
The Path to AI

François Fleuret

2

Cognition and learning can be engineered

130 LOGICAL CALCULUS FOR NERVOUS ACTIVITY

b

e ~ ~

9

h

F I G ~ E 1

d

f

(McCulloch and Pitts, 1943)

Cognition and learning can be engineered 4

Frank Rosenblatt working on the Mark I perceptron (1956)

1949 – Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).
1951 – Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).

1958 – Frank Rosenblatt creates a perceptron to classify 20× 20 images.

Cognition and learning can be engineered 5

Frank Rosenblatt working on the Mark I perceptron (1956)

1949 – Donald Hebb proposes the Hebbian Learning principle (Hebb, 1949).
1951 – Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).
1958 – Frank Rosenblatt creates a perceptron to classify 20× 20 images.

Cognition and learning can be engineered 5

CAT VISUAL CORTEX

Apical segment

E

._

'a

4-Wt

I-

1yi

Electrolytic lesion I

Text-fig. 13. Reconstruction of micro-electrode penetration through the lateral
gyrus (see also P1. 1). Electrode entered apical segment normal to the surface, and
remained parallel to the deep fibre bundles (indicated by radial lines) until reaching
white matter; in grey matter of mesial segment the electrode's course was oblique.
Longer lines represent cortical cells. Axons of cortical cells are indicated by a cross-

bar at right-hand end of line. Field-axis orientation is shown by the direction of
each line; lines perpendicular to track represent vertical orientation. Brace-
brackets show simultaneously recorded units. Complex receptive fields are indi-
cated by 'Cx'. Afferent fibres from the lateral geniculate body indicated by x,

for 'on' centre; A, for 'off' centre. Approximate positions of receptive fields on

the retina are shown to the right of the penetration. Shorter lines show regions in
which unresolved background activity was observed. Numbers to the left of the
penetration refer to ocular-dominance group (see Part II). Scale 1 mm.

9-2

131

(Hubel and Wiesel, 1962)

1959 – David H. Hubel and Torsten Wiesel demonstrate orientation
selectivity and columnar organization in the cat’s visual cortex
(Hubel and Wiesel, 1962).

1982 – Paul Werbos proposes back-propagation for ANNs (Werbos, 1981).

Cognition and learning can be engineered 6

CAT VISUAL CORTEX

Apical segment

E

._

'a

4-Wt

I-

1yi

Electrolytic lesion I

Text-fig. 13. Reconstruction of micro-electrode penetration through the lateral
gyrus (see also P1. 1). Electrode entered apical segment normal to the surface, and
remained parallel to the deep fibre bundles (indicated by radial lines) until reaching
white matter; in grey matter of mesial segment the electrode's course was oblique.
Longer lines represent cortical cells. Axons of cortical cells are indicated by a cross-

bar at right-hand end of line. Field-axis orientation is shown by the direction of
each line; lines perpendicular to track represent vertical orientation. Brace-
brackets show simultaneously recorded units. Complex receptive fields are indi-
cated by 'Cx'. Afferent fibres from the lateral geniculate body indicated by x,

for 'on' centre; A, for 'off' centre. Approximate positions of receptive fields on

the retina are shown to the right of the penetration. Shorter lines show regions in
which unresolved background activity was observed. Numbers to the left of the
penetration refer to ocular-dominance group (see Part II). Scale 1 mm.

9-2

131

(Hubel and Wiesel, 1962)

1959 – David H. Hubel and Torsten Wiesel demonstrate orientation
selectivity and columnar organization in the cat’s visual cortex
(Hubel and Wiesel, 1962).

1982 – Paul Werbos proposes back-propagation for ANNs (Werbos, 1981).

Cognition and learning can be engineered 6

Neocognitron

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron

(Fukushima, 1980)

This model follows Hubel and Wiesel’s results.

Cognition and learning can be engineered 7

LeNet family

(LeCun et al., 1989)

Cognition and learning can be engineered 8

Stupid learning leads to smart models

Age Systolic blood
pressure

Program

“Linear regression”

Age

Sy
st
ol
ic
bl
oo

d
pr
es
su
re

Stupid learning leads to smart models 10

Age Systolic blood
pressure

Program

“Linear regression”

Age

Sy
st
ol
ic
bl
oo

d
pr
es
su
re

Stupid learning leads to smart models 10

Age Systolic blood
pressure

Program

“Linear regression”

Age

Sy
st
ol
ic
bl
oo

d
pr
es
su
re

Stupid learning leads to smart models 10

Age Systolic blood
pressure

Program

“Linear regression”

Age

Sy
st
ol
ic
bl
oo

d
pr
es
su
re

Stupid learning leads to smart models 10

Age Systolic blood
pressure

Program

“Linear regression”

Age

Sy
st
ol
ic
bl
oo

d
pr
es
su
re

Stupid learning leads to smart models 10

Age Systolic blood
pressure

Program

“Linear regression”

Age

Sy
st
ol
ic
bl
oo

d
pr
es
su
re

Stupid learning leads to smart models 10

Age Systolic blood
pressure

Program

“Linear regression”

Age

Sy
st
ol
ic
bl
oo

d
pr
es
su
re

Stupid learning leads to smart models 10

Age Systolic blood
pressure

Program

“Linear regression”

Age

Sy
st
ol
ic
bl
oo

d
pr
es
su
re

Stupid learning leads to smart models 10

Age Systolic blood
pressure

Program

“Linear regression”

Age

Sy
st
ol
ic
bl
oo

d
pr
es
su
re

Stupid learning leads to smart models 10

A trainable model is a composition of mappings

ϕ(·;w) = h(·;w) ◦ g(·;w) ◦ f (·;w)

and training aims at minimizing an error

w∗ = argmin
w
L(ϕ(·;w);D).

