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4.1. DAG networks
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We can generalize an MLP
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It does not specify at which point this is computed, but it will always be for the
forward-pass activations.

Also, if (a1,...,aQ) = ¢(b1,...,br,c1,...,Cs), we use
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Forward pass

w@ |
ol ) \ 50 15| 0 _ 0
RONN \ @ 5| @ /
w® /

NORN

x1M) = (M) (x(); (1)

x?) = (A (x() x1), ()

Francois Fleuret CAS — Deep learning / 4.1. DAG networks 4 /174
Backward pass, derivatives w.r.t activations
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Backward pass, derivatives w.r.t parameters
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So if we have a library of “tensor operators”, and implementations of

(X17 <oy Xd W) = ¢(Xla sy Xd W)

Ve, (X1, Xds W) = Jg (X, -0y Xds W)

(X1, 0y Xd, W) = Jgpw (X1, .o Xd5 W),
we can build an arbitrary directed acyclic graph with these operators at the
nodes, compute the response of the resulting mapping, and compute its
gradient with back-prop.
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Writing from scratch a large neural network is complex and error-prone.

Multiple frameworks provide libraries of tensor operators and mechanisms to
combine them into DAGs and automatically differentiate them.

Language(s) License Main backer
PyTorch Python BSD Facebook
Caffe2 C++4, Python Apache Facebook
TensorFlow Python, C++ Apache Google
MXNet Python, C++, R, Scala Apache Amazon
CNTK Python, C++ MIT Microsoft
Torch Lua BSD Facebook
Theano Python BSD U. of Montreal
Caffe CH++ BSD 2 clauses U. of CA, Berkeley

One approach is to define the nodes and edges of such a DAG statically (Torch,

TensorFlow, Caffe, Theano, etc.)
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In TensorFlow, to run a forward/backward pass on
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wl = tf.Variable(tf.random_normal([5, 5]))
w2 = tf.Variable(tf.random_normal ([5, 5]))
x = tf.Variable(tf.random_normal([5, 1]))
x0 = x

¢(1) (X(O); W(l)) = w0 x1 = tf.matmul(wl, x0)
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e (X(l),x(z); W(l))
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x2 = x0 + tf.matmul (w2, x1)
x3 = tf.matmul(wl, x1 + x2)
q = tf.norm(x3)

gwl, gw2 = tf.gradients(q, [wl, w2])
with tf.Session() as sess:

sess.run(tf.global_variables_initializer())
_gwl, _gw2 = sess.run([gwl, gw2])
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In our generalized DAG formulation, we have in particular implicitly allowed the
same parameters to modulate different parts of the processing.

Weight sharing
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For instance w(1) in our example parametrizes both qb(l) and ¢(3).
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This is called weight sharing.
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Weight sharing allows in particular to build siamese networks where a full
sub-network is replicated several times.
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4.2. Autograd

CAS — Deep learning / 4.2. Autograd

@

12 /174

13 /174



Conceptually, the forward pass is a standard tensor computation, and the DAG
of tensor operations is required only to compute derivatives.

When executing tensor operations, PyTorch can automatically construct
on-the-fly the graph of operations to compute the gradient of any quantity
with respect to any tensor involved.

This “autograd” mechanism (Paszke et al., 2017) has two main benefits:

e Simpler syntax: one just need to write the forward pass as a standard
sequence of Python operations,

o greater flexibility: since the graph is not static, the forward pass can be
dynamically modulated.
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A Tensor has a Boolean field requires_grad, set to False by default, which
states if PyTorch should build the graph of operations so that gradients with
respect to it can be computed.

The result of a tensorial operation has this flag to True if any of its operand
has it to True.

>>> x = torch.tensor([ 1., 2. 1)
>>> y = torch.tensor([ 4., 5. 1)
>>> z = torch.tensor([ 7., 3. 1)
>>> x.requires_grad

False

>>> (x + y).requires_grad

False

>>> z.requires_grad = True

>>> (x + z).requires_grad

True
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A Only floating point type tensors can have their gradient computed.

