CAS — Deep learning

2. DAG networks, auto-grad, image processing

Francois Fleuret
https://www.idiap.ch/~fleuret/
Fri Feb 22 13:19:03 UTC 2019

ZelCI3a0 AL

vvvvvvvvvvvv

FEDERALE DE LAUSANNF

4.1. DAG networks

Frangois Fleuret CAS — Deep learning / 4.1. DAG networks 1/174

https://www.idiap.ch/~fleuret/

We can generalize an MLP

w® e w® b2

R EEERE R

to an arbitrary “Directed Acyclic Graph” (DAG) of operators

w® |k

»O) “\\\\\\\\\\; 5@
‘III ‘\\\\\\\\\‘ ¢@)—’//////7
e /

Francois Fleuret CAS — Deep learning / 4.1. DAG networks 2 /174

v
=
X

If (a1,...,a¢Q) = ¢(b1,...,br), we use the notation
9ay 9a
b, "' Obg
[83} J _
_— p— ¢ pu— . .
8b 83(\) BaQ
ob, "' Obg

It does not specify at which point this is computed, but it will always be for the
forward-pass activations.

Also, if (a1,...,aQ) = ¢(b1,...,br,c1,...,Cs), we use

% 831
8 8C]_ e 865
a
{a] =Jole = Lo
6aQ 33Q
da, . e %

Francois Fleuret CAS — Deep learning / 4.1. DAG networks 3 /174

Forward pass

w@ |
ol) \ 50 15| 0 _ 0
RONN \ @ 5| @ /
w® /

NORN

x1M) = (M) (x(); (1)

x?) = (A (x() x1), ()

Francois Fleuret CAS — Deep learning / 4.1. DAG networks 4 /174
Backward pass, derivatives w.r.t activations
W) |i
o® S|, i \ PRONEN PINNG)
NON [\ 6@ 15| @ /
w(® /
For] [ox®][ar T o¢
= = Jp3|x@

| Ox(2) | ox2) | [9xB) | ox(3)
AR N (x| 100] _ | o], %
LoxM |~ [oxM | [ax®] " | ox(W | [ax®) | ~ Y [9x@) | T 0 | 9x03)
ARSI N (ox® 11 0r] _ o], a¢
10x@ | — [ax@) | [ax(@ | T | 0xO) | [ax@) | ~ TPV | o) | T TP | 54(2)

Francois Fleuret CAS — Deep learning / 4.1. DAG networks 5 /174

Backward pass, derivatives w.r.t parameters

W |

f(x) = x(3)

¢® > XM =\ ¢® >
<0 — |l ¢(2) 9 e /
- /

ac 1 [oxW][o oo o], ot
ow® |~ [aw® | [ax®] " [aw® | [ax@)] — oI [gx@ | TR | 956

% x| 1o) _ %
ow® | |ax@) | ~ T¢I | 520)

Francois Fleuret CAS — Deep learning / 4.1. DAG networks 6 /174

So if we have a library of “tensor operators”, and implementations of

(X17 <oy Xd W) = ¢(Xla sy Xd W)

Ve, (X1, Xds W) = Jg (X, -0y Xds W)

(X1, 0y Xd, W) = Jgpw (X1, .o Xd5 W),
we can build an arbitrary directed acyclic graph with these operators at the
nodes, compute the response of the resulting mapping, and compute its
gradient with back-prop.

7/ 174

Francois Fleuret CAS — Deep learning / 4.1. DAG networks

Writing from scratch a large neural network is complex and error-prone.

Multiple frameworks provide libraries of tensor operators and mechanisms to
combine them into DAGs and automatically differentiate them.

Language(s) License Main backer
PyTorch Python BSD Facebook
Caffe2 C++4, Python Apache Facebook
TensorFlow Python, C++ Apache Google
MXNet Python, C++, R, Scala Apache Amazon
CNTK Python, C++ MIT Microsoft
Torch Lua BSD Facebook
Theano Python BSD U. of Montreal
Caffe CH++ BSD 2 clauses U. of CA, Berkeley

One approach is to define the nodes and edges of such a DAG statically (Torch,

TensorFlow, Caffe, Theano, etc.)

Francois Fleuret

CAS — Deep learning / 4.1. DAG networks

8 /174

In TensorFlow, to run a forward/backward pass on

w® |
¢(1) 9 (1) :\ ¢(3) 9 f(x) = x(3)
x© = x| 3@ 5| @
w®

wl = tf.Variable(tf.random_normal([5, 5]))
w2 = tf.Variable(tf.random_normal ([5, 5]))
x = tf.Variable(tf.random_normal([5, 1]))
x0 = x

¢(1) (X(O); W(l)) = w0 x1 = tf.matmul(wl, x0)

<0 1 @)

ey (X(l) n X(z))

e (X(O),X(l); W(z))

e (X(l),x(z); W(l))

Francois Fleuret

CAS — Deep learning / 4.1. DAG networks

x2 = x0 + tf.matmul (w2, x1)
x3 = tf.matmul(wl, x1 + x2)
q = tf.norm(x3)

gwl, gw2 = tf.gradients(q, [wl, w2])
with tf.Session() as sess:

sess.run(tf.global_variables_initializer())
_gwl, _gw2 = sess.run([gwl, gw2])

9/ 174

Francois Fleuret

In our generalized DAG formulation, we have in particular implicitly allowed the
same parameters to modulate different parts of the processing.

Weight sharing

CAS — Deep learning / 4.1. DAG networks

For instance w(1) in our example parametrizes both qb(l) and ¢(3).

w@ |t

oM

9

()

—~_

AN

o3

9

f(x) = x®

I
x

w®

This is called weight sharing.

Francois Fleuret

CAS — Deep learning / 4.1. DAG networks

»?

2)

10 / 174

11/ 174

Weight sharing allows in particular to build siamese networks where a full
sub-network is replicated several times.

Francois Fleuret

Francois Fleuret

WO e W@ | @
wv) ‘H_& V(l)) ‘B_& V(Z)

CAS — Deep learning / 4.1. DAG networks

4.2. Autograd

CAS — Deep learning / 4.2. Autograd

@

12 /174

13 /174

Conceptually, the forward pass is a standard tensor computation, and the DAG
of tensor operations is required only to compute derivatives.

When executing tensor operations, PyTorch can automatically construct
on-the-fly the graph of operations to compute the gradient of any quantity
with respect to any tensor involved.

This “autograd” mechanism (Paszke et al., 2017) has two main benefits:

e Simpler syntax: one just need to write the forward pass as a standard
sequence of Python operations,

o greater flexibility: since the graph is not static, the forward pass can be
dynamically modulated.

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 14 / 174

A Tensor has a Boolean field requires_grad, set to False by default, which
states if PyTorch should build the graph of operations so that gradients with
respect to it can be computed.

The result of a tensorial operation has this flag to True if any of its operand
has it to True.

>>> x = torch.tensor([1., 2. 1)
>>> y = torch.tensor([4., 5. 1)
>>> z = torch.tensor([7., 3. 1)
>>> x.requires_grad

False

>>> (x + y).requires_grad

False

>>> z.requires_grad = True

>>> (x + z).requires_grad

True

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 15 / 174

A Only floating point type tensors can have their gradient computed.

>>> x = torch.tensor([1., 10.])
>>> x.requires_grad = True
>>> x = torch.tensor([1, 10])
>>> x.requires_grad = True
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: only Tensors of floating point dtype can require gradients

The method requires_grad_(value = True) set requires_grad to value,
which is True by default.

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 16 / 174

torch.autograd.grad(outputs, inputs) computes and returns the gradient
of outputs with respect to inputs.

>>> t = torch.tensor([1., 2., 4.]).requires_grad_()
>>> u = torch.tensor([10., 20.]).requires_grad_(Q)
>>> a = t.pow(2).sum() + u.log().sum()

>>> torch.autograd.grad(a, (t, u))

(tensor([2., 4., 8.]), tensor([0.1000, 0.0500]))

inputs can be a single tensor, but the result is still a [one element] tuple.

If outputs is a tuple, the result is the sum of the gradients of its elements.

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 17 / 174

The function Tensor.backward() accumulates gradients in the grad fields of
tensors which are not results of operations, the “leaves” in the autograd graph.

>>>
>>>
>>>
>>>
>>>

E X e M

X

= torch.tensor([-3., 2., 5.]).requires_grad_()
x.pow(3) .sum()

.grad
.backward()
.grad

tensor([27., 12., 75.1)

This function is an alternative to torch.autograd.grad(...) and standard for
training models.

Francois Fleuret

A\

CAS — Deep learning / 4.2. Autograd 18 / 174

Tensor.backward () accumulates the gradients in the different Tensors,
so one may have to set them to zero before calling it.

This accumulating behavior is desirable in particular to compute the gradient of
a loss summed over several “mini-batches,” or the gradient of a sum of losses.

Francois Fleuret

CAS — Deep learning / 4.2. Autograd 19 / 174

So we can run a forward/backward pass on

w@ |t

s 1>, |
0) \
- /

Il
X

wl = torch.rand(5, 5).requires_grad_()
w2 = torch.rand(5, 5).requires_grad_(Q)
¢(1) () (1)) (1) (0) x = torch.empty(5) .normal_()

X\ w = w'"/x
x0 = x

’ x2 = x0 + w2 @ x1

e (X(l),x(z); W(l)) — @ (X(l) +X(2)) x3 = wl @ (xl + x2)
q = x3.norm()
q.backward ()
Frangois Fleuret CAS — Deep learning / 4.2. Autograd

»?

¢ > frg = xO)
€>x@>k//////'

The autograd machinery

Frangois Fleuret CAS — Deep learning / 4.2. Autograd

20 / 174

21/ 174

The autograd graph is encoded through the fields grad_fn of Tensors, and the
fields next_functions of Functions.