Stupid learning leads to smart models 11

In the general case, computing the proper parameters has to be done
numerically through gradient descent.

w

L(w)

Stupid learning leads to smart models 12

We need to compute

∇|wL(ϕ(·;w);D)

The chain rule leads to a training procedure that goes through the
components backward, this is the “backpropagation” of the gradient.

Stupid learning leads to smart models 13

model = nn.Sequential(
nn.Conv2d(1, 32, 5), nn.MaxPool2d(3), nn.ReLU(),
nn.Conv2d(32, 64, 5), nn.MaxPool2d(2), nn.ReLU(),
nn.Flatten(),
nn.Linear(256, 200), nn.ReLU(),
nn.Linear(200, 10)

)

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr = 1e-2)

for e in range(nb_epochs):
for input, target in data_loader_iterator(train_loader):

output = model(input)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()

Model

Training

Stupid learning leads to smart models 14

Quantity has a quality of its own

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

Very large models + GPUs (AlexNet, 2012)

Quantity has a quality of its own 16

ImageNet

(Gershgorn, 2017)

Quantity has a quality of its own 17

The last decade of progress in AI corresponds to a vast increase of the
“training sets” sizes. The most successful deployed methods rely on
human-labeled data.

Data-set Year Nb. images Size
MNIST 1998 60K 12Mb
Caltech 256 2007 30K 1.2Gb
ImageNet 2012 1.2M 150Gb
LAION-5B 2022 5.85B 240Tb

Data-set Year Nb. books (250p) Size∗

SST2 2013 40K 20Mb
WMT-18 2018 14M 7Gb
The Pile 2020 1.6B 825Gb
OSCAR 2020 12B 6Tb

(∗ all the text of Wikipedia is 45Gb)

Quantity has a quality of its own 17

A $1’500 GPU executes ≃ 35’000 billions operations per second.

3.2 Trends in the Large-Scale era

Our data suggests that around 2015-2016 a new trend of large-scale models emerged, see Figure 3. This new trend
began with AlphaGo in late 2015 and continues up to the present day. These large-scale models were trained by large
corporations, whose larger training budgets presumably enabled them to break the previous trend.

Note that we made an intuitive decision in deciding which systems belong to this new large-scale trend. We justified it
post hoc as the systems that exceed a certain Z-value threshold with respect to nearby models, see Appendix A for
details on our method. See Appendix F for discussion on what makes large-scale models categorically different. There
is room for alternative interpretations of the data.

Separately, the trend of regular-scale models continued unperturbed. This trend before and after 2016 is continuous
and has the same slope, doubling every 5 to 6 months, see Table 4.4

The trend of increasing compute in large-scale models is apparently slower, doubling every 9 to 10 months. Since we
have limited data on these models, the apparent slow-down might be the result of noise.5

Our results contrast with Amodei & Hernandez (2018), who find a much faster doubling period of 3.4 months between
2012 and 2018, and with Lyzhov (2021), who finds a much longer doubling period of >2 years between 2018 and 2020.
We make sense of these discrepancies by noting that their analyses have limited data samples and assume a single trend
6, while ours studies large-scale and regular-scale models separately. Since the large-scale trend only recently emerged,
previous analyses could not differentiate these two distinct trends.7

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Publication date

1e+14

1e+15

1e+16

1e+17

1e+18

1e+19

1e+20

1e+21

1e+22

1e+23

1e+24

1e+25

Tr
ai

ni
ng

 c
om

pu
te

 (F
LO

Ps
)

6-layer MLP (MNIST)

Feedforward NN

RNN 500/10 + RT09 LM (NIST RT05)

KN5 LM + RNN 400/10 (WSJ)

MCDNN (MNIST)
Dropout (MNIST)

AlexNet

DQN

Mitosis

Word2Vec (large)

Visualizing CNNs

TransE

GANs

SPPNet

RNNsearch-50*

VGG16Seq2Seq

MSRA (C, PReLU)

GoogLeNet / InceptionV1

AlphaGo Fan

DeepSpeech2
ResNet-152 (ImageNet)

AlphaGo Lee

R-FCN

Part-of-sentence tagging model
Named Entity Recognition model

GNMT

Xception

NASv3 (CIFAR-10)
Libratus

AlphaGo Master

MoE

Transformer

JFTOpenAI TI7 DOTA 1v1

AlphaGo Zero

PNASNet-5

AlphaZero

IMPALA
AmoebaNet-A

YOLOv3

GPT

Population-based DRL

BigGAN-deep 512x512

BERT-Large

Decoupled weight decay regularization

GPT-2

ProxylessNAS

Cross-lingual alignment

MnasNet-A1 + SSDLiteMnasNet-A3

DLRM-2020

ObjectNet

Megatron-LM

Megatron-BERT

AlphaX-1

Rubik's cube

T5-3B

T5-11B

AlphaStar

OpenAI Five

OpenAI Five

DLRM-2021

AlphaFold

Meena

ALBERT-xxlarge

Turing NLG

ProGen

GPT-3 175B

Once for All

iGPT-L

iGPT-XL

GShard (600B)
GShard (dense)