>>> x = torch.tensor([1., 10.])
>>> x.requires_grad = True
>>> x = torch.tensor([1, 10])
>>> x.requires_grad = True
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: only Tensors of floating point dtype can require gradients

The method requires_grad_(value = True) set requires_grad to value,
which is True by default.
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torch.autograd.grad(outputs, inputs) computes and returns the gradient
of outputs with respect to inputs.

>>> t = torch.tensor([1., 2., 4.]).requires_grad_()
>>> u = torch.tensor([10., 20.]).requires_grad_(Q)
>>> a = t.pow(2).sum() + u.log().sum()

>>> torch.autograd.grad(a, (t, u))

(tensor([2., 4., 8.]), tensor([0.1000, 0.0500]))

inputs can be a single tensor, but the result is still a [one element] tuple.

If outputs is a tuple, the result is the sum of the gradients of its elements.
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The function Tensor.backward() accumulates gradients in the grad fields of
tensors which are not results of operations, the “leaves” in the autograd graph.

>>>
>>>
>>>
>>>
>>>

E X e M

X

= torch.tensor([ -3., 2., 5. ]).requires_grad_()
x.pow(3) .sum()

.grad
.backward()
.grad

tensor([27., 12., 75.1)

This function is an alternative to torch.autograd.grad(...) and standard for
training models.
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Tensor.backward () accumulates the gradients in the different Tensors,
so one may have to set them to zero before calling it.

This accumulating behavior is desirable in particular to compute the gradient of
a loss summed over several “mini-batches,” or the gradient of a sum of losses.

Francois Fleuret
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So we can run a forward/backward pass on
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wl = torch.rand(5, 5).requires_grad_()
w2 = torch.rand(5, 5).requires_grad_(Q)
¢(1) ( ) (1)) (1) (0) x = torch.empty(5) .normal_()

X\ w = w'"/x
x0 = x

’ x2 = x0 + w2 @ x1

e (X(l),x(z); W(l)) — @ (X(l) +X(2)) x3 = wl @ (xl + x2)
q = x3.norm()
q.backward ()
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The autograd machinery
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The autograd graph is encoded through the fields grad_fn of Tensors, and the
fields next_functions of Functions.

>>> x = torch.tensor([ 1.0, -2.0, 3.0, -4.0 ]).requires_grad_()
>>> a = x.abs()

>>> s = a.sum()

>>> s

tensor(10., grad_fn=<SumBackward0>)

>>> s.grad_fn.next_functions

((<AbsBackward object at 0x7ffb2b1462b0>, 0),)
>>> s.grad_fn.next_functions[0] [0] .next_functions
((<AccumulateGrad object at 0x7ffb2b146278>, 0),)

We will come back to this later to write our own Functions.
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We can visualize the full graph built during a computation.
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This graph was generated with

https://fleuret.org/git/agtree2dot
and Graphviz.
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wl = torch.rand(20, 10).requires_grad_()

bl = torch.rand(20) .requires_grad_()
w2 = torch.rand(5, 20).requires_grad_()
b2 = torch.rand(5) .requires_grad_()

x = torch.rand(10)
torch.tanh(wl @ x + bl)
torch.tanh(w2 @ h + b2)
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target = torch.rand(5)

loss = (y - target).pow(2) .mean()
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torch.rand(3, 10, 10).requires_grad_()

blah(k, x):
for i in range(k):

x = torch.tanh(w[i] @ x)
return x

blah(1l, torch.rand(10))
blah(3, torch.rand(10))
u.dot (v)

DotBackward

(o[ t]

TanhBackward TanhBackward
MvBackward
MvBackward

[o[ ]

TanhBackward

(o[ 1]

TanhBackward

SelectBackward

SelectBackward ‘ MvBackward
SelectBackward SelectBackward

AccumulateGrad

w [3, 10, 10]
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Although they are related, the autograd graph is not the network’s
structure, but the graph of operations to compute the gradient. It can
be data-dependent and miss or replicate sub-parts of the network.
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The torch.no_grad() context switches off the autograd machinery, and can be
used for operations such as parameter updates.