>>> x = torch.tensor([1.0, -2.0, 3.0, -4.0]).requires_grad_()
>>> a = x.abs()

>>> s = a.sum()

>>> s

tensor(10., grad_fn=<SumBackward0>)

>>> s.grad_fn.next_functions

((<AbsBackward object at 0x7ffb2b1462b0>, 0),)
>>> s.grad_fn.next_functions[0] [0] .next_functions
((<AccumulateGrad object at 0x7ffb2b146278>, 0),)

We will come back to this later to write our own Functions.

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 22 / 174

We can visualize the full graph built during a computation.

NormBackwardO
AccumulateGrad

o]
|

= torch.tensor([1., 2., 2.]).requires_grad_Q)
x.norm()

Mo
1

This graph was generated with

https://fleuret.org/git/agtree2dot
and Graphviz.

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 23 / 174

https://fleuret.org/git/agtree2dot

Francois Fleuret

Francois Fleuret

def

=]
[

wl = torch.rand(20, 10).requires_grad_()

bl = torch.rand(20) .requires_grad_()
w2 = torch.rand(5, 20).requires_grad_()
b2 = torch.rand(5) .requires_grad_()

x = torch.rand(10)
torch.tanh(wl @ x + bl)
torch.tanh(w2 @ h + b2)

< B
o

target = torch.rand(5)

loss = (y - target).pow(2) .mean()

[0 [1]

AccumulateGrad
| b2 [5] 1

MvBackward

(o]

-

AccumulateGrad

TanhBackward

3 ThAddBackward
w2 [5, 20]

Lo [2]

MvBackward AccumulateGrad

l l

| bl [20]‘1

| AccumulateGrad

w1 [20, 10]

CAS — Deep learning / 4.2. Autograd

torch.rand(3, 10, 10).requires_grad_()

blah(k, x):
for i in range(k):

x = torch.tanh(w[i] @ x)
return x

blah(1l, torch.rand(10))
blah(3, torch.rand(10))
u.dot (v)

DotBackward

(o[t]

TanhBackward TanhBackward
MvBackward
MvBackward

[o[]

TanhBackward

(o[1]

TanhBackward

SelectBackward

SelectBackward ‘ MvBackward
SelectBackward SelectBackward

AccumulateGrad

w [3, 10, 10]

CAS — Deep learning / 4.2. Autograd

24 / 174

25 / 174

Although they are related, the autograd graph is not the network’s
structure, but the graph of operations to compute the gradient. It can
be data-dependent and miss or replicate sub-parts of the network.

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 26 / 174

The torch.no_grad() context switches off the autograd machinery, and can be
used for operations such as parameter updates.

w = torch.empty(10, 784).normal_(0, 1le-3).requires_grad_()
b = torch.empty(10) .normal_(0, 1le-3).requires_grad_()

for k in range(10001):
y_hat = x @ w.t() + Db
loss = (y_hat - y).pow(2).mean()

w.grad, b.grad = None, None
loss.backward()

with torch.no_grad():

w -= eta * w.grad
b -= eta * b.grad

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 27 / 174

The detach() method creates a tensor which shares the data, but does not
require gradient computation, and is not connected to the current graph.

This method should be used when the gradient should not be propagated
beyond a variable, or to update leaf tensors.

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 28 / 174

a = torch.tensor(0.5).requires_grad_()
b = torch.tensor(-0.5).requires_grad_()

for k in range(100):
1 =1(a-D*x2 + (b + 1)**%2 + (a - b)*x*2
ga, gb = torch.autograd.grad(l, (a, b))
with torch.no_grad():
a -= eta * ga
b -= eta *x gb

print(’%.06f° % a.item(), ’%.06f’ % b.item())
prints

0.333333 -0.333333

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 29 / 174

a = torch.tensor(0.5).requires_grad_()
b = torch.tensor(-0.5).requires_grad_()

for k in range(100):
1 =1(a- D=**x2 + (b + 1)**2 + (a.detach() - b)*x*2
ga, gb = torch.autograd.grad(l, (a, b))
with torch.no_grad():
a -= eta * ga
b -= eta *x gb

print (°%.06f’ % a.item(), ’%.06f’ % b.item())
prints

1.000000 -0.000000

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 30 / 174

Autograd can also track the computation of the gradient itself, to allows
higher-order derivatives. This is specified with create_graph = True:

>>> x = torch.tensor([1., 2., 3.]).requires_grad_Q)

>>> phi = x.pow(2).sum()

>>> g1, torch.autograd.grad(phi, x, create_graph = True)
>>> gl

tensor([2., 4., 6.], grad_fn=<ThMulBackward>)

>>> psi = g1[0].exp() - gi[2].exp()

>>> g2, = torch.autograd.grad(psi, x)
>>> g2
tensor([14.7781, 0.0000, -806.8576])

Frangois Fleuret CAS — Deep learning / 4.2. Autograd 31 /174

Francois Fleuret

Francois Fleuret

A\

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

HY <@ HRPY < HH< X

1

In-place operations may corrupt values required to compute the gradient,
and this is tracked down by autograd.

= torch.tensor([1., 2., 3.]).requires_grad_()
x.s8in()
= y.sum()

.backward ()

= x.s8in()
+=1
= y.sum()

.backward ()

= x.sin()

*=y
= y.sum()

.backward()

Traceback (most recent call last):

/..

./

RuntimeError: one of the variables needed for gradient computation has
been modified by an inplace operation

They are also prohibited on so-called “leaf” tensors, which are not the results of

operations but the initial inputs to the whole computation.

CAS — Deep learning / 4.2. Autograd

4.3. PyTorch modules and batch processing

CAS — Deep learning / 4.3. PyTorch modules and batch processing

32/ 174

33/ 174

Elements from torch.nn.functional are autograd-compliant functions which

compute a result from provided arguments alone. This is usually imported as F.

Subclasses of torch.nn.Module are losses and network components. The latter
embed parameters to be optimized during training.

Parameters are of the type torch.nn.Parameter which is a Tensor with
requires_grad to True, and known to be a model parameter by various utility
functions, in particular torch.nn.Module.parameters().

Frangois Fleuret CAS — Deep learning / 4.3. PyTorch modules and batch processing

Functions and modules from torch.nn process batches of inputs stored
in a tensor whose first dimension indexes them, and produce a corre-
sponding tensor with the same additional dimension.

E.g. a fully connected layer RS — RP expects as input a tensor of size N x C
and computes a tensor of size N x D, where N is the number of samples and
can vary from a call to another.

Frangois Fleuret CAS — Deep learning / 4.3. PyTorch modules and batch processing

34 /174

35 / 174

Francois Fleuret

Francois Fleuret

torch.nn.functional.relu(input, inplace=False)

takes a tensor of any size as input, applies ReLU on each value to produce a
result tensor of same size.

>>> x

tensor([[0.8008, -0.2586, 0.5019, -0.2002, -0.7416],
[0.0557, 0.6046, 0.0864, -0.5929, 1.2606]1])

>>> F.relu(x)

tensor([[0.8008, 0.0000, 0.5019, 0.0000, 0.0000],
[0.0557, 0.6046, 0.0864, 0.0000, 1.2606]1]1)

inplace indicates if the operation should modify the argument itself. This may
be desirable to reduce the memory footprint of the processing.

CAS — Deep learning / 4.3. PyTorch modules and batch processing 36 / 174

The module
torch.nn.Linear (in_features, out_features, bias=True)

implements a R¢ — RP fully-connected layer. It takes as input a tensor of size
N x C and produce a tensor of size N x D.

>>> f = nn.Linear(in_features = 10, out_features = 4)
>>> for n, p in f.named_parameters(): print(n, p.size())

weight torch.Size([4, 10])

bias torch.Size([4])

>>> x = torch.empty(523, 10).normal_()
>>> y = £(x)

>>> y.size()

torch.Size([523, 41)

ﬁ The weights and biases are automatically randomized at creation. We
will come back to that later.

CAS — Deep learning / 4.3. PyTorch modules and batch processing 37 / 174

Francois Fleuret

Francois Fleuret

The module
torch.nn.MSELoss ()

implements the Mean Square Error loss: the sum of the component-wise
squared difference, divided by the total number of components in the tensors.

>>> f torch.nn.MSELoss ()

>>> x = torch.tensor([[3.]1)

>>> y = torch.tensor([[0. 11)

>>> £(x, y)

tensor(9.)

>>> x = torch.tensor([[3., 0., 0., 0. 11)
>>> y = torch.tensor([[0., 0., 0., 0. 11)
>>> f(x, y)

tensor(2.2500)

The first parameter of a loss is traditionally called the input and the second the
target. These two quantities may be of different dimensions or even types for
some losses (e.g. for classification).

CAS — Deep learning / 4.3. PyTorch modules and batch processing 38 /174

A Criteria do not accept a tensor with requires_grad to True for target.

>>> import torch

>>> f = torch.nn.MSELoss ()

>>> x = torch.tensor([3., 2.]).requires_grad_()
>>> y = torch.tensor([0., -2.]).requires_grad_()

>>> f(x, y)
Traceback (most recent call last):
/.../

AssertionError: nn criterions don’t compute the gradient w.r.t.
targets - please mark these tensors as not requiring gradients

CAS — Deep learning / 4.3. PyTorch modules and batch processing 39 / 174

Francois Fleuret

Francois Fleuret

Batch processing

CAS — Deep learning / 4.3. PyTorch modules and batch processing 40 / 174

Functions and modules from torch.nn process samples by batches. This is
motivated by the computational speed-up it induces.

To evaluate a module on a sample, both the module’s parameters and the
sample have to be first copied into cache memory, which is fast but small.

For any model of reasonable size, only a fraction of its parameters can be kept
in cache, so a module’'s parameters have to be copied there every time it is used.