ViT-H/14

wave2vec 2.0 LARGE

KEPLER

CPM-LargeAraGPT2-Mega
NEO (DL:RM-2022)

Primer
CLIP (ViT L/14@336px)

DALL-E
Switch

Meta Pseudo Labels

GPT-Neo

PanGu-α

GPT-J-6B

ProtT5-XXLHyperClova

CogView

Transformer local-attention (NesT-B)

ViT-G/14

ALIGN

HuBERTSEER

Jurassic-1-Jumbo

M6-10T

Megatron-Turing NLG 530B

Yuan 1.0
Gopher

LaMDA

D
ee

p
Le

ar
ni

ng
 E

ra

La
rg

e-
Sc

al
e

Er
a

Training compute (FLOPs) of milestone Machine Learning systems over time
n = 102

Figure 3: Trends in training compute of n102 milestone ML systems between 2010 and 2022. Notice the emergence of a possible
new trend of large-scale models around 2016. The trend in the remaining models stays the same before and after 2016.

4Among other reasons, this reinforces our belief that the trend of large-scale models is a separate one.
5In Appendix G we discuss some possible causes for this potential slowdown. In Appendix B we also show that the trend is

equally fast before and after September 2015 if we look only at record-setting models.
7We discuss this in more depth in Appendix E.
7Arguably we should pay most attention to the most compute-intensive models overall – these are the ones most likely to advance

the frontier. We do so in Appendix B, where we look at trends in record-setting models and find results consistent with those
presented in this section.

5

2’000km by car

Quantity has a quality of its own 18

The performance of large models when the amount of compute and
data set size increase follows very regular scaling laws.

(Dubey et al., 2024)

Quantity has a quality of its own 19

The performance of large models when the amount of compute and
data set size increase follows very regular scaling laws.

(Dubey et al., 2024)

Quantity has a quality of its own 19

Optimizability trumps optimality

Using deeper architectures has been key in improving performance in
many applications.

model top-1 err. top-5 err.

VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56×56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3×3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

(He et al., 2015)

“We did not depart from the classical ConvNet architecture of LeCun
et al. (1989), but improved it by substantially increasing the depth. ”

(Simonyan and Zisserman, 2014)

Optimizability trumps optimality 21

Using deeper architectures has been key in improving performance in
many applications.

model top-1 err. top-5 err.

VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56×56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3×3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

(He et al., 2015)

“We did not depart from the classical ConvNet architecture of LeCun
et al. (1989), but improved it by substantially increasing the depth. ”

(Simonyan and Zisserman, 2014)

Optimizability trumps optimality 21

Optimizability trumps optimality 22

Considering ReLU MLPs with a single input/output, there exists a
network f with D∗ layers, and 2D∗ internal units, such that, with g a
single hidden layer network

∥f − g∥1 ≥ 1− 2
W (1)

2D∗ .

To approximate f properly, the widthW (1) of g ’s hidden layer has to
increase exponentially with f ’s depth D∗.

(Telgarsky, 2015, 2016).

Optimizability trumps optimality 23

The gradient “vanishes” exponentially with the depth if the ws are
ill-conditioned or the activations are in the saturating domain of σ.

 254

Understanding the difficulty of training deep feedforward neural networks

4.2.2 Gradient Propagation Study

To empirically validate the above theoretical ideas, we have
plotted some normalized histograms of activation values,
weight gradients and of the back-propagated gradients at
initialization with the two different initialization methods.
The results displayed (Figures 6, 7 and 8) are from exper-
iments on Shapeset-3 × 2, but qualitatively similar results
were obtained with the other datasets.

We monitor the singular values of the Jacobian matrix as-
sociated with layer i:

J i =
∂zi+1

∂zi
(17)

When consecutive layers have the same dimension, the av-
erage singular value corresponds to the average ratio of in-
finitesimal volumes mapped from zi to zi+1, as well as
to the ratio of average activation variance going from zi

to zi+1. With our normalized initialization, this ratio is
around 0.8 whereas with the standard initialization, it drops
down to 0.5.

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: 0-peak increases for
higher layers.

4.3 Back-propagated Gradients During Learning

The dynamic of learning in such networks is complex and
we would like to develop better tools to analyze and track
it. In particular, we cannot use simple variance calculations
in our theoretical analysis because the weights values are
not anymore independent of the activation values and the
linearity hypothesis is also violated.

As first noted by Bradley (2009), we observe (Figure 7) that
at the beginning of training, after the standard initializa-
tion (eq. 1), the variance of the back-propagated gradients
gets smaller as it is propagated downwards. However we
find that this trend is reversed very quickly during learning.
Using our normalized initialization we do not see such de-
creasing back-propagated gradients (bottom of Figure 7).

Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

What was initially really surprising is that even when the
back-propagated gradients become smaller (standard ini-
tialization), the variance of the weights gradients is roughly
constant across layers, as shown on Figure 8. However, this
is explained by our theoretical analysis above (eq. 14). In-
terestingly, as shown in Figure 9, these observations on the
weight gradient of standard and normalized initialization
change during training (here for a tanh network). Indeed,
whereas the gradients have initially roughly the same mag-
nitude, they diverge from each other (with larger gradients
in the lower layers) as training progresses, especially with
the standard initialization. Note that this might be one of
the advantages of the normalized initialization, since hav-
ing gradients of very different magnitudes at different lay-
ers may yield to ill-conditioning and slower training.

Finally, we observe that the softsign networks share simi-
larities with the tanh networks with normalized initializa-
tion, as can be seen by comparing the evolution of activa-
tions in both cases (resp. Figure 3-bottom and Figure 10).

5 Error Curves and Conclusions

The final consideration that we care for is the success
of training with different strategies, and this is best il-
lustrated with error curves showing the evolution of test
error as training progresses and asymptotes. Figure 11
shows such curves with online training on Shapeset-3× 2,
while Table 1 gives final test error for all the datasets
studied (Shapeset-3 × 2, MNIST, CIFAR-10, and Small-
ImageNet). As a baseline, we optimized RBF SVM mod-
els on one hundred thousand Shapeset examples and ob-
tained 59.47% test error, while on the same set we obtained
50.47% with a depth five hyperbolic tangent network with
normalized initialization.

These results illustrate the effect of the choice of activa-
tion and initialization. As a reference we include in Fig-

(Glorot and Bengio, 2010)

Optimizability trumps optimality 24

Four key elements allow the design of extremely deep architectures:

. . . Linear Linear . . .

LN LN +

+ Smart initialization to normalize all activations.
+ Better non-linearities to prevent gradient vanishing.
+ Normalization layers to keep activation moments.
+ Skip connections, to add the computed component to the current
activations.

Optimizability trumps optimality 25

Four key elements allow the design of extremely deep architectures:

. . . Linear Linear . . .

LN LN +

+ Smart initialization to normalize all activations.

+ Better non-linearities to prevent gradient vanishing.
+ Normalization layers to keep activation moments.
+ Skip connections, to add the computed component to the current
activations.

Optimizability trumps optimality 25

Four key elements allow the design of extremely deep architectures:

. . . Linear Linear . . .

LN LN +

+ Smart initialization to normalize all activations.
+ Better non-linearities to prevent gradient vanishing.

+ Normalization layers to keep activation moments.
+ Skip connections, to add the computed component to the current
activations.

Optimizability trumps optimality 25

Four key elements allow the design of extremely deep architectures:

. . . Linear Linear . . .LN LN

+

+ Smart initialization to normalize all activations.
+ Better non-linearities to prevent gradient vanishing.
+ Normalization layers to keep activation moments.

+ Skip connections, to add the computed component to the current
activations.

Optimizability trumps optimality 25

Four key elements allow the design of extremely deep architectures:

. . . Linear Linear . . .LN LN +

+ Smart initialization to normalize all activations.
+ Better non-linearities to prevent gradient vanishing.
+ Normalization layers to keep activation moments.
+ Skip connections, to add the computed component to the current
activations.

Optimizability trumps optimality 25

Attention is all you need

A convolution applies the same operation everywhere in the signal.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient when

+ the signal is stationary, and
+ local structures are very informative.

Attention is all you need 27

A convolution applies the same operation everywhere in the signal.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient when

+ the signal is stationary, and
+ local structures are very informative.

Attention is all you need 27

A convolution applies the same operation everywhere in the signal.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient when

+ the signal is stationary, and
+ local structures are very informative.

Attention is all you need 27

A convolution applies the same operation everywhere in the signal.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient when

+ the signal is stationary, and
+ local structures are very informative.

Attention is all you need 27

A convolution applies the same operation everywhere in the signal.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Such mechanisms are very efficient when

+ the signal is stationary, and
+ local structures are very informative.

Attention is all you need 27

Some tasks involve more than local structures, e.g. translation:

“An apple that had been on the tree in the garden for
weeks had finally been picked up.”
“Une pomme qui était sur l’arbre du jardin depuis des se-
maines avait finalement été ramassée.”

It has motivated attention-based processing to transport information
from parts of the signal to other parts dynamically identified.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Attention is all you need 28

Some tasks involve more than local structures, e.g. translation:

“An apple that had been on the tree in the garden for
weeks had finally been picked up.”
“Une pomme qui était sur l’arbre du jardin depuis des se-
maines avait finalement été ramassée.”

It has motivated attention-based processing to transport information
from parts of the signal to other parts dynamically identified.

x1 x2 x3 x4 x5 . . . xT−1 xT

y1 y2 y3 . . . yS

Attention is all you need 28

Transformer
(Vaswani et al., 2017)

Decoder-only Transformer
(Radford et al., 2018)

Attention is all you need 29

Transformer
(Vaswani et al., 2017)

Decoder-only Transformer
(Radford et al., 2018)

Attention is all you need 29

∅ the cat is drink- -ing

you
the
that
is
-ing
milk
drink-
cat

. . .