w = torch.empty(10, 784).normal_(0, 1le-3).requires_grad_()
b = torch.empty(10) .normal_(0, 1le-3).requires_grad_()

for k in range(10001):
y_hat = x @ w.t() + Db
loss = (y_hat - y).pow(2).mean()

w.grad, b.grad = None, None
loss.backward()

with torch.no_grad():

w -= eta * w.grad
b -= eta * b.grad
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The detach() method creates a tensor which shares the data, but does not
require gradient computation, and is not connected to the current graph.

This method should be used when the gradient should not be propagated
beyond a variable, or to update leaf tensors.
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a = torch.tensor( 0.5).requires_grad_()
b = torch.tensor(-0.5).requires_grad_()

for k in range(100):
1 =1(a-D*x2 + (b + 1)**%2 + (a - b)*x*2
ga, gb = torch.autograd.grad(l, (a, b))
with torch.no_grad():
a -= eta * ga
b -= eta *x gb

print(’%.06f° % a.item(), ’%.06f’ % b.item())
prints

0.333333 -0.333333
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a = torch.tensor( 0.5).requires_grad_()
b = torch.tensor(-0.5).requires_grad_()

for k in range(100):
1 =1(a- D=**x2 + (b + 1)**2 + (a.detach() - b)*x*2
ga, gb = torch.autograd.grad(l, (a, b))
with torch.no_grad():
a -= eta * ga
b -= eta *x gb

print (°%.06f’ % a.item(), ’%.06f’ % b.item())
prints

1.000000 -0.000000
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Autograd can also track the computation of the gradient itself, to allows
higher-order derivatives. This is specified with create_graph = True:

>>> x = torch.tensor([ 1., 2., 3. ]).requires_grad_Q)

>>> phi = x.pow(2).sum()

>>> g1, torch.autograd.grad(phi, x, create_graph = True)
>>> gl

tensor([2., 4., 6.], grad_fn=<ThMulBackward>)

>>> psi = g1[0].exp() - gi[2].exp()

>>> g2, = torch.autograd.grad(psi, x)
>>> g2
tensor([ 14.7781, 0.0000, -806.8576])
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In-place operations may corrupt values required to compute the gradient,
and this is tracked down by autograd.

= torch.tensor([1., 2., 3.]).requires_grad_()
x.s8in()
= y.sum()

.backward ()

= x.s8in()
+=1
= y.sum()

.backward ()

= x.sin()

*=y
= y.sum()

.backward()

Traceback (most recent call last):

/..

./

RuntimeError: one of the variables needed for gradient computation has
been modified by an inplace operation

They are also prohibited on so-called “leaf” tensors, which are not the results of

operations but the initial inputs to the whole computation.
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4.3. PyTorch modules and batch processing

CAS — Deep learning / 4.3. PyTorch modules and batch processing

32/ 174

33/ 174



Elements from torch.nn.functional are autograd-compliant functions which

compute a result from provided arguments alone. This is usually imported as F.

Subclasses of torch.nn.Module are losses and network components. The latter
embed parameters to be optimized during training.

Parameters are of the type torch.nn.Parameter which is a Tensor with
requires_grad to True, and known to be a model parameter by various utility
functions, in particular torch.nn.Module.parameters().
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Functions and modules from torch.nn process batches of inputs stored
in a tensor whose first dimension indexes them, and produce a corre-
sponding tensor with the same additional dimension.

E.g. a fully connected layer RS — RP expects as input a tensor of size N x C
and computes a tensor of size N x D, where N is the number of samples and
can vary from a call to another.

Frangois Fleuret CAS — Deep learning / 4.3. PyTorch modules and batch processing
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torch.nn.functional.relu(input, inplace=False)

takes a tensor of any size as input, applies ReLU on each value to produce a
result tensor of same size.