These memory transfers are slower than the computation itself.

This is the main reason for batch processing: it cuts down to one per
module per batch the number of copies of parameters to the cache.

It also cuts down the use of Python loops, which are awfully slow.

CAS — Deep learning / 4.3. PyTorch modules and batch processing 41 / 174

Consider a model composed of three modules
f=fiohoh,

and we want to compute f(x1), f(x2), f(x3).

. Copying the x;s to cache memory

-- Copying the fys' parameters to cache memory

I Computing a fy(xn)

Processing samples one by one:

Time

Batch processing:

Time

Frangois Fleuret CAS — Deep learning / 4.3. PyTorch modules and batch processing

With

def timing(x, w, batch = False, nb = 101):
t = torch.zeros(nb)

for u in range(0, t.size(0)):
t0 = time.perf_counter()
if batch:
y = x.mm(w.t())
else:
y = torch.empty(x.size(0), w.size(0))
for k in range(y.size(0)): y[k] = w.mv(x[k])
y.is_cuda and torch.cuda.synchronize()
t[u] = time.perf_counter() - tO

return t.median().item()

Frangois Fleuret CAS — Deep learning / 4.3. PyTorch modules and batch processing

42 /174

43 / 174

X = torch.empty(2500, 1000) .normal_()

w = torch.empty (1500, 1000) .normal_()

print (’Batch-processing speed-up on CPU %.1f’ %
(timing(x, w, batch = False) / timing(x, w, batch

True)))

X, w = x.to(’cuda’), w.to(’cuda’)
print (’Batch-processing speed-up on GPU %.1f’ ¥
(timing(x, w, batch = False) / timing(x, w, batch

True)))

prints

Batch-processing speed-up on CPU 4.6
Batch-processing speed-up on GPU 144.4

Frangois Fleuret CAS — Deep learning / 4.3. PyTorch modules and batch processing 44 / 174

Formally, we have to revisit a bit some expressions we saw previously for fully
connected layers. We had

Vi, w) e RIxd— 7D e pdima gD = (07D,

From now on, we will use row vectors, so that we can represent a series of
samples as a 2d array with the first index being the sample's index.

X1,1 ... X1,D (Xl)T

O

which is an element of RNXD,

Frangois Fleuret CAS — Deep learning / 4.3. PyTorch modules and batch processing 45 / 174

Francois Fleuret

Francois Fleuret

To make all sample row vectors and apply a linear operator, we want

Vn, s\) = (W(/) (x,(,"l)) T) T U= (W(/)) T

which gives a tensorial expression for the full batch

S — -1 (W(/)) 4

And in torch/nn/functional.py

def linear(input, weight, bias=None):
if input.dim() == 2 and bias is not None:
fused op is marginally faster
return torch.addmm(bias, input, weight.t())

output = input.matmul(weight.t())
if bias is not None:

output += bias
return output

CAS — Deep learning / 4.3. PyTorch modules and batch processing

Similarly for the backward pass of a linear layer we get

Oz _To27" -y
ow() ax() ’

oz _ 92 | 0+
ox() Ox(+1) '

and

CAS — Deep learning / 4.3. PyTorch modules and batch processing

46 / 174

47 /174

4.4. Convolutions

Francois Fleuret CAS — Deep learning / 4.4. Convolutions 48 / 174

If they were handled as normal “unstructured” vectors, large-dimension signals
such as sound samples or images would require models of intractable size.

For instance a linear layer taking a 256 x 256 RGB image as input, and
producing an image of same size would require

(256 x 256 x 3)? ~ 3.87e+10

parameters, with the corresponding memory footprint (~150Gb !), and excess
of capacity.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 49 / 174

Moreover, this requirement is inconsistent with the intuition that such large
signals have some “invariance in translation”. A representation meaningful at

a certain location can / should be used everywhere.

A convolution layer embodies this idea. It applies the same linear
transformation locally, everywhere, and preserves the signal structure.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 50 / 174

Output

W—w-4+1

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 51 / 174

Formally, in 1d, given
x = (x1,...,Xw)

and a “convolution kernel” (or “filter”) of width w
u=(u1,...,uw)

the convolution x ® u is a vector of size W — w + 1, with

w
(x®u)i = Xi—14jUj
j=1

= (X5, Xitw_1) - U
for instance

(1,2,3,4) ®(3,2) = (3+ 4,6 + 6,9 + 8) = (7,12,17).

C This differs from the usual convolution since the kernel and the signal
are both visited in increasing index order.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 52 / 174

Convolution can implement in particular differential operators, e.g.

(0,0,0,0,1,2,3,4,4,4,4) ® (—1,1) = (0,0,0,1,1,1,1,0,0,0).

m@@m_ﬂ—m_

or crude “template matcher”’, e.g.

B 11—

Both of these computation examples are indeed “invariant by translation”.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 53 / 174

It generalizes naturally to a multi-dimensional input, although specification can
become complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input
(i.e. a multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped

across channels, just across rows and columns.

In this case, if the input tensor is of size C x H x W, and the kernel is
C X hx w, the outputis (H—h+1) x (W —w+1).

C We say “2d signal” even though it has C channels, since it is a feature
vector indexed by a 2d location without structure on the feature indexes.

In a standard convolution layer, D such convolutions are combined to generate
aDx(H—h+1)x (W —w+ 1) output.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 54 / 174

Input
Output

Kernels W—-—w4+1

D H—h+1

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 55 / 174

Note that a convolution preserves the signal support structure.

A 1d signal is converted into a 1d signal, a 2d signal into a 2d, and neighboring
parts of the input signal influence neighboring parts of the output signal.

A 3d convolution can be used if the channel index has some metric meaning,
such as time for a series of grayscale video frames. Otherwise swiping across
channels makes no sense.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 56 / 174

We usually refer to one of the channels generated by a convolution layer as an
activation map.

The sub-area of an input map that influences a component of the output as the
receptive field of the latter.

In the context of convolutional networks, a standard linear layer is called a fully
connected layer since every input influences every output.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 57 / 174

torch.nn.functional.conv2d(input, weight, bias=None,
stride=1, padding=0, dilation=1, groups=1)

Implements a 2d convolution, where weight contains the kernels, and is
D x C x h X w, bias is of dimension D, input is of dimension

NxCxHxW
and the result is of dimension

NxDx(H—-h+1)x(W-—-w-+1).

>>> weight = torch.empty(5, 4, 2, 3).normal_()

>>> bias = torch.empty(5) .normal_()

>>> input = torch.empty(117, 4, 10, 3).normal_()

>>> output = torch.nn.functional.conv2d(input, weight, bias)
>>> output.size()

torch.Size([117, 5, 9, 11)

Similar functions implement 1d and 3d convolutions.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 58 / 174

x = mnist_train.train_datal[12].float().view(1, 1, 28, 28)

weight = torch.empty(5, 1, 3, 3)

weight [0, 0] = torch.temnsor([[0., 0., 0.1,

[0., 1., 0.1,

[0., 0., 0.101)
weight[1, 0] = torch.tensor([[1., 1., 1.1,

[1., 1., 1.1,

[1., 1., 1.1 D
weight[2, 0] = torch.temsor([[-1., 0., 1.1,

[-1., 0., 1.1,

[_1-: o: 1-]])
weight[3, 0] = torch.tensor([[-1., -1., -1. 1,

[0., 0., 0.1,

[1., 1., 1.1 1)
weight[4, 0] = torch.temsor([[0., -1., 0.1,

[-1., 4., -1. 1],

[0., -1., 0.11)

y = torch.nn.functional.conv2d(x, weight)

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 59 / 174

JIN B 1

3555
3B 3 S

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 60 / 174

-

TRVOR |

class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1,
groups=1, bias=True)

Wraps the convolution into a Module, with the kernels and biases as Parameter
properly randomized at creation.

The kernel size is either a pair (h, w) or a single value k interpreted as (k, k).

>>> f = nn.Conv2d(in_channels = 4, out_channels = 5, kernel_size = (2, 3))
>>> for n, p in f.named_parameters(): print(n, p.size())

weight torch.Size([5, 4, 2, 31)

bias torch.Size([5])

>>> x = torch.empty(117, 4, 10, 3).normal_()
>>>y = £(x)

>>> y.size()

torch.Size([117, 5, 9, 11)

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 61 / 174

Padding and stride

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 62 / 174

Convolutions have two additional standard parameters:

e The padding specifies the size of a zeroed frame added around the input,

o the stride specifies a step size when moving the kernel across the signal.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 63 / 174

Here with C x 3 x 5 as input, a padding of (2,1), a stride of (2,2), and a

kernel of size C X 3 x 3, the output is 1 x 3 x 3.

 —
[] [] []
[] [] []
[] [] []
>
1 Input
Frangois Fleuret CAS — Deep learning / 4.4. Convolutions

Output

@) @) @)
@) @) @)
@) @) []

ﬁ A convolution with a stride greater than 1 may not cover the input map

completely, hence may ignore some of the input values.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions

64 / 174

65 / 174

Dilated convolution

Francois Fleuret CAS — Deep learning / 4.4. Convolutions 66 / 174

Convolution operations admit one more standard parameter that we have not
discussed yet: The dilation, which modulates the expansion of the filter
support (Yu and Koltun, 2015).

It is 1 for standard convolutions, but can be greater, in which case the resulting
operation can be envisioned as a convolution with a regularly sparsified filter.

This notion comes from signal processing, where it is referred to as algorithme a
trous, hence the term sometime used of “convolution a trous’.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 67 / 174

Dilation = 1

—>
Output
Input
Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 68 / 174
Dilation = 2
>
Output
Input

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 69 / 174

A convolution with a 1d kernel of size k and dilation d can be interpreted as a
convolution with a filter of size 1 + (k — 1)d with only k non-zero coefficients.