Attention is all you need 30

∅ the cat is drink- -ing . . .

x1
1 x1

2 x1
3 x1

4 x1
5 x1

6

x2
1 x2

2 x2
3 x2

4 x2
5 x2

6

x3
1 x3

2 x3
3 x3

4 x3
5 x3

6

you
the
that
is
-ing
milk
drink-
cat

the cat is drink- -ing milk

S1:T−1

Embeddings

Causal
Transformer Block

Causal
Transformer Block

Readout FC

Logits S2:T

Attention is all you need 31

Autoregression is smarter than expected

Autoregression is smarter than expected 33

Such a “base model”, trained only to generate text, can already be put to
use for instance for classification.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: gravity is proportional to the mass, O: physics.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: squares are rectangles, O: mathematics.

<I: I love apples, O: positive. I: music is my passion, O: positive. I: my
job is boring, O: negative. I: frozen pizzas are awesome, O: positive.

I: I love apples, O: positive. I: music is my passion, O: positive. I:
my job is boring, O: negative. I: frozen pizzas taste like cardboard, O:
negative.

Autoregression is smarter than expected 34

Such a “base model”, trained only to generate text, can already be put to
use for instance for classification.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: gravity is proportional to the mass, O: physics.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: squares are rectangles, O: mathematics.

<I: I love apples, O: positive. I: music is my passion, O: positive. I: my
job is boring, O: negative. I: frozen pizzas are awesome, O: positive.

I: I love apples, O: positive. I: music is my passion, O: positive. I:
my job is boring, O: negative. I: frozen pizzas taste like cardboard, O:
negative.

Autoregression is smarter than expected 34

Such a “base model”, trained only to generate text, can already be put to
use for instance for classification.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: gravity is proportional to the mass, O: physics.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: squares are rectangles, O: mathematics.

<I: I love apples, O: positive. I: music is my passion, O: positive. I: my
job is boring, O: negative. I: frozen pizzas are awesome, O: positive.

I: I love apples, O: positive. I: music is my passion, O: positive. I:
my job is boring, O: negative. I: frozen pizzas taste like cardboard, O:
negative.

Autoregression is smarter than expected 34

Such a “base model”, trained only to generate text, can already be put to
use for instance for classification.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: gravity is proportional to the mass, O: physics.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: squares are rectangles, O: mathematics.

<I: I love apples, O: positive. I: music is my passion, O: positive. I: my
job is boring, O: negative. I: frozen pizzas are awesome, O: positive.

I: I love apples, O: positive. I: music is my passion, O: positive. I:
my job is boring, O: negative. I: frozen pizzas taste like cardboard, O:
negative.

Autoregression is smarter than expected 34

Such a “base model”, trained only to generate text, can already be put to
use for instance for classification.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: gravity is proportional to the mass, O: physics.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: squares are rectangles, O: mathematics.

<I: I love apples, O: positive. I: music is my passion, O: positive. I: my
job is boring, O: negative. I: frozen pizzas are awesome, O: positive.

I: I love apples, O: positive. I: music is my passion, O: positive. I:
my job is boring, O: negative. I: frozen pizzas taste like cardboard, O:
negative.

Autoregression is smarter than expected 34

Such a “base model”, trained only to generate text, can already be put to
use for instance for classification.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: gravity is proportional to the mass, O: physics.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: squares are rectangles, O: mathematics.

<I: I love apples, O: positive. I: music is my passion, O: positive. I: my
job is boring, O: negative. I: frozen pizzas are awesome, O: positive.

I: I love apples, O: positive. I: music is my passion, O: positive. I:
my job is boring, O: negative. I: frozen pizzas taste like cardboard, O:
negative.

Autoregression is smarter than expected 34

Such a “base model”, trained only to generate text, can already be put to
use for instance for classification.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: gravity is proportional to the mass, O: physics.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: squares are rectangles, O: mathematics.

<I: I love apples, O: positive. I: music is my passion, O: positive. I: my
job is boring, O: negative. I: frozen pizzas are awesome, O: positive.

I: I love apples, O: positive. I: music is my passion, O: positive. I:
my job is boring, O: negative. I: frozen pizzas taste like cardboard, O:
negative.

Autoregression is smarter than expected 34

Such a “base model”, trained only to generate text, can already be put to
use for instance for classification.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: gravity is proportional to the mass, O: physics.

I: water boils at 100 degrees, O: physics. I: the square root of two is
irrational, O: mathematics. I: the set of prime numbers is infinite, O:
mathematics. I: squares are rectangles, O: mathematics.

<I: I love apples, O: positive. I: music is my passion, O: positive. I: my
job is boring, O: negative. I: frozen pizzas are awesome, O: positive.

I: I love apples, O: positive. I: music is my passion, O: positive. I:
my job is boring, O: negative. I: frozen pizzas taste like cardboard, O:
negative.

Autoregression is smarter than expected 34

For e.g. ChatGPT, base training is followed by “Reinforcement Learning
from Human Feedback” (RLHF) to create an assistant.

Autoregression is smarter than expected 35

Autoregression is smarter than expected 36

Learning to reason

It was then discovered that prompting the model with “step-by-step”
reasoning examples improved dramatically its performance.

