
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Backpropagated gradients

(Glorot and Bengio, 2010)
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Four key elements allow the design of extremely deep architectures:

Optimizability trumps optimality

Linear

Linear

—>
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Four key elements allow the design of extremely deep architectures:
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+ Smart initialization to normalize all activations.
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+ Smart initialization to normalize all activations.
+ Better non-linearities to prevent gradient vanishing.
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Four key elements allow the design of extremely deep architectures:

: —% Linear [— { H» Linear —> { - ...

+ Smart initialization to normalize all activations.
+ Better non-linearities to prevent gradient vanishing.
+ Normalization layers to keep activation moments.
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Four key elements allow the design of extremely deep architectures:

: —H Linear — { %9 Linear —> i

+ Smart initialization to normalize all activations.
+ Better non-linearities to prevent gradient vanishing.
+ Normalization layers to keep activation moments.

+ Skip connections, to add the computed component to the current
activations.

Optimizability trumps optimality



Attention is all you need



A convolution applies the same operation everywhere in the signal.
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A convolution applies the same operation everywhere in the signal.

1 y2 ¥3 cee ys
M )
\W2AVAN
X1 X2 X3 X4 X5 R XT-1 XT

Such mechanisms are very efficient when

+ the signal is stationary, and
+ local structures are very informative.

Attention is all you need
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Some tasks involve more than local structures, e.g. translation:

“An apple that had been on the tree in the garden for
weeks had finally been picked up.”

“Une pomme qui était sur I'arbre du jardin depuis des se-
maines avait finalement été ramassée.”

Attention is all you need

28



Some tasks involve more than local structures, e.g. translation:

“An apple that had been on the tree in the garden for
weeks had finally been picked up.”

“Une pomme qui était sur I'arbre du jardin depuis des se-
maines avait finalement été ramassée.”

It has motivated attention-based processing to transport information
from parts of the signal to other parts dynamically identified.

Y1 Y2 y3 ys

i ]
T 1

X1 X2 X3 X4 X5 e XT-1 XT

Attention is all you need 28
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Attention is all you need
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Autoregression is smarter than expected



ﬁz?ﬂf’yj\ﬁ:ﬁ’g% In a shocking finding, scientist discovered a herd of unicorns living in a remote,
- previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

( Moﬁe\comgwugg The scientist named the population, after their distinctive horn,
machine-written,
Uk5> ovid’s Unicorn. These four-horned, silver-white unicorns were

previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this
odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of
La Paz, and several companions, were exploring the Andes
Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be
a natural fountain, surrounded by two peaks of rock and silver
Snow.

Pérez and the others then ventured further into the valley. “By
the time we reached the top of one peak, the water looked blue,
with some crystals on top,” said Pérez

Pérez and his friends were astonished to see the unicorn herd.
These creatures could be seen from the air without having to move
too much to see them - they were so close they could touch their
horns.

Autoregression is smarter than expected 33



Such a “base model”, trained only to generate text, can already be put to
use for instance for classification.

I: water boils at 100 degrees, 0: physics. I: the square root of two is
irrational, 0: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: gravity is proportional to the mass, 0: physics.
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Such a “base model”, trained only to generate text, can already be put to
use for instance for classification.

I: water boils at 100 degrees, 0: physics. I: the square root of two is
irrational, 0: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: gravity is proportional to the mass, 0: physics.

I: water boils at 100 degrees, 0: physics. I: the square root of two is
irrational, 0: mathematics. 1I: the set of prime numbers is infinite, O:
mathematics. 1I: squares are rectangles, 0: mathematics.

<I: I love apples, 0: positive. 1I: music is my passion, 0: positive. I: my
job is boring, 0: negative. I: frozen pizzas are awesome, 0: positive.

I: I love apples, 0: positive. I: music is my passion, 0: positive. I:
my job is boring, 0: negative. I: frozen pizzas taste like cardboard, O:
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For e.g. ChatGPT, base training is followed by “Reinforcement Learning
from Human Feedback” (RLHF) to create an assistant.

Instruction Include output

Summarize the following news article:

Autoregression is smarter than expected

Page[3 v]/11 »
Output A
summaryl
Rating (1 = worst, 7 = best)

1/2 3 |4a|5s5 6

Total time: 05:39

7

Fails to follow the correct instruction / task 2 () Yes (_

Inappropriate for customer assistant ?

Contains sexual content
Contains violent content

Encourages or fails to discourage
violence/abuse/terrorism/self-harm

Denigrates a protected class
Gives harmful advice ?
Expresses moral judgment
Notes

oOptional) notes

(OYes
Oves (
(OYes
(OYes
OYes O

Oves

Oves O
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Step1
Collect demonstration data,
and train a supervised policy.