For with kK = 3 and d = 4, the difference between the input map size and the
output map sizeis 1+ (3 —-1)4—1=38.

>>> x = torch.empty(1, 1, 20, 30).normal_()

>>> 1 = nn.Conv2d(1l, 1, kernel_size = 3, dilation = 4)
>>> 1(x) .size()

torch.Size([1, 1, 12, 22])

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 70 / 174

Having a dilation greater than one increases the units’ receptive field size
without increasing the number of parameters.

Convolutions with stride or dilation strictly greater than one reduce the
activation map size, for instance to make a final classification decision.

Such networks have the advantage of simplicity:

e non-linear operations are only in the activation function,

e joint operations that combine multiple activations to produce one are only
in linear layers.

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 71/ 174

4.5. Pooling

Frangois Fleuret CAS — Deep learning / 4.5. Pooling 72 / 174

The historical approach to compute a low-dimension signal (e.g. a few scores)
from a high-dimension one (e.g. an image) was to use pooling operations.

Such an operation aims at grouping several activations into a single “more
meaningful”’ one.

Frangois Fleuret CAS — Deep learning / 4.5. Pooling 73 / 174

The most standard type of pooling is the max-pooling, which computes max
values over non-overlapping blocks.

For instance in 1d with a kernel of size 2:

Input

1 4 -1 0 2 -2 1 3 3 1

rw

Output

The average pooling computes average values per block instead of max values.

Frangois Fleuret CAS — Deep learning / 4.5. Pooling 74 / 174

Input

Output

sh

Frangois Fleuret CAS — Deep learning / 4.5. Pooling 75 / 174

Francois Fleuret

Francois Fleuret

Pooling provides invariance to any permutation inside one of the cell.

More practically, it provides a pseudo-invariance to deformations that result into
local translations.

Input

Output

CAS — Deep learning / 4.5. Pooling 76 / 174

torch.nn.functional.max_pool2d(input, kernel_size,
stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False)

takes as input a N x C x H x W tensor, and a kernel size (h, w) or k
interpreted as (k, k), applies the max-pooling on each channel of each sample
separately, and produce if the paddingis0a N x C x |H/h| x | W/w] output.

>>> x = torch.empty(2, 2, 6).random_(3)
>>> x

tensor([[[1., 2., 2., 1., 2., 1.1,
[2., 0., 0., 0., 1., 0.11,
(2., o., 2., 1., 1., 1.7,
[0., 0., 0., 1., 2., 1.111
>>> F.max_pool2d(x, (1, 2))
tensor([[[2., 2., 2.1,
[2., 0., 1.11,
[2., 2., 1.1,
(0., 1., 2.11D

Similar functions implements 1d and 3d max-pooling, and average pooling.

CAS — Deep learning / 4.5. Pooling 77/ 174

As for convolution, pooling operations can be modulated through their stride
and padding.

While for convolution the default stride is 1, for pooling it is equal to the kernel
size, but this not obligatory.

Default padding is zero.

Frangois Fleuret CAS — Deep learning / 4.5. Pooling

class torch.nn.MaxPool2d(kernel_size, stride=None,
padding=0, dilation=1,
return_indices=False, ceil_mode=False)

Wraps the max-pooling operation into a Module.

As for convolutions, the kernel size is either a pair (h, w) or a single value k
interpreted as (k, k).

Frangois Fleuret CAS — Deep learning / 4.5. Pooling

78 / 174

79 / 174

Francois Fleuret

Francois Fleuret

4.6. Writing a PyTorch module

CAS — Deep learning / 4.6. Writing a PyTorch module 80 / 174

We now have all the bricks needed to build our first convolutional network from
scratch. The last technical points is the tensor shape between layers.

Both the convolutional and pooling layers take as input batches of samples,
each one being itself a 3d tensor C X H x W.

The output has the same structure, and tensors have to be explicitly reshaped
before being forwarded to a fully connected layer.

>>> from torchvision.datasets import MNIST

>>> mnist = MNIST(’./data/mnist/’, train = True, download = True)
>>> d = mnist.train_data

>>> d.size()

torch.Size ([60000, 28, 28])

>>> x = d.view(d.size(0), 1, d.size(1), d.size(2))
>>> x.size()

torch.Size ([60000, 1, 28, 28])

>>> x = x.view(x.size(0), -1)

>>> x.size()

torch.Size([60000, 784])

CAS — Deep learning / 4.6. Writing a PyTorch module 81 /174

A classical LeNet-like mode

Input sizes / operations

| could be:

Nb. parameters

Nb. products

1x28x28
nn.Conv2d(1, 32, kernel_size=5)
32x24x24
F.max_pool2d(., kernel_size=3)
32x8x8
F.relu(.)
32XxX8X%8
nn.Conv2d (32, 64, kernel_size=5)
64 x4 x4
F.max_pool2d(., kernel_size=2)
64 X2 X2
F.relu(.)
64X 2x2
x.view(-1, 256)
256
nn.Linear (256, 200)
200
F.relu(.)
200
nn.Linear (200, 10)
10

32x (5% 4 1) = 832

64 X (32X 5> 4 1) = 51,264

200 x (256 + 1) = 51,400

10 X (200 + 1) = 2,010

32 x 242 x 52 = 460,800

32X 64 x 4% x 5% = 819,200

200 x 256 = 51,200

10 X 200 = 2,000

Total 105,506 parameters and 1,333,200 products for the forward pass.

Francois Fleuret CAS

Francois Fleuret CAS

— Deep learning / 4.6. Writing a PyTorch module

Creating a module

— Deep learning / 4.6. Writing a PyTorch module

82/ 174

83/ 174

PyTorch offers a sequential container module torch.nn.Sequential to build
simple architectures.

For instance a MLP with a 10 dimension input, 2 dimension output, ReLU
activation function and two hidden layers of dimensions 100 and 50 can be
written as:

model = nn.Sequential(
nn.Linear (10, 100), nn.RelLU(Q),
nn.Linear (100, 50), nn.RelLUQ),
nn.Linear (50, 2)

)

However for any model of practical complexity, the best is to write a sub-class
of torch.nn.Module.

Frangois Fleuret CAS — Deep learning / 4.6. Writing a PyTorch module 84 / 174

To create a Module, one has to inherit from the base class and implement the
constructor __init__(self, ...) and the forward pass forward(self, x).

class Net(nn.Module):
def __init__(self):
super (Net, self).__init__()
self.convl = nn.Conv2d(1, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.fcl = nn.Linear (256, 200)
self.fc2 = nn.Linear (200, 10)

def forward(self, x):

= F.relu(F.max_pool2d(self.convl(x), kernel_size=3, stride=3))
F.relu(F.max_pool2d(self.conv2(x), kernel_size=2, stride=2))
= x.view(-1, 256)

F.relu(self.fcl1(x))

self.fc2(x)

return x

MoM oM MM
I

Frangois Fleuret CAS — Deep learning / 4.6. Writing a PyTorch module 85 / 174

Francois Fleuret

Francois Fleuret

Inheriting from torch.nn.Module provides many mechanisms implemented in
the superclass.

First, the (...) operator is redefined to call the forward(...) method and
run additional operations. The forward pass should be executed through this
operator and not by calling forward explicitly.

Using the class Net we just defined

model = Net()

input = torch.empty(12, 1, 28, 28).normal_()
output = model (input)

print (output.size())

prints

torch.Size([12, 10])

CAS — Deep learning / 4.6. Writing a PyTorch module

Also, all Parameters added as class attributes are seen by
Module.parameters().

class Net(nn.Module):
def __init__(self):

super (Net, self).__init__()
self.convl = nn.Conv2d(1l, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.fcl = nn.Linear (256, 200)
self.fc2 = nn.Linear (200, 10)

/.../

model = Net()

for k in model.parameters():
print(k.size())

prints

torch.Size([32, 1, 5, 5])
torch.Size([32])
torch.Size([64, 32, 5, 5])
torch.Size([64])
torch.Size([200, 256])
torch.Size ([200])
torch.Size([10, 200])
torch.Size([10])

CAS — Deep learning / 4.6. Writing a PyTorch module

86 / 174

87 / 174

Francois Fleuret

Francois Fleuret

A Parameters added in dictionaries or arrays are not seen.

class Buggy(nn.Module):
def __init__(self):
super (Buggy, self).

self.conv = nn.Conv2d(1, 32, kernel_size=5)
self .param = Parameter(torch.zeros(123, 456))
[nn.Linear (543, 21)]

self.other_stuff =

model = Buggy()

for k in model.parameters():

print(k.size())

prints

torch.Size([123, 456])
torch.Size([32, 1, 5, 5])
torch.Size([32])

CAS — Deep learning / 4.6. Writing a PyTorch module

A simple option is to add modules in a torch.nn.ModuleList, which is a list
of modules properly dealt with by PyTorch’'s machinery.

class AnotherNotBuggy(nn.Module):

def __init__(self):

super (AnotherNotBuggy, self).__init__()
self.conv = nn.Conv2d(1, 32, kernel_size=5)
self.param = Parameter(torch.zeros(123, 456))
nn.ModuleList ()
self.other_stuff.append(nn.Linear (543, 21))

self.other_stuff =

model = AnotherNotBuggy()

for k in model.parameters():

print(k.size())

prints

torch.Size([123, 456])
torch.Size([32, 1, 5, 5])
torch.Size([32])
torch.Size([21, 543])
torch.Size([21])

CAS — Deep learning / 4.6. Writing a PyTorch module

88 / 174

89 / 174

As long as you use autograd-compliant operations, the backward pass is
implemented automatically.

This is crucial to allow the optimization of the Parameters with gradient
descent.