Learning to reason 38

This can be scaled up to complex reasoning, e.g. mathematics, with
reinforcement learning to boost the generation of chains of thoughts.

The current standard method is “Group Relative Policy Optimization”:

1. Prompt the model to think step by step and to provide a well
formated answer.

2. Generate multiple response for a given prompt/question.
3. Compute the relative quality of each response.
4. Reinforce the network accordingly.

Learning to reason 39

This can be scaled up to complex reasoning, e.g. mathematics, with
reinforcement learning to boost the generation of chains of thoughts.

The current standard method is “Group Relative Policy Optimization”:

1. Prompt the model to think step by step and to provide a well
formated answer.

2. Generate multiple response for a given prompt/question.
3. Compute the relative quality of each response.
4. Reinforce the network accordingly.

Learning to reason 39

Meta’s Computational World Model 32B (CWM, CodeGen team 2025):

Pre-training

+ General pre-training: 8T tokens of mostly english text with 30%
coding data, 8k seqlen.

Get a strong language model with all the capabilities that go with it.

+ Code world model mid-training: 5T tokens of data providing
examples of code execution effects, 131k seqlen.

The model now has stronger generative capabilities for code and
long-context.

(*) 1T tokens ≃ 10M books ≃ 250 English Wikipedia

Learning to reason 40

Meta’s Computational World Model 32B (CWM, CodeGen team 2025):

Pre-training

+ General pre-training: 8T tokens of mostly english text with 30%
coding data, 8k seqlen.

Get a strong language model with all the capabilities that go with it.

+ Code world model mid-training: 5T tokens of data providing
examples of code execution effects, 131k seqlen.

The model now has stronger generative capabilities for code and
long-context.

(*) 1T tokens ≃ 10M books ≃ 250 English Wikipedia

Learning to reason 40

Meta’s Computational World Model 32B (CWM, CodeGen team 2025):

Post-training

+ Supervised fine-tuning: 100B tokens of examples of
instruction-following, tool use and reasoning traces, 32k seqlen.

The model becomes an assistant able to generate chains of thought.

+ Reasoning Reinforcement-Learning: 172B tokens from its own
reasoning and agentic behavior, 131k seqlen, up to 128 turns.

Boost the quality of the chains of thought and agentic capabilities.

(*) 1T tokens ≃ 10M books ≃ 250 English Wikipedia

Learning to reason 40

Meta’s Computational World Model 32B (CWM, CodeGen team 2025):

Post-training

+ Supervised fine-tuning: 100B tokens of examples of
instruction-following, tool use and reasoning traces, 32k seqlen.

The model becomes an assistant able to generate chains of thought.

+ Reasoning Reinforcement-Learning: 172B tokens from its own
reasoning and agentic behavior, 131k seqlen, up to 128 turns.

Boost the quality of the chains of thought and agentic capabilities.

(*) 1T tokens ≃ 10M books ≃ 250 English Wikipedia

Learning to reason 40

Conclusion

+ Large language models are extraordinary general-purpose
“cognitive engines” fitting to modern computational devices.

+ The current trend focuses on improving training procedures to
leverage text generation for reasoning and agentic behavior.

+ We have probably passed the “data peak” and need new ways to
keep improving. Synthetic data and self play are probably key.

+ Architectures are lacking fundamental capabilities such as
continuous and multi-modal reasoning.

Conclusion 42

+ Large language models are extraordinary general-purpose
“cognitive engines” fitting to modern computational devices.

+ The current trend focuses on improving training procedures to
leverage text generation for reasoning and agentic behavior.

+ We have probably passed the “data peak” and need new ways to
keep improving. Synthetic data and self play are probably key.

+ Architectures are lacking fundamental capabilities such as
continuous and multi-modal reasoning.

Conclusion 42

+ Large language models are extraordinary general-purpose
“cognitive engines” fitting to modern computational devices.

+ The current trend focuses on improving training procedures to
leverage text generation for reasoning and agentic behavior.

+ We have probably passed the “data peak” and need new ways to
keep improving. Synthetic data and self play are probably key.

+ Architectures are lacking fundamental capabilities such as
continuous and multi-modal reasoning.

Conclusion 42

+ Large language models are extraordinary general-purpose
“cognitive engines” fitting to modern computational devices.

+ The current trend focuses on improving training procedures to
leverage text generation for reasoning and agentic behavior.

+ We have probably passed the “data peak” and need new ways to
keep improving. Synthetic data and self play are probably key.

+ Architectures are lacking fundamental capabilities such as
continuous and multi-modal reasoning.

Conclusion 42

Questions?