A promptis

sampled from our Explain the moon

prompt dataset. landing to a 6 year old

Alabeler

demonstrates the @

desired output y;

behavior. Some peopls went
to the moon.

This data is used SFT

to fine-tune GPT-3 ./;P.y&.

with supervised \.\62{/

learning. 2

Autoregression is smarter than expected

Step2

Collect comparison data,
and train a reward model.

A prompt and
several model

Explain the moon
outputs are landing to a 6 year old
sampled.

Alabeler ranks
the outputs from
best to worst.

0-06-0-0
This data is used 0
to train our 25
reward model. .\}S.X./.
0-0-0-0

Step 3
Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

: ™
is sampled from ey
the dataset. about frogs
|
y
The policy -
enerates 2252
g L
an output. \}52/./
|
\J

The reward model :M

ol
Do

the output.

The reward is

used to update rk

the policy

using PPO.
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Learning to reason



It was then discovered that prompting the model with “step-by-step”

reasoning examples improved dramatically its performance.

Learning to reason

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

A: The answer is 27. x

Chain-of-Thought Prompting

~
Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

N _J

 moum ~
The

kanswer is9. & )
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This can be scaled up to complex reasoning, e.g. mathematics, with
reinforcement learning to boost the generation of chains of thoughts.

Learning to reason
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This can be scaled up to complex reasoning, e.g. mathematics, with

reinforcement learning to boost the generation of chains of thoughts.

The current standard method is “Group Relative Policy Optimization™:

1.

w

Learning to reason

Prompt the model to think step by step and to provide a well
formated answer.

Generate multiple response for a given prompt/question.
Compute the relative quality of each response.
Reinforce the network accordingly.
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Meta's Computational World Model 32B (CWM, CodeGen team 2025):
Pre-training

+ General pre-training: 8T tokens of mostly english text with 30%
coding data, 8k seglen.

Get a strong language model with all the capabilities that go with it.

(*) 1T tokens ~ 10M books ~ 250 English Wikipedia

Learning to reason 40



Meta's Computational World Model 32B (CWM, CodeGen team 2025):

Pre-training

+ General pre-training: 8T tokens of mostly english text with 30%
coding data, 8k seglen.

Get a strong language model with all the capabilities that go with it.

+ Code world model mid-training: 5T tokens of data providing
examples of code execution effects, 131k seqlen.

The model now has stronger generative capabilities for code and
long-context.

(*) 1T tokens ~ 10M books ~ 250 English Wikipedia

Learning to reason
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Meta's Computational World Model 32B (CWM, CodeGen team 2025):

Post-training

+ Supervised fine-tuning: 100B tokens of examples of
instruction-following, tool use and reasoning traces, 32k seqlen.

The model becomes an assistant able to generate chains of thought.

(*) 1T tokens ~ 10M books ~ 250 English Wikipedia
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Meta's Computational World Model 32B (CWM, CodeGen team 2025):

Post-training

+ Supervised fine-tuning: 100B tokens of examples of
instruction-following, tool use and reasoning traces, 32k seqlen.

The model becomes an assistant able to generate chains of thought.

+ Reasoning Reinforcement-Learning: 172B tokens from its own
reasoning and agentic behavior, 131k seqglen, up to 128 turns.

Boost the quality of the chains of thought and agentic capabilities.

(*) 1T tokens ~ 10M books ~ 250 English Wikipedia

Learning to reason

40



Conclusion



Conclusion

+ Large language models are extraordinary general-purpose
“cognitive engines” fitting to modern computational devices.

42



+ Large language models are extraordinary general-purpose
“cognitive engines” fitting to modern computational devices.

+ The current trend focuses on improving training procedures to
leverage text generation for reasoning and agentic behavior.

Conclusion 42



Conclusion

+ Large language models are extraordinary general-purpose
“cognitive engines” fitting to modern computational devices.

+ The current trend focuses on improving training procedures to
leverage text generation for reasoning and agentic behavior.

+ We have probably passed the “data peak” and need new ways to
keep improving. Synthetic data and self play are probably key.

42



Conclusion

+ Large language models are extraordinary general-purpose
“cognitive engines” fitting to modern computational devices.

+ The current trend focuses on improving training procedures to
leverage text generation for reasoning and agentic behavior.

+ We have probably passed the “data peak” and need new ways to
keep improving. Synthetic data and self play are probably key.

+ Architectures are lacking fundamental capabilities such as
continuous and multi-modal reasoning.
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