Frangois Fleuret CAS — Deep learning / 4.6. Writing a PyTorch module 90 / 174

5.1. Cross-entropy loss

Frangois Fleuret CAS — Deep learning / 5.1. Cross-entropy loss 91 / 174

We can train a model for classification using a regression loss such as the MSE
using a “one-hot vector” encoding: given a training set

(xn,yn) € RP x {1,...,C}, n=1,...,N,

we would convert the labels into a tensor z € RNXC with

B 1 if m=y,
vn, zp,m = { 0 otherwise.

For instance, with N =5 and C = 3, we would have

0

OO+~ KHEO
HOOOK

2

1 0
1 = 0
3 1
2 0

Training can be achieved by matching the output of the model with these
binary values in a MSE sense.

Frangois Fleuret CAS — Deep learning / 5.1. Cross-entropy loss 92 / 174

However, MSE is justified with a Gaussian noise around a target value that
makes sense geometrically. Beside being conceptually wrong for classification, in
practice it penalizes responses “too strongly on the right side” .

As we will see, the criterion of choice for classification is the cross-entropy.

Frangois Fleuret CAS — Deep learning / 5.1. Cross-entropy loss 93 / 174

We can generalize the logistic regression to a multi-class setup with fi, ...

functionals that we interpret as “logit values”

exp f, (x; w)
>k exp fi(x; w) ’

1
PlY=y | X=x,W=w)= Eexpfy(x;w):
from which

log uw(w | 2 = d)
po(d | W =w)puw(w)
po(d)
= log ug(d | W = w) + log pw(w) — log Z

= log i (xn, yn | W = w) + log pw (w) — log Z

= log

= log P(Y =y | X = xp, W = w) + log py (w) — log Z’
n

Zk exp fi.(x; w)

-
Depends on the outputs

f .
= ZIOg(exp fy, (xi w)) + logpw(w) —logZ’.
n A,—/

_ Depends on w

Frangois Fleuret CAS — Deep learning / 5.1. Cross-entropy loss

If we ignore the penalty on w, it makes sense to minimize the average
N

” __i o exp fy, (xn; w)
Z(w) = NZ' g(Zkeprk(Xn;W))j.

n=1 N

~

P (Y=yn|X=x,)

Given two distributions p and g, their cross-entropy is defined as

H(p,q) = — > _ p(k) log q(k),
k

with the convention that Olog0 = 0. So we can re-write

exp fy, (xn; W)) ~
> exp fi(Xn; w) (|)

== 6y, (k) log Pu(Y = k| X = xy)
k

:H(ayn,/ﬁw(y: -|X:X,,)).

So & above is the average of the cross-entropy between the deterministic “true”

posterior 8, and the estimated P, (Y = - | X = xp).

Frangois Fleuret CAS — Deep learning / 5.1. Cross-entropy loss

94 / 174

95 / 174

This is precisely the value of torch.nn.CrossEntropyLoss.

>>> f = torch.tensor([[-1., -3., 4.1, [-3., 3., -1.11)
>>> target = torch.tensor([0, 1])

>>> criterion = torch.nn.CrossEntropyLoss()

>>> criterion(f, target)

tensor(2.5141)

and indeed

L) e +1 e 2.5141
—=(lo o ~ 2. :
2\ BT e 3 et e fedtel

The range of values is O for perfectly classified samples, log(C) if the posterior
is uniform, and up to +oo if the posterior distribution is “worst” than uniform.

Francois Fleuret CAS — Deep learning / 5.1. Cross-entropy loss 96 / 174

Let's consider the loss for a single sample in a two-class problem, with a
predictor with two output values. The x axis here is the activation of the
correct output unit, and the y axis is the activation of the other one.

MSE Cross-entropy

o

o = N W H» OO N 0O © =

_4L .

4 2 0 2 4 4 2 0 2 4

P = (x— 12+ (y +1)? 7 = —10g (3%5)

MSE incorrectly penalizes outputs which are perfectly valid for prediction,
contrary to cross-entropy.

Frangois Fleuret CAS — Deep learning / 5.1. Cross-entropy loss 97 / 174

The cross-entropy loss can be seen as the composition of a “log soft-max” to
normalize the score into logs of probabilities

exp a | exp ac
..., log =/—————
Seexpag gzkexpak ’

which can be done with the torch.nn.LogSoftmax module, and a read-out of
the normalized score of the correct class

(Oq, ce ,Ozc) — (Iog

1 N
L) = =1 D fyolxmi w),
n=1

which is implemented by the torch.nn.NLLLoss criterion.

>>> f = torch.tensor([[-1., -3., 4.1, [-3., 3., -1.11)
>>> target = torch.tensor([0, 1])

>>> model = nn.LogSoftmax(dim = 1)

>>> criterion = torch.nn.NLLLoss()

>>> criterion(model(f), target)

tensor(2.5141)

Hence, if a network should compute log-probabilities, it may have a
torch.nn.LogSoftmax final layer, and be trained with torch.nn.NLLLoss.

Frangois Fleuret CAS — Deep learning / 5.1. Cross-entropy loss 98 / 174
The mapping
exp a1 exp ac
(al,...,ac)>—>< e
>k €XP Ouc >k &XP o

is called soft-max since it computes a “soft arg-max Boolean label.”

>>> y = torch.tensor([[-10., -10., 10., -5. 1],

[3., 0., 0., 0.1,
- [1., 2., 3., 4.11)
>>> f = torch.nn.Softmax(1)

>>> f(y)

tensor([[2.0612e-09, 2.0612e-09, 1.0000e+00, 3.0590e-07],
[8.7005e-01, 4.3317e-02, 4.3317e-02, 4.3317e-02],
[3.2059e-02, 8.7144e-02, 2.3688e-01, 6.4391e-01]11)

Frangois Fleuret CAS — Deep learning / 5.1. Cross-entropy loss 99 / 174

Francois Fleuret

Francois Fleuret

PyTorch provides many other criteria, among which

e torch.
e torch.
e torch.
e torch.
e torch.

e torch.

nn.

nn.

nn

nn

nn

nn.

MSELoss

CrossEntropyLoss

.NLLLoss
.LiLoss
.NLLLoss2d

MultiMarginlLoss

CAS — Deep learning / 5.1. Cross-entropy loss

5.2. Stochastic gradient descent

CAS — Deep learning / 5.2. Stochastic gradient descent

100 / 174

101 / 174

To minimize a loss of the form

N
L(w) = £(F(xn; W), yn)

n=1 n(w)

the standard gradient-descent algorithm update has the form

Wip1 = wy — VL (wy).

Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 102 / 174

A straight-forward implementation would be

for e in range(nb_epochs):
output = model(train_input)
loss = criterion(output, train_target)

model.zero_grad()
loss.backward()
with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

However, the memory footprint is proportional to the full set size. This can be
mitigated by summing the gradient through “mini-batches”:

for e in range(nb_epochs):
model.zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 103 / 174

While it makes sense in principle to compute the gradient exactly, in practice:

o It takes time to compute (more exactly all our time!).

e It is an empirical estimation of an hidden quantity, and any partial sum is

also an unbiased estimate, although of greater variance.

e It is computed incrementally

N
VZ(wt) =) Ven(we),

n=1

and when we compute ¢, we have already computed 71, . ..

we could have a better estimate of w* than ws.

Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent

,fn_l, and

104 / 174

To illustrate how partial sums are good estimates, consider an ideal case where
the training set is the same set of M < N samples replicated K times. Then

M=

g(W) = I/ﬂ(f(Xn;W)a_Vn)

1

3
Il

M
S~ £(F (xmi W), yim)

1 m=

I
M=

>
Il
=

M
K Z (f(Xm; W), Ym)-

m=1

So instead of summing over all the samples and moving by 77, we can visit only
M = N/K samples and move by Kn, which would cut the computation by K.

Although this is an ideal case, there is redundancy in practice that results in

similar behaviors.

Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent

105 / 174

Francois Fleuret

Francois Fleuret

The stochastic gradient descent consists of updating the parameters w; after
every sample
Wep1 = we — NV) (we).

However this does not benefit from the speed-up of batch-processing.

The mini-batch stochastic gradient descent is the standard procedure for deep
learning. It consists of visiting the samples in “mini-batches”, each of a few
tens of samples, and updating the parameters each time.

B
Wil = W — 772 V& p(t,b)(Wt)-
b=1

The order n(t, b) to visit the samples can either be sequential, or uniform
sampling, usually without replacement.

The stochastic behavior of this procedure helps evade local minima.

CAS — Deep learning / 5.2. Stochastic gradient descent 106 / 174

So our exact gradient descent with mini-batches

for e in range(nb_epochs):
model .zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

can be modified into the mini-batch stochastic gradient descent as follows:

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

model.zero_grad()
loss.backward()
with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

CAS — Deep learning / 5.2. Stochastic gradient descent 107 / 174

Mini-batch size and loss reduction (MNIST)

—
—o—._._.
o

3 I
10 N

\.—.—.—.—.

Best train loss

1 1 1 1 1
0 60000 120000 180000 240000 300000

Nb. samples seen

Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 108 / 174

Limitation of the gradient descent

Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 109 / 174

Francois Fleuret

Francois Fleuret

The gradient descent method makes a strong assumption about the magnitude
of the “local curvature” to fix the step size, and about its isotropy so that the
same step size makes sense in all directions.

o

0K
%

rocae

s
K5
s
8%
e

2
£

%0

CAS — Deep learning / 5.2. Stochastic gradient descent

Some optimization methods leverage higher-order moments, in particular second
order to use a more accurate local model of the functional to optimize.

However for a fixed computational budget, the complexity of these methods
reduces the total number of iterations, and the eventual optimization is worst.

Deep-learning generally relies on a smarter use of the gradient, using statistics
over its past values to make a “smarter step” with the current one.