F. CodeGen team. Cwm: An open-weights llm for research on code generation with world
models, 2025.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Yang,
A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Sravankumar, A. Korenev, A. Hinsvark, A. Rao,
A. Zhang, A. Rodriguez, A. Gregerson, A. Spataru, B. Roziere, B. Biron, B. Tang, B. Chern,
C. Caucheteux, C. Nayak, C. Bi, C. Marra, C. McConnell, C. Keller, C. Touret, C. Wu, C. Wong, C. C.
Ferrer, C. Nikolaidis, D. Allonsius, D. Song, D. Pintz, D. Livshits, D. Esiobu, D. Choudhary,
D. Mahajan, D. Garcia-Olano, D. Perino, D. Hupkes, E. Lakomkin, E. AlBadawy, E. Lobanova,
E. Dinan, E. M. Smith, F. Radenovic, F. Zhang, G. Synnaeve, G. Lee, G. L. Anderson, G. Nail,
G. Mialon, G. Pang, G. Cucurell, H. Nguyen, H. Korevaar, H. Xu, H. Touvron, I. Zarov, I. A. Ibarra,
I. Kloumann, I. Misra, I. Evtimov, J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park, J. Mahadeokar, J. Shah,
J. van der Linde, J. Billock, J. Hong, J. Lee, J. Fu, J. Chi, J. Huang, J. Liu, J. Wang, J. Yu, J. Bitton,
J. Spisak, J. Park, J. Rocca, J. Johnstun, J. Saxe, J. Jia, K. V. Alwala, K. Upasani, K. Plawiak, K. Li,
K. Heafield, K. Stone, K. El-Arini, K. Iyer, K. Malik, K. Chiu, K. Bhalla, L. Rantala-Yeary, L. van der
Maaten, L. Chen, L. Tan, L. Jenkins, L. Martin, L. Madaan, L. Malo, L. Blecher, L. Landzaat,
L. de Oliveira, M. Muzzi, M. Pasupuleti, M. Singh, M. Paluri, M. Kardas, M. Oldham, M. Rita,
M. Pavlova, M. Kambadur, M. Lewis, M. Si, M. K. Singh, M. Hassan, N. Goyal, N. Torabi,
N. Bashlykov, N. Bogoychev, N. Chatterji, O. Duchenne, O. Çelebi, P. Alrassy, P. Zhang, P. Li,
P. Vasic, P. Weng, P. Bhargava, P. Dubal, P. Krishnan, P. S. Koura, P. Xu, Q. He, Q. Dong,
R. Srinivasan, R. Ganapathy, R. Calderer, R. S. Cabral, R. Stojnic, R. Raileanu, R. Girdhar, R. Patel,
R. Sauvestre, R. Polidoro, R. Sumbaly, R. Taylor, R. Silva, R. Hou, R. Wang, S. Hosseini,
S. Chennabasappa, S. Singh, S. Bell, S. S. Kim, S. Edunov, S. Nie, S. Narang, S. Raparthy, S. Shen,
S. Wan, S. Bhosale, S. Zhang, S. Vandenhende, S. Batra, S. Whitman, S. Sootla, S. Collot,
S. Gururangan, S. Borodinsky, T. Herman, T. Fowler, T. Sheasha, T. Georgiou, T. Scialom,
T. Speckbacher, T. Mihaylov, T. Xiao, U. Karn, V. Goswami, V. Gupta, V. Ramanathan, V. Kerkez,
V. Gonguet, V. Do, V. Vogeti, V. Petrovic, W. Chu, W. Xiong, W. Fu, W. Meers, X. Martinet, X. Wang,
X. E. Tan, X. Xie, X. Jia, X. Wang, Y. Goldschlag, Y. Gaur, Y. Babaei, Y. Wen, Y. Song, Y. Zhang, Y. Li,
Y. Mao, Z. D. Coudert, Z. Yan, Z. Chen, Z. Papakipos, A. Singh, A. Grattafiori, A. Jain, A. Kelsey,
A. Shajnfeld, A. Gangidi, A. Victoria, A. Goldstand, A. Menon, A. Sharma, A. Boesenberg,
A. Vaughan, A. Baevski, A. Feinstein, A. Kallet, A. Sangani, A. Yunus, A. Lupu, A. Alvarado,
A. Caples, A. Gu, A. Ho, A. Poulton, A. Ryan, A. Ramchandani, A. Franco, A. Saraf, A. Chowdhury,
A. Gabriel, A. Bharambe, A. Eisenman, A. Yazdan, B. James, B. Maurer, B. Leonhardi, B. Huang,
B. Loyd, B. D. Paola, B. Paranjape, B. Liu, B. Wu, B. Ni, B. Hancock, B. Wasti, B. Spence,
B. Stojkovic, B. Gamido, B. Montalvo, C. Parker, C. Burton, C. Mejia, C. Wang, C. Kim, C. Zhou,
C. Hu, C.-H. Chu, C. Cai, C. Tindal, C. Feichtenhofer, D. Civin, D. Beaty, D. Kreymer, D. Li, D. Wyatt,
D. Adkins, D. Xu, D. Testuggine, D. David, D. Parikh, D. Liskovich, D. Foss, D. Wang, D. Le,
D. Holland, E. Dowling, E. Jamil, E. Montgomery, E. Presani, E. Hahn, E. Wood, E. Brinkman,
E. Arcaute, E. Dunbar, E. Smothers, F. Sun, F. Kreuk, F. Tian, F. Ozgenel, F. Caggioni, F. Guzmán,
F. Kanayet, F. Seide, G. M. Florez, G. Schwarz, G. Badeer, G. Swee, G. Halpern, G. Thattai,
G. Herman, G. Sizov, Guangyi, Zhang, G. Lakshminarayanan, H. Shojanazeri, H. Zou, H. Wang,
H. Zha, H. Habeeb, H. Rudolph, H. Suk, H. Aspegren, H. Goldman, I. Damlaj, I. Molybog, I. Tufanov,
I.-E. Veliche, I. Gat, J. Weissman, J. Geboski, J. Kohli, J. Asher, J.-B. Gaya, J. Marcus, J. Tang, J. Chan,
J. Zhen, J. Reizenstein, J. Teboul, J. Zhong, J. Jin, J. Yang, J. Cummings, J. Carvill, J. Shepard,
J. McPhie, J. Torres, J. Ginsburg, J. Wang, K. Wu, K. H. U, K. Saxena, K. Prasad, K. Khandelwal,
K. Zand, K. Matosich, K. Veeraraghavan, K. Michelena, K. Li, K. Huang, K. Chawla, K. Lakhotia,
K. Huang, L. Chen, L. Garg, L. A, L. Silva, L. Bell, L. Zhang, L. Guo, L. Yu, L. Moshkovich,
L. Wehrstedt, M. Khabsa, M. Avalani, M. Bhatt, M. Tsimpoukelli, M. Mankus, M. Hasson,
M. Lennie, M. Reso, M. Groshev, M. Naumov, M. Lathi, M. Keneally, M. L. Seltzer, M. Valko,
M. Restrepo, M. Patel, M. Vyatskov, M. Samvelyan, M. Clark, M. Macey, M. Wang, M. J. Hermoso,
M. Metanat, M. Rastegari, M. Bansal, N. Santhanam, N. Parks, N. White, N. Bawa, N. Singhal,
N. Egebo, N. Usunier, N. P. Laptev, N. Dong, N. Zhang, N. Cheng, O. Chernoguz, O. Hart,
O. Salpekar, O. Kalinli, P. Kent, P. Parekh, P. Saab, P. Balaji, P. Rittner, P. Bontrager, P. Roux,
P. Dollar, P. Zvyagina, P. Ratanchandani, P. Yuvraj, Q. Liang, R. Alao, R. Rodriguez, R. Ayub,
R. Murthy, R. Nayani, R. Mitra, R. Li, R. Hogan, R. Battey, R. Wang, R. Maheswari, R. Howes,
R. Rinott, S. J. Bondu, S. Datta, S. Chugh, S. Hunt, S. Dhillon, S. Sidorov, S. Pan, S. Verma,
S. Yamamoto, S. Ramaswamy, S. Lindsay, S. Lindsay, S. Feng, S. Lin, S. C. Zha, S. Shankar,
S. Zhang, S. Zhang, S. Wang, S. Agarwal, S. Sajuyigbe, S. Chintala, S. Max, S. Chen, S. Kehoe,
S. Satterfield, S. Govindaprasad, S. Gupta, S. Cho, S. Virk, S. Subramanian, S. Choudhury,
S. Goldman, T. Remez, T. Glaser, T. Best, T. Kohler, T. Robinson, T. Li, T. Zhang, T. Matthews,
T. Chou, T. Shaked, V. Vontimitta, V. Ajayi, V. Montanez, V. Mohan, V. S. Kumar, V. Mangla,
V. Albiero, V. Ionescu, V. Poenaru, V. T. Mihailescu, V. Ivanov, W. Li, W. Wang, W. Jiang, W. Bouaziz,
W. Constable, X. Tang, X. Wang, X. Wu, X. Wang, X. Xia, X. Wu, X. Gao, Y. Chen, Y. Hu, Y. Jia, Y. Qi,
Y. Li, Y. Zhang, Y. Zhang, Y. Adi, Y. Nam, Yu, Wang, Y. Hao, Y. Qian, Y. He, Z. Rait, Z. DeVito,
Z. Rosnbrick, Z. Wen, Z. Yang, and Z. Zhao. The llama 3 herd of models, 2024.