>>> x

tensor([[ 0.8008, -0.2586, 0.5019, -0.2002, -0.7416],
[ 0.0557, 0.6046, 0.0864, -0.5929, 1.2606]1])

>>> F.relu(x)

tensor([[ 0.8008, 0.0000, 0.5019, 0.0000, 0.0000],
[ 0.0557, 0.6046, 0.0864, 0.0000, 1.2606]1]1)

inplace indicates if the operation should modify the argument itself. This may
be desirable to reduce the memory footprint of the processing.
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The module
torch.nn.Linear (in_features, out_features, bias=True)

implements a R¢ — RP fully-connected layer. It takes as input a tensor of size
N x C and produce a tensor of size N x D.

>>> f = nn.Linear(in_features = 10, out_features = 4)
>>> for n, p in f.named_parameters(): print(n, p.size())

weight torch.Size([4, 10])

bias torch.Size([4])

>>> x = torch.empty(523, 10).normal_()
>>> y = £(x)

>>> y.size()

torch.Size([523, 41)

ﬁ The weights and biases are automatically randomized at creation. We
will come back to that later.

CAS — Deep learning / 4.3. PyTorch modules and batch processing 37 / 174



Francois Fleuret

Francois Fleuret

The module
torch.nn.MSELoss ()

implements the Mean Square Error loss: the sum of the component-wise
squared difference, divided by the total number of components in the tensors.

>>> f torch.nn.MSELoss ()

>>> x = torch.tensor([[ 3. ]1)

>>> y = torch.tensor([[ 0. 11)

>>> £(x, y)

tensor(9.)

>>> x = torch.tensor([[ 3., 0., 0., 0. 11)
>>> y = torch.tensor([[ 0., 0., 0., 0. 11)
>>> f(x, y)

tensor(2.2500)

The first parameter of a loss is traditionally called the input and the second the
target. These two quantities may be of different dimensions or even types for
some losses (e.g. for classification).
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A Criteria do not accept a tensor with requires_grad to True for target.

>>> import torch

>>> f = torch.nn.MSELoss ()

>>> x = torch.tensor([ 3., 2. ]).requires_grad_()
>>> y = torch.tensor([ 0., -2. ]).requires_grad_()

>>> f(x, y)
Traceback (most recent call last):
/.../

AssertionError: nn criterions don’t compute the gradient w.r.t.
targets - please mark these tensors as not requiring gradients

CAS — Deep learning / 4.3. PyTorch modules and batch processing 39 / 174



Francois Fleuret

Francois Fleuret

Batch processing
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Functions and modules from torch.nn process samples by batches. This is
motivated by the computational speed-up it induces.

To evaluate a module on a sample, both the module’s parameters and the
sample have to be first copied into cache memory, which is fast but small.

For any model of reasonable size, only a fraction of its parameters can be kept
in cache, so a module’'s parameters have to be copied there every time it is used.

These memory transfers are slower than the computation itself.

This is the main reason for batch processing: it cuts down to one per
module per batch the number of copies of parameters to the cache.

It also cuts down the use of Python loops, which are awfully slow.
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Consider a model composed of three modules
f=fiohoh,

and we want to compute f(x1), f(x2), f(x3).

. Copying the x;s to cache memory

-- Copying the fys' parameters to cache memory

I Computing a fy(xn)

Processing samples one by one:

Time

Batch processing:

Time
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With

def timing(x, w, batch = False, nb = 101):
t = torch.zeros(nb)

for u in range(0, t.size(0)):
t0 = time.perf_counter()
if batch:
y = x.mm(w.t())
else:
y = torch.empty(x.size(0), w.size(0))
for k in range(y.size(0)): y[k] = w.mv(x[k])
y.is_cuda and torch.cuda.synchronize()
t[u] = time.perf_counter() - tO

return t.median().item()