CAS — Deep learning / 5.2. Stochastic gradient descent

110 / 174

111 / 174

Momentum and moment estimation

Francois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 112 / 174

The “vanilla” mini-batch stochastic gradient descent (SGD) consists of

Wiyl = Wr — N8t,

where
B
8= Vi) (W)
b=1

is the gradient summed over a mini-batch.

Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 113 / 174

The first improvement is the use of a “momentum” to add inertia in the choice
of the step direction

U = yUe—1 + N8t

Wiyl = Wr — Ut.

(Rumelhart et al., 1986)

With v = 0, this is the same as vanilla SGD.

With ~ > 0, this update has three nice properties:

e it can “go through” local barriers,

e it accelerates if the gradient does not change much:

n
(u=qu+ng)=(u=—g],
1—~
e it dampens oscillations in narrow valleys.
Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 114 / 174

-3 2 1 0 1 2 3 -3 2 1 0 1 2 3

n=50e—-2,7v=0 n=50e—-2,vy=05

Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 115 / 174

Another class of methods exploits the statistics over the previous steps to
compensate for the anisotropy of the mapping.

The Adam algorithm uses moving averages of each coordinate and its square to
rescale each coordinate separately.

The update rule is, on each coordinate separately

my = fime—1+ (1 — B1)gt

N my
my = ————
T 1-8
vi = Bavi—1 + (1 — B2)gt2
~ Vit
Vi = ——
T 1-5
. n ~
Wil = Wi — m¢

(Kingma and Ba, 2014)

This can be seen as a combination of momentum, with M, and a
per-coordinate re-scaling with ¥;.

Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 116 / 174

B1 = 0.9, B> = 0.999,
n=5.0e -2 e=1le—8,n=10e—-1

Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 117 / 174

These two core strategies have been used in multiple incarnations:

Nesterov's accelerated gradient,
Adagrad,
Adadelta,
RMSprop,
AdaMax,
Nadam ...

Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 118 / 174

5.3. PyTorch optimizers

Frangois Fleuret CAS — Deep learning / 5.3. PyTorch optimizers 119 / 174

The PyTorch module torch.optim provides many optimizers.

An optimizer has an internal state to keep quantities such as moving averages,

and operates on an iterator over Parameters.

e Values specific to the optimizer can be specified to its constructor, and

e its step method updates the internal state according to the grad attributes
of the Parameters, and updates the latter according to the internal state.

Francois Fleuret CAS - Deep learning / 5.3. PyTorch optimizers

We implemented the standard SGD as follows

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
model.zero_grad()
loss.backward()
with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

which can be re-written with the torch.optim package as

optimizer = torch.optim.SGD(model.parameters(), lr = eta)

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
optimizer.zero_grad()
loss.backward()
optimizer.step()

Francois Fleuret CAS — Deep learning / 5.3. PyTorch optimizers

120 / 174

121 / 174

Francois Fleuret

Francois Fleuret

We have at

torch.

e torch
e torch.
e torch.
e torch

e torch.

our disposal many variants of the SGD:

optim.SGD (momentum, and Nesterov's algorithm),

.optim.Adam

optim.Adadelta
optim.Adagrad

.optim.RMSprop

optim.LBFGS

An optimizer can also operate on several iterators, each corresponding to a
group of Parameters that should be handled similarly. For instance, different
layers may have different learning rates or momentums.

CAS - Deep learning / 5.3. PyTorch optimizers 122 / 174

So to use Adam, with its default setting, we just have to replace in our example

optimizer

with

optimizer =

optim.SGD(model.parameters(), lr = eta)

optim.Adam(model.parameters(), lr = eta)

ﬁ The learning rate may have to be different if the functional was not
properly scaled.

CAS - Deep learning / 5.3. PyTorch optimizers 123 / 174

Francois Fleuret

Francois Fleuret

An example putting all this together

CAS - Deep learning / 5.3. PyTorch optimizers

We now have the tools to build and train a deep network:

fully connected layers,

convolutional layers,

pooling layers,

RelLU.

And we have the tools to optimize it:

e Loss,
e back-propagation,

e stochastic gradient descent.

The only piece missing is the policy to initialize the parameters.

PyTorch initializes parameters with default rules when modules are created.
They normalize weights according to the layer sizes (Glorot and Bengio, 2010)
and behave usually very well. We will come back to this.

CAS - Deep learning / 5.3. PyTorch optimizers

124 / 174

125 / 174

Francois Fleuret

Francois Fleuret

class Net(nn.Module):
def __init__(self):
super (Net, self).__init__()
self.convl = nn.Conv2d(1, 32, kernel_size = 5)
self.conv2 nn.Conv2d (32, 64, kernel_size = 5)
self.fcl = nn.Linear (256, 200)
self.fc2 = nn.Linear (200, 10)

def forward(self, x):

= F.relu(F.max_pool2d(self.convl(x), kernel_size = 3))
= F.relu(F.max_pool2d(self.conv2(x), kernel_size = 2))
= x.view(x.size(0), -1)

= F.relu(self.fc1(x))

= self.fc2(x)

return x

LT T I

CAS - Deep learning / 5.3. PyTorch optimizers 126 / 174

train_set = torchvision.datasets.MNIST(’./data/mnist/’,

train = True, download = True)
train_input = train_set.train_data.view(-1, 1, 28, 28).float()
train_target = train_set.train_labels

1r, nb_epochs, batch_size = le-1, 10, 100
model = Net()

optimizer = torch.optim.SGD(model.parameters(), lr = 1lr)
criterion = nn.CrossEntropyLoss()

model.to(device)
criterion.to(device)
train_input, train_target = train_input.to(device), train_target.to(device)

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu) .div_(std)

for e in range(nb_epochs):
for input, target in zip(train_input.split(batch_size),
train_target.split(batch_size)):

output = model (input)

loss = criterion(output, target)
optimizer.zero_grad()

loss.backward()

optimizer.step()

CAS — Deep learning / 5.3. PyTorch optimizers 127 / 174

5.6. Architecture choice and training protocol

Frangois Fleuret CAS — Deep learning / 5.6. Architecture choice and training protocol 128 / 174

Choosing the network structure is a difficult exercise. There is no silver bullet.

e Re-use something “well known, that works”, or at least start from there,
o split feature extraction / inference (although this is debatable),

o modulate the capacity until it overfits a small subset, but does not overfit /
underfit the full set,

e capacity increases with more layers, more channels, larger receptive fields,
or more units,

e regularization to reduce the capacity or induce sparsity,
e identify common paths for siamese-like,
o identify what path(s) or sub-parts need more/less capacity,

e use prior knowledge about the "scale of meaningful context” to size filters
/ combinations of filters (e.g. knowing the size of objects in a scene, the
max duration of a sound snippet that matters),

o grid-search all the variations that come to mind (and hopefully have farms
of GPUs to do so).

We will re-visit this list with additional regularization / normalization methods.

Frangois Fleuret CAS — Deep learning / 5.6. Architecture choice and training protocol 129 / 174

Regarding the learning rate, for training to succeed it has to

e reduce the loss quickly = large learning rate,
e not be trapped in a bad minimum = large learning rate,
e not bounce around in narrow valleys = small learning rate, and

e not oscillate around a minimum = small learning rate.

These constraints lead to a general policy of using a larger step size first, and
a smaller one in the end.

The practical strategy is to look at the losses and error rates across epochs and
pick a learning rate and learning rate adaptation. For instance by reducing it at
discrete pre-defined steps, or with a geometric decay.

Frangois Fleuret CAS — Deep learning / 5.6. Architecture choice and training protocol 130 / 174

CIFAR10 data-set

o
ol had - =D

32 x 32 color images, 50,000 train samples, 10,000 test samples.

(Krizhevsky, 2009, chap. 3)

Francois Fleuret CAS — Deep learning / 5.6. Architecture choice and training protocol 131 / 174

Small convnet on CIFAR10, cross-entropy, batch size 100, n = 1e — 1.

0.75
1g 0.7
0.65
0.1 0.6 Pry
[} F &
8 S
- 8
055 <
001 ¢ 05
0.45
Train loss
Test accuracy
0.001 : l ! L 0.4
0 10 20 30 40 50
Nb. epochs
Frangois Fleuret CAS — Deep learning / 5.6. Architecture choice and training protocol 132 / 174
Small convnet on CIFAR10, cross-entropy, batch size 100
0.1F 4 0.6 F)
[} F] &
S] 5
-] 8
4 055 <
0.01 | 4 05
Train loss (Ir=2e-1)]
Train loss (Ir=1e-1) = 4 0.45
Train loss (Ir=1e-2) —— l
0.001 L L 1 1 0.4
0 10 20 30 40 50

Nb. epochs

Frangois Fleuret CAS — Deep learning / 5.6. Architecture choice and training protocol 133 / 174

Using n = 1le — 1 for 25 epochs, then reducing it.

1 F
01
(2] F
[%2]
o
-
0.01
[Train loss (no change)
Train loss (Ir2=7e-2) =
Train loss (Ir2=5e-2) =— 7
Train loss (Ir2=2e-2) ——
0.001 ' ' ' '
0 10 20 30 40 50
Nb. epochs
Frangois Fleuret CAS — Deep learning / 5.6. Architecture choice and training protocol

While the test error still goes down, the test loss may increase, as it gets even
worse on misclassified examples, and decreases less on the ones getting fixed.

1 F
0.1 ¢
(2] F
(%]
o
-
0.01
Test loss
Train loss
Test accuracy
0.001 ' ' ' '
0 10 20 30 40 50
Nb. epochs

Frangois Fleuret CAS — Deep learning / 5.6. Architecture choice and training protocol

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

Accuracy

Accuracy

134 / 174

135 / 174

We can plot the train and test distributions of the per-sample loss

exp(fy (X; w))
2k exp(fi(X; w))

through epochs to visualize the over-fitting.