K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, April
1980.

D. Gershgorn. The data that transformed AI research—and possibly the world, July 2017.
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural

networks. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2010.
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,

abs/1512.03385, 2015.
D. O. Hebb. The organization of behavior: A neuropsychological theory. Wiley, 1949. ISBN

0-8058-4300-0.
D. Hubel and T. Wiesel. Receptive fields, binocular interaction, and functional architecture in

the cat’s visual cortex. Journal of Physiology, 160:106–154, 1962.
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.

Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):
541–551, 1989.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4):115–133, 1943.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding by
generative pre-training, 2018.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

M. Telgarsky. Representation benefits of deep feedforward networks. CoRR, abs/1509.08101,
2015.

M. Telgarsky. Benefits of depth in neural networks. CoRR, abs/1602.04485, 2016.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin.

Attention is all you need. CoRR, abs/1706.03762, 2017.
P. J. Werbos. Applications of advances in nonlinear sensitivity analysis. In Proceedings of the

10th IFIP Conference, pages 762–770, 1981.

Conclusion 44

	Cognition and learning can be engineered
	Stupid learning leads to smart models
	Quantity has a quality of its own
	Optimizability trumps optimality
	Attention is all you need
	Autoregression is smarter than expected
	Learning to reason
	Conclusion
	References