Frangois Fleuret CAS — Deep learning / 4.3. PyTorch modules and batch processing
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X = torch.empty(2500, 1000) .normal_()

w = torch.empty (1500, 1000) .normal_()

print (’Batch-processing speed-up on CPU %.1f’ %
(timing(x, w, batch = False) / timing(x, w, batch

True)))

X, w = x.to(’cuda’), w.to(’cuda’)
print (’Batch-processing speed-up on GPU %.1f’ ¥
(timing(x, w, batch = False) / timing(x, w, batch

True)))

prints

Batch-processing speed-up on CPU 4.6
Batch-processing speed-up on GPU 144.4
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Formally, we have to revisit a bit some expressions we saw previously for fully
connected layers. We had

Vi, w) e RIxd— 7D e pdima gD = (07D,

From now on, we will use row vectors, so that we can represent a series of
samples as a 2d array with the first index being the sample's index.

X1,1 ... X1,D (Xl)T

O

which is an element of RNXD,
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To make all sample row vectors and apply a linear operator, we want

Vn, s\) = (W(/) (x,(,"l)) T) T U= (W(/)) T

which gives a tensorial expression for the full batch

S — -1 (W(/)) 4

And in torch/nn/functional.py

def linear(input, weight, bias=None):
if input.dim() == 2 and bias is not None:
# fused op is marginally faster
return torch.addmm(bias, input, weight.t())

output = input.matmul(weight.t())
if bias is not None:

output += bias
return output
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Similarly for the backward pass of a linear layer we get

Oz _To27" -y
ow() ax() ’

oz _ 92 | 0+
ox() Ox(+1) '

and
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4.4. Convolutions
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If they were handled as normal “unstructured” vectors, large-dimension signals
such as sound samples or images would require models of intractable size.

For instance a linear layer taking a 256 x 256 RGB image as input, and
producing an image of same size would require

(256 x 256 x 3)? ~ 3.87e+10

parameters, with the corresponding memory footprint (~150Gb !), and excess
of capacity.
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Moreover, this requirement is inconsistent with the intuition that such large
signals have some “invariance in translation”. A representation meaningful at

a certain location can / should be used everywhere.

A convolution layer embodies this idea. It applies the same linear
transformation locally, everywhere, and preserves the signal structure.
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Output

W—w-4+1
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Formally, in 1d, given
x = (x1,...,Xw)

and a “convolution kernel” (or “filter”) of width w
u=(u1,...,uw)

the convolution x ® u is a vector of size W — w + 1, with

w
(x®u)i = Xi—14jUj
j=1

= (X5, Xitw_1) - U
for instance

(1,2,3,4) ®(3,2) = (3+ 4,6 + 6,9 + 8) = (7,12,17).

C This differs from the usual convolution since the kernel and the signal
are both visited in increasing index order.
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Convolution can implement in particular differential operators, e.g.

(0,0,0,0,1,2,3,4,4,4,4) ® (—1,1) = (0,0,0,1,1,1,1,0,0,0).

m@@m_ﬂ—m_

or crude “template matcher”’, e.g.

B 11—

Both of these computation examples are indeed “invariant by translation”.
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It generalizes naturally to a multi-dimensional input, although specification can
become complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input
(i.e. a multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped

across channels, just across rows and columns.

In this case, if the input tensor is of size C x H x W, and the kernel is
C X hx w, the outputis (H—h+1) x (W —w+1).

C We say “2d signal” even though it has C channels, since it is a feature
vector indexed by a 2d location without structure on the feature indexes.

In a standard convolution layer, D such convolutions are combined to generate
aDx(H—h+1)x (W —w+ 1) output.
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Input
Output

Kernels W—-—w4+1

D H—h+1
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Note that a convolution preserves the signal support structure.

A 1d signal is converted into a 1d signal, a 2d signal into a 2d, and neighboring
parts of the input signal influence neighboring parts of the output signal.

A 3d convolution can be used if the channel index has some metric meaning,
such as time for a series of grayscale video frames. Otherwise swiping across
channels makes no sense.
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We usually refer to one of the channels generated by a convolution layer as an
activation map.