£ =—lo

Epoch 1 Epoch 2 Epocha
Train Train Train
025 Tost 025 Tost 025 Tost
oz} oz} o2}
015 o1 015
o1l o1} oaf
o0s | oos | o0s |
o 3 o
105 10% 10 10° 10°% 103 10? 10t 105 10% 10 10t
Epoch 7 Epoch 9 Epoch 15
Train Train Train
025 Test 025 Test 025 Tost
o2} 02 02
015 015 015
oaf o1 01
005 | 005 005
0 0 0
10% 10% 10 10* 10% 10% 10 10* 10% 10% 10 10"
Epoch 25 Epoch 35 Epoch 50
Train Train Train
025 Test 025 Test 025 Test
02 o2} 02
015 osf 015
o1 o1} 01
005 oos | 005
o 3 0
10% 10% 10? 10* 10% 10° 107 10t 10% 10 10% 10°
Frangois Fleuret CAS — Deep learning / 5.6. Architecture choice and training protocol 136 / 174

7.2. Networks for image classification

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification 137 / 174

Image classification, standard convnets

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification 138 / 174

The most standard networks for image classification are the LeNet family (leCun
et al., 1998), and its modern extensions, among which AlexNet (Krizhevsky
et al., 2012) and VGGNet (Simonyan and Zisserman, 2014).

They share a common structure of several convolutional layers seen as a feature
extractor, followed by fully connected layers seen as a classifier.

The performance of AlexNet was a wake-up call for the computer vision
community, as it vastly out-performed other methods in spite of its simplicity.

Recent advances rely on moving from standard convolutional layers to local
complex architectures to reduce the model size.

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification 139 / 174

Francois Fleuret

Francois Fleuret

torchvision.models provides a collection of reference networks for computer
vision, e.g.:

import torchvision
alexnet = torchvision.models.alexnet()

The trained models can be obtained by passing pretrained = True to the
constructor(s). This may involve an heavy download given there size.

ﬁ The networks from PyTorch listed in the coming slides may differ slightly
from the reference papers which introduced them historically.

CAS — Deep learning / 7.2. Networks for image classification

LeNet5 (LeCun et al., 1989). 10 classes, input 1 x 28 x 28.

(features): Sequential (

(0): Conv2d(1l, 6, kernel_size=(5, 5), stride=(1, 1))

(1): ReLU (inplace)

(2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

(3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))

(4): ReLU (inplace)

(5): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
)

(classifier): Sequential (
(0): Linear (256 -> 120)
(1): RelLU (inplace)

(2): Linear (120 -> 84)
(3): ReLU (inplace)
(4): Linear (84 -> 10)

CAS — Deep learning / 7.2. Networks for image classification

140 / 174

141 / 174

Alexnet (Krizhevsky et al., 2012). 1,000 classes, input 3 x 224 x 224.

(features): Sequential (

(0):
(1
(2):
(3):
(4):
(5):
(6):
(7):
(8):
(9):
(10):
(11):
(12):
)

Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
ReLU (inplace)
MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
ReLU (inplace)
MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d (192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

Conv2d (384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

(classifier): Sequential (

(0):
(1):
(2):
(3):
(4):
(5):
(6):

Francois Fleuret

Krizhevsky et al. used data augmentation during training to reduce over-fitting.

Dropout (p = 0.5)
Linear (9216 -> 4096)
ReLU (inplace)
Dropout (p = 0.5)
Linear (4096 -> 4096)
ReLU (inplace)

Linear (4096 -> 1000)

CAS — Deep learning / 7.2. Networks for image classification

They generated 2,048 samples from every original training example through two

classes

of transformations:

e crop a 224 x 224 image at a random position in the original 256 x 256,
and randomly reflect it horizontally,

e apply a color transformation using a PCA model of the color distribution.

During

test the prediction is averaged over five random crops and their

horizontal reflections.

Francois Fleuret

CAS — Deep learning / 7.2. Networks for image classification

142 / 174

143 / 174

VGGNet19 (Simonyan and Zisserman, 2014). 1,000 classes, input
3 X 224 x 224. 16 convolutional layers + 3 fully connected layers.

(features): Sequential (

0):
(1):
(2):
(3):
(4):
(5):
(6):
(7
(8):
(9):

(10):
(11):
(12):
(13):
(14):
(15):
(16):
a7):
(18):
(19):
(20):
(21):
(22):
(23):
(24):
(25):
(26):
27):

/..

Francois Fleuret

Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
RelLU (inplace)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

CAS — Deep learning / 7.2. Networks for image classification

VGGNet19 (cont.)

(classifier): Sequential (
(0): Linear (25088 -> 4096)
(1): RelU (inplace)

(2): Dropout (p = 0.5)
(3): Linear (4096 -> 4096)
(4): RelLU (inplace)

(5): Dropout (p = 0.5)
(6): Linear (4096 -> 1000)

Francois Fleuret

CAS — Deep learning / 7.2. Networks for image classification

144 / 174

145 / 174

Francois Fleuret

Francois Fleuret

We can illustrate the convenience of these pre-trained models on a simple
image-classification problem.

To be sure this picture did not appear in the training data, it was not taken
from the web.

CAS — Deep learning / 7.2. Networks for image classification 146 / 174

import PIL, torch, torchvision

Imagenet class names
class_names = eval(open(’imagenet1000_clsid_to_human.txt’, ’r’).read())

Load and normalize the image

to_tensor = torchvision.transforms.ToTensor()

img = to_tensor(PIL.Image.open(’example_images/blacklab.jpg’))
img = img.view(1l, img.size(0), img.size(1), img.size(2))

img = 0.5 + 0.5 * (img - img.mean()) / img.std()

Load and evaluate the network
alexnet = torchvision.models.alexnet(pretrained = True)
alexnet.eval()

output = alexnet(img)

Prints the classes
scores, indexes = output.view(-1).sort(descending = True)

for k in range(15):
print(°%.02f’ % scores[k].item(), class_names[indexes[k].item()])

CAS — Deep learning / 7.2. Networks for image classification 147 / 174

Francois Fleuret

Francois Fleuret

12.26 Weimaraner
10.95 Chesapeake Bay retriever
10.87 Labrador retriever
10.10 Staffordshire bullterrier, Staffordshire bull terrier

0 00 00 0 0 0 0 W O O ©

.55
.40
.31
.12
.94
.53
.35
.25
.24
.12
.07

flat-coated retriever
Italian greyhound

American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier

Great Dane

German short-haired pointer
Doberman, Doberman pinscher

Rottweiler
kelpie

barrow, garden cart, lawn cart, wheelbarrow

bucket, pail
soccer ball

= ,. ” 3.2

Weimaraner Chesapeake Bay retriever

CAS — Deep learning / 7.2. Networks for image classification

Fully convolutional networks

CAS — Deep learning / 7.2. Networks for image classification

148 / 174

149 / 174

In many applications, standard convolutional networks are made fully
convolutional by converting their fully connected layers to convolutional ones.

w(+D)

}W(/+2)

Reshape

x(1+2)
x(x(+1)

Francois Fleuret CAS — Deep learning / 7.2. Networks for image classification 150 / 174

®

(1+1) x(142)

x(

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification 151 / 174

This “convolutionization” does not change anything if the input size is such
that the output has a single spatial cell, but it fully re-uses computation to

get a prediction at multiple locations when the input is larger.

x(

Francois Fleuret

w(+1)

® ® E /W(/+2>

K (1+1) (1+2)

CAS — Deep learning / 7.2. Networks for image classification

We can write a routine that transforms a series of layers from a standard
convnets to make it fully convolutional:

def convolutionize(layers, input_size):
result_layers = []

X

torch.zeros((1,) + input_size)

for m in layers:

if isinstance(m, torch.nn.Linear):
n = torch.nn.Conv2d(in_channels = x.size(1),
out_channels = m.weight.size(0),
kernel_size = (x.size(2), x.size(3)))
with torch.no_grad():
n.weight.view(-1).copy_(m.weight.view(-1))
n.bias.view(-1) .copy_(m.bias.view(-1))
m=n

result_layers.append (m)
x = m(x)

return result_layers

Francois Fleuret

This function makes the [strong and disputable] assumption that only

nn.Linear has to be converted.

CAS — Deep learning / 7.2. Networks for image classification

152 / 174

153 / 174

Francois Fleuret

Francois Fleuret

To apply this to AlexNet

model = torchvision.models.alexnet(pretrained = True)
print (model)

layers = list(model.features) + list(model.classifier)

model = nn.Sequential(*convolutionize(layers, (3, 224, 224)))
print (model)

CAS — Deep learning / 7.2. Networks for image classification

AlexNet (

(features): Sequential (
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): RelLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): RelLU (inplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU (inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): RelLU (inplace)
(10): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): RelLU (dinplace)
(12) : MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

)

(classifier): Sequential (
(0): Dropout (p = 0.5)
(1) : Linear (9216 -> 4096)
(2): RelLU (inplace)
(3): Dropout (p = 0.5)
(4): Linear (4096 -> 4096)
(5): ReLU (inplace)
(6): Linear (4096 -> 1000)

CAS — Deep learning / 7.2. Networks for image classification

154 / 174

155 / 174

Sequential (

(0):
(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):
(9):

(10):
(11):
(12):
(13):
(14):
(15):
(16):
17):
(18):
(19):

Francois Fleuret

Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
ReLU (inplace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
ReLU (inplace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d (192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

Conv2d (384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Dropout (p = 0.5)

Conv2d (256, 4096, kernel_size=(6, 6), stride=(1, 1))

ReLU (inplace)

Dropout (p = 0.5)

Conv2d (4096, 4096, kernel_size=(1, 1), stride=(1, 1))

ReLU (inplace)

Conv2d (4096, 1000, kernel_size=(1, 1), stride=(1, 1))

CAS — Deep learning / 7.2. Networks for image classification

In their “overfeat” approach, Sermanet et al. (2013) combined this with a stride
1 final max-pooling to get multiple predictions.

