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e Al “programs itself”

e Al actually works

e Al requires vast amounts of data and computation
e Al is easy to deploy

e Al models are black boxes
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Al “programs itself”

The traditional way of making a computer perform a task is to indicate exactly
what simple individual steps have to be executed.

n = 15345

while n > 1:
for k in range(2, n+1):
if n¥%k == O:
print (k)
n=n//k
break
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Al “programs itself”

The first attempts at artificial intelligence relied on the same principle e.g.
medical decision, strategy games, or computer vision.
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Al “programs itself”

The fundamental idea of machine learning is to automatically tune a program to
make it work well on known examples.
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Al “programs itself”

This strategy mimics in some ways the plasticity of neural networks.
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(McCulloch and Pitts, 1943) (Hubel and Wiesel, 1962)
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Al “programs itself”

It can scale up to extract information from a complex real-world signal e.g. an

image, sound sample, piece of text
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or to synthesize a complex signal
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A

“programs itself”

Modern models are parameterized by 10° — 101! parameters.
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Al “programs itself”

Training an Al model consists of very progressively modifying its parameters to
reduce its error on the training examples, so that performance on unseen
examples will follow.

Error

Parameters
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Al actually works
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Al actually works
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ImageNet
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Al actually works

Pose estimation

A person riing a
motoreyclo on a dirt road.

Two dogs play in the grass.

Two hockey players are
in

fighing over the puck.

A group of young people
playing » game of risbee,

Goal planing

Image captioning
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Geometry estimation

I: Jane went to the hallway.

I: Mary walked to the bathroom.
I: Sandra went to the garden.
|
|

: Daniel went back to the garden.

: Sandra took the milk there.
Q: Where is the milk?
A: garden

Question answering

13/34



Al actually works

Human-level performance :

e Skin cancer detection.

e Speech processing.
Super-human performance :

¢ Image recognition.

¢ Road sign detection.

¢ Reconnaissance de visages.

e Go and chess (“from first principles”), poker.

e Video games from the 80s.

Frangois Fleuret Principles and Applications of Artificial Intelligence

14/ 34



Al actually works

Protein folding

Shape optimization

Bike designed with artificial intelligence breaks
world speed records
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Al actually works

Image / video synthesis
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Al actually works

Text synthesis

“Discussing Al in Switzerland and defining an adequate legal frame-
work is of the greatest importance since its role is still unclear, the
associations say.

Al and Ethics The Carte Blanche programme revealed last March that
Switzerland is far from ready for Al-powered robots. The Senate is due
to decide on legislation for these systems in 2019.

But the question of how to integrate Al into society is not just about

what is developed here. To what extent should Al technology be sold or
shared? What kinds of responsibilities should Al systems have?”
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Al requires vast amounts of data and computation
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Al requires vast amounts of data and computation

The last decade of progress in Al corresponds to a vast increase of the “training
sets” sizes. The most successful deployed methods rely on human-labeled data.

Data-set Year Nb. images Size
MNIST 1998 60K 12Mb
Caltech 256 2007 30K 1.2Gb
ImageNet 2012 1.2M 150Gb
JFT-300M 2017 300M 36Tb (?)
Data-set Year Nb. books Size
SST2 2013 40K 20Mb
WMT-18 2018 14M 7Gb
OSCAR 2020 12B 6Tb
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Al requires vast amounts of data and computation

A $1'500 mass-market device posses 10'500 computing cores and can make ~
35’000 billions operations per second. The current unit for large scale training is
petaflop/s-day (~ 10%° operations).
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Al requires vast amounts of data and computation

The trend does not seem to slow down:
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(Brown et al., 2020)
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Al is easy to deploy
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Al is easy to deploy

Deep-learning development is usually done in an open-source framework:

Framework Main backer

PyTorch Facebook
TensorFlow Google
JAX Google
MXNet Amazon

Installation can be done with a single command:

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
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Al is easy to deploy

MNIST
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Al is easy to deploy

model = nn.Sequential(
nn.Conv2d( 1, 32, 5), nn.MaxPo0l2d(3), nn.ReLU(),
nn.Conv2d (32, 64, 5), nn.MaxPool2d(2), nn.ReLU(),
@ nn.Flatten(),
nn.Linear (256, 200), nn.ReLU(Q),
nn.Linear (200, 10)

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = le-2)

for e in range(nb_epochs):
for input, target in data_loader_iterator(train_loader):
output = model(input)
@ loss = criterion(output, target)
optimizer.zero_grad()
loss.backward ()
optimizer.step()

Training <10s, error ~1%
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Al is easy to deploy

alexnet = torchvision.models.alexnet(pretrained = True).eval()
output = alexnet (img)
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A

is easy to deploy

alexnet = torchvision.models.alexnet(pretrained = True).eval()
output = alexnet(img)

#1 (12.26) Weimaraner

#2 (10.95) Chesapeake Bay retriever

#3 (10.87) Labrador retriever

#4 (10.10) Staffordshire bullterrier, Staffordshire bull terrier
#5 (9.55) flat-coated retriever

#6 (9.40) Italian greyhound

#7 (9.31) American Staffordshire terrier, Staffordshire terrier
#8 (9.12) Great Dane

#9 (8.94) German short-haired pointer

#10 (8.53) Doberman, Doberman pinscher
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Al is easy to deploy
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alexnet = torchvision.models.alexnet(pretrained = True).eval()

output
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= alexnet (img)
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Al models are black boxes
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Al models are black boxes

Deep models are “universal approximators” and in practice very complicated.
The functioning of a trained model is only very partially understood.

Multiple techniques have been developed to analyze the internal quantities
computed in a model and understand the actual processing that occurs.
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Al models are black boxes

(Zeiler and Fergus, 2014)
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Al models are black boxes

Original images

Guided back-propagation
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Al models are black boxes

Head 8-10
- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation
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[SEP]

Head 7-6

- Possessive pronouns and apostrophes
attend to the head of the corresponding NP

- 80.5% accuracy at the poss relation
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Head 8-11

- Noun modifiers (.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation
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Head 4-10
- Passive auxiliary verbs attend to the
verb they modify
- 82.5% accuracy at the auxpass relation
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Al models are black boxes

We can generate an “ideal signal” to get a sense of a class representation
encoded in the model.

“King crab” “Paper towel”
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Al models are black boxes

Models are very sensitive to adversarial perturbations.

Original

“desktop computer”

Adversarial

“desk”

Perturbation
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Al models are black boxes

Language models incorporate biases coming from the data-sets they are trained
on. Some examples generated by a large model publicly available:

“The best for a man’s career is to be the best in his own skill.”
“The best for a woman’s career is to be a housewife.”

“Regarding global warming, it is well known that the Earth’s climate
has been changing for thousands of years.”

“Everybody knows that vaccines are safe and effective, but the public
is not aware of the long-term effects of vaccines.”

“Switzerland has a long history of being a haven for the rich and
famous.”

Franois Fleuret Principles and Applications of Artificial Intelligence 34 /34



The end
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