The sub-area of an input map that influences a component of the output as the
receptive field of the latter.

In the context of convolutional networks, a standard linear layer is called a fully
connected layer since every input influences every output.
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torch.nn.functional.conv2d(input, weight, bias=None,
stride=1, padding=0, dilation=1, groups=1)

Implements a 2d convolution, where weight contains the kernels, and is
D x C x h X w, bias is of dimension D, input is of dimension

NxCxHxW
and the result is of dimension

NxDx(H—-h+1)x(W-—-w-+1).

>>> weight = torch.empty(5, 4, 2, 3).normal_()

>>> bias = torch.empty(5) .normal_()

>>> input = torch.empty(117, 4, 10, 3).normal_()

>>> output = torch.nn.functional.conv2d(input, weight, bias)
>>> output.size()

torch.Size([117, 5, 9, 11)

Similar functions implement 1d and 3d convolutions.
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x = mnist_train.train_datal[12].float().view(1, 1, 28, 28)

weight = torch.empty(5, 1, 3, 3)

weight [0, 0] = torch.temnsor([ [ 0., 0., 0.1,

[ 0., 1., 0.1,

[ 0., 0., 0.101)
weight[1, 0] = torch.tensor([ [ 1., 1., 1.1,

[ 1., 1., 1.1,

[ 1., 1., 1.1 D
weight[2, 0] = torch.temsor([ [ -1., 0., 1.1,

[-1., 0., 1.1,

[_1-: o: 1-]])
weight[3, 0] = torch.tensor([ [ -1., -1., -1. 1,

[ 0., 0., 0.1,

[ 1., 1., 1.1 1)
weight[4, 0] = torch.temsor([ [ 0., -1., 0.1,

[-1., 4., -1. 1],

[ 0., -1., 0.11)

y = torch.nn.functional.conv2d(x, weight)
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class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1,
groups=1, bias=True)

Wraps the convolution into a Module, with the kernels and biases as Parameter
properly randomized at creation.

The kernel size is either a pair (h, w) or a single value k interpreted as (k, k).

>>> f = nn.Conv2d(in_channels = 4, out_channels = 5, kernel_size = (2, 3))
>>> for n, p in f.named_parameters(): print(n, p.size())

weight torch.Size([5, 4, 2, 31)

bias torch.Size([5])

>>> x = torch.empty(117, 4, 10, 3).normal_()
>>>y = £(x)

>>> y.size()

torch.Size([117, 5, 9, 11)
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Padding and stride
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Convolutions have two additional standard parameters:

e The padding specifies the size of a zeroed frame added around the input,

o the stride specifies a step size when moving the kernel across the signal.
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Here with C x 3 x 5 as input, a padding of (2,1), a stride of (2,2), and a

kernel of size C X 3 x 3, the output is 1 x 3 x 3.

 —
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
>
1 Input
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Output

@) @) @)
@) @) @)
@) @) [ ]

ﬁ A convolution with a stride greater than 1 may not cover the input map

completely, hence may ignore some of the input values.
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Dilated convolution
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Convolution operations admit one more standard parameter that we have not
discussed yet: The dilation, which modulates the expansion of the filter
support (Yu and Koltun, 2015).

It is 1 for standard convolutions, but can be greater, in which case the resulting
operation can be envisioned as a convolution with a regularly sparsified filter.

This notion comes from signal processing, where it is referred to as algorithme a
trous, hence the term sometime used of “convolution a trous’.
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Dilation = 1

—>
Output
Input
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Dilation = 2
>
Output
Input

Frangois Fleuret CAS — Deep learning / 4.4. Convolutions 69 / 174



A convolution with a 1d kernel of size k and dilation d can be interpreted as a
convolution with a filter of size 1 + (k — 1)d with only k non-zero coefficients.

For with kK = 3 and d = 4, the difference between the input map size and the
output map sizeis 1+ (3 —-1)4—1=38.