Doing so, they could afford parsing the scene at 6 scales to improve invariance.

Francois Fleuret

1000d 1000d
FC layers FC layers
Max-pooling Max-pooling
Conv layers Conv layers
Input image Input image
AlexNet random cropping Overfeat dense max-pooling

CAS — Deep learning / 7.2. Networks for image classification

156 / 174

157 / 174

This “convolutionization” has a practical consequence, as we can now re-use
classification networks for dense prediction without re-training.

Also, and maybe more importantly, it blurs the conceptual boundary between
“features” and ‘“classifier” and leads to an intuitive understanding of convnet
activations as gradually transitioning from appearance to semantic.

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification 158 / 174

In the case of a large output prediction map, a final prediction can be obtained
by averaging the final output map channel-wise.

If the last layer is linear, the averaging can be done first, as in the residual
networks (He et al., 2015).

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification 159 / 174

Image classification, network in network

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification 160 / 174

Lin et al. (2013) re-interpreted a convolution filter as a one-layer perceptron,
and extended it with an “MLP convolution” (aka “network in network™) to
improve the capacity vs. parameter ratio.

(Lin et al., 2013)

As for the fully convolutional networks, such local MLPs can be implemented
with 1 X 1 convolutions.

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification 161 / 174

The same notion was generalized by Szegedy et al. (2015) for their GoogLeNet,
through the use of module combining convolutions at multiple scales to let the
optimal ones be picked during training.

Filter
Filter concatenation
concatenation ﬂ
1x1 i 3x3 i 5x5 i 3x3 max pooling 1x1 5)) 7

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer Previous layer
(a) Inception module, naive version (b) Inception module with dimension reductions

(Szegedy et al., 2015)
Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification

Szegedy et al. (2015) also introduce the idea of auxiliary classifiers to help the
propagation of the gradient in the early layers.

This is motivated by the reasonable performance of shallow networks that
indicates early layers already encode informative and invariant features.

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification

162 / 174

163 / 174

The resulting GoogleNet has 12 times less parameters than AlexNet and is
more accurate on ILSVRC14 (Szegedy et al., 2015).

(Szegedy et al., 2015)

It was later extended with techniques we are going to see in the next slides:
batch-normalization (loffe and Szegedy, 2015) and pass-through a la
resnet (Szegedy et al., 2016).

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification 164 / 174

Image classification, residual networks

Francois Fleuret CAS — Deep learning / 7.2. Networks for image classification 165 / 174

We already saw the structure of the residual networks and how well they
perform on CIFAR10 (He et al., 2015).

The default residual block proposed by He et al. is of the form

f Conv
. 3 X3 |

64

and as such requires 2 X (3 X 3 X 64 + 1) X 64 ~ 73k parameters.

Francois Fleuret

64 —> 64

BN

—| ReLU

Conv

3 X3 |—

64 —> 64

. _

RelU

CAS — Deep learning / 7.2. Networks for image classification

64

To apply the same architecture to ImageNet, more channels are required, e.g.

_/

256

Conv

3 X3 —

256 —> 256

BN

—| RelLU

Conv

3 X3 |— BN +
256 —> 256

RelU

256

However, such a block requires 2 x (3 x 3 x 256 + 1) x 256 ~ 1.2m parameters.

They mitigated that requirement with what they call a bottleneck block:

f Conv
. 1 X1 | BN - ReLU

256 256 —> 64

Conv
3 X3
64 —> 64

BN [~ ReLU

64 —> 256

Conv E
— 1 X1 |——| BN aF

RelLU

256

256 X 64 + (3 x 3 x 64 + 1) x 64 + 64 x 256 ~ 70k parameters.

The encoding pushed between blocks is high-dimensional, but the “contextual
reasoning” in convolutional layers is done on a simpler feature representation.

Francois Fleuret

CAS — Deep learning / 7.2. Networks for image classification

166 / 174

167 / 174

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-

layer name | output size 18-layer 34-layer 50-layer 101-layer 152-layer
convl 112x112 77, 64, stride 2
33 max pool, stride 2
1x1,64] [1x1,64 Ix1,64
conv2.. . , .
com2x | 5656 [222: }xz Bizgj]x3 3x3,64 | x3 3x3,64 |3 3x3,64 |3
R > | 1x1,256 | | 1x1,256 | | 1x1,256 |
[1x1,128 [1x1,128] [1x1,128]
conv3x | 28x28 { ;ig :;2 }xz [gi; gg }x4 3x3,128 | x4 3x3,128 | x4 3x3,128 | x8
’ ’ | 1x1,512 | | 1x1,512 | | 1x1,512 |
[1x1,256] 1x1,256] 1x1,256]
covhx | 14x14 { 2§§ gzg } { 2§§§§2 }xé 3x3,256 | x6 || 3x3,256 |x23 || 3x3,25 |x36
R Ir | 1x1,1024 | 1x1,1024 | 1x1,1024 |
1x1,512] 1x1,512 [1x1,512]
convSx | 7x7 { iizzg }x2 [giizg }x3 3x3,512 | x3 3x3,512 | x3 3x3,512 | x3
R | 1x1,2048 | | 1x1,2048 | | 1x1,2048 |
1x1 average pool, 1000-d fc, softmax
FLOPs 18x10° [36x10°] 3.8x10° [7.6x10° [11.3x107

sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

Francois Fleuret

Francois Fleuret

CAS — Deep learning / 7.2. Networks for image classification

(He et al., 2015)

method top-5 err. (test)
VGG [41] ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’ 14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

CAS — Deep learning / 7.2. Networks for image classification

(He et al., 2015)

168 / 174

169 / 174

This was extended to the ResNeXt architecture by Xie et al. (2016), with blocks
with similar number of parameters, but split into 32 “aggregated” pathways.

Conv Conv Conv
1 X1 | BN |- RelU ==— 3 X 3 || BN |~/ RelU |=——| 1 X 1 |—— BN
256 —> 4 4—>4 4 —> 256
P o« o e 4 RelLU
256 256
Conv Conv Conv
1 X1 |~ BN | ReLU |==— 3 X 3 || BN || ReLU |=—| 1 X 1 | BN
256 — 4 4—>4 4 — 256

When equalizing the number of parameters, this architecture performs better
than a standard resnet.

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification 170 / 174

Image classification, summary

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification 171 / 174

To summarize roughly the evolution of convnets for image classification:

standard ones are extensions of LeNet5,

e everybody loves Rel U,

o state-of-the-art networks have 100s of channels and 10s of layers,
o they can (should?) be fully convolutional,

e pass-through connections allow deeper “residual’ nets,

e bottleneck local structures reduce the number of parameters,

e aggregated pathways reduce the number of parameters.

Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification

Image classification networks

LeNet5
(LeCun et al., 1989)

Bigger + GPU

Deep hierarchical CNN
(Ciresan et al., 2012)

Bigger + RelLU
Fully + dropout

convolutional
AlexNet

(Krizhevsky et al., 2012)
No recurrence
MLPConv
B

igger +
Overfeat smagllgfi\ters
(Sermanet et al., 2013)

Net in Net
(Lin et al., 2013)

Inception
A\ 4 VGG modules
Highway Net (Simonyan and Zisserman, 2014) G \L/N
. oogleNet
(Srivastava et al., 2015) (Szegedy et al., 2015)
Batch
Normalization
N4

BN-Inception

(loffe and Szegedy, 2015)
No gating

ResNet
(He et al., 2015)

Dense Aggregated
pass-through channels
\4

Wide ResNet DenseNet ResNeXt Inception-ResNet
(Zagoruyko and Komodakis, 2016) (Huang et al., 2016) (Xie et al., 2016) (Szegedy et al., 2016)
Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification

172 / 174

173 / 174

References

D.

X.

K.

D.

A.

<

Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image
classification. CoRR, abs/1202.2745, 2012.

Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics

(AISTATS), 2010.

He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):

1735-1780, 1997.

. Huang, Z. Liu, K. Weinberger, and L. van der Maaten. Densely connected convolutional

networks. CoRR, abs/1608.06993, 2016.

. loffe and C. Szegedy. Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In International Conference on Machine Learning

(ICML), 2015.

Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Krizhevsky. Learning multiple layers of features from tiny images. Master's thesis,
Department of Computer Science, University of Toronto, 2009.

. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional

neural networks. In Neural Information Processing Systems (NIPS), 2012.

. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.

Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4):541-551, 1989.

. leCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

. Lin, Q. Chen, and S. Yan. Network in network. CoRR, abs/1312.4400, 2013.
. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In Proceedings of the
NIPS Autodiff workshop, 2017.

. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323(9):533-536, 1986.

. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:

Integrated recognition, localization and detection using convolutional networks. CoRR,
abs/1312.6229, 2013.

. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. CoRR, abs/1409.1556, 2014.

. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. CoRR, abs/1505.00387,

2015.

. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich. Going deeper with convolutions. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

. Szegedy, S. loffe, and V. Vanhoucke. Inception-v4, inception-resnet and the impact of

residual connections on learning. CoRR, abs/1602.07261, 2016.

. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated residual transformations for

deep neural networks. CoRR, abs/1611.05431.pdf, 2016.

F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. CoRR,
abs/1511.07122v3, 2015.

S. Zagoruyko and N. Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.

	Weight sharing
	The autograd machinery
	Batch processing
	Padding and stride
	Dilated convolution
	Creating a module
	Limitation of the gradient descent
	Momentum and moment estimation
	An example putting all this together
	Image classification, standard convnets
	Fully convolutional networks
	Image classification, network in network
	Image classification, residual networks
	Image classification, summary