>>> x = torch.empty(1, 1, 20, 30).normal_()

>>> 1 = nn.Conv2d(1l, 1, kernel_size = 3, dilation = 4)
>>> 1(x) .size()

torch.Size([1, 1, 12, 22])
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Having a dilation greater than one increases the units’ receptive field size
without increasing the number of parameters.

Convolutions with stride or dilation strictly greater than one reduce the
activation map size, for instance to make a final classification decision.

Such networks have the advantage of simplicity:

e non-linear operations are only in the activation function,

e joint operations that combine multiple activations to produce one are only
in linear layers.
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4.5. Pooling
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The historical approach to compute a low-dimension signal (e.g. a few scores)
from a high-dimension one (e.g. an image) was to use pooling operations.

Such an operation aims at grouping several activations into a single “more
meaningful”’ one.
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The most standard type of pooling is the max-pooling, which computes max
values over non-overlapping blocks.

For instance in 1d with a kernel of size 2:

Input

1 4 -1 0 2 -2 1 3 3 1

rw

Output

The average pooling computes average values per block instead of max values.
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Input

Output

sh
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Pooling provides invariance to any permutation inside one of the cell.

More practically, it provides a pseudo-invariance to deformations that result into
local translations.

Input

Output
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torch.nn.functional.max_pool2d(input, kernel_size,
stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False)

takes as input a N x C x H x W tensor, and a kernel size (h, w) or k
interpreted as (k, k), applies the max-pooling on each channel of each sample
separately, and produce if the paddingis0a N x C x |H/h| x | W/w] output.

>>> x = torch.empty(2, 2, 6).random_(3)
>>> x

tensor([[[ 1., 2., 2., 1., 2., 1.1,
[2., 0., 0., 0., 1., 0.11,
(2., o., 2., 1., 1., 1.7,
[0., 0., 0., 1., 2., 1.111
>>> F.max_pool2d(x, (1, 2))
tensor([[[ 2., 2., 2.1,
[2., 0., 1.11,
[ 2., 2., 1.1,
(0., 1., 2.11D

Similar functions implements 1d and 3d max-pooling, and average pooling.
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As for convolution, pooling operations can be modulated through their stride
and padding.

While for convolution the default stride is 1, for pooling it is equal to the kernel
size, but this not obligatory.

Default padding is zero.
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class torch.nn.MaxPool2d(kernel_size, stride=None,
padding=0, dilation=1,
return_indices=False, ceil_mode=False)

Wraps the max-pooling operation into a Module.

As for convolutions, the kernel size is either a pair (h, w) or a single value k
interpreted as (k, k).
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4.6. Writing a PyTorch module
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We now have all the bricks needed to build our first convolutional network from
scratch. The last technical points is the tensor shape between layers.

Both the convolutional and pooling layers take as input batches of samples,
each one being itself a 3d tensor C X H x W.

The output has the same structure, and tensors have to be explicitly reshaped
before being forwarded to a fully connected layer.

>>> from torchvision.datasets import MNIST

>>> mnist = MNIST(’./data/mnist/’, train = True, download = True)
>>> d = mnist.train_data

>>> d.size()

torch.Size ([60000, 28, 28])

>>> x = d.view(d.size(0), 1, d.size(1), d.size(2))
>>> x.size()

torch.Size ([60000, 1, 28, 28])

>>> x = x.view(x.size(0), -1)

>>> x.size()

torch.Size([60000, 784])
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A classical LeNet-like mode

Input sizes / operations

| could be:

Nb. parameters

Nb. products

1x28x28
nn.Conv2d(1, 32, kernel_size=5)
32x24x24
F.max_pool2d(., kernel_size=3)
32x8x8
F.relu(.)
32XxX8X%8
nn.Conv2d (32, 64, kernel_size=5)
64 x4 x4
F.max_pool2d(., kernel_size=2)
64 X2 X2
F.relu(.)
64X 2x2
x.view(-1, 256)
256
nn.Linear (256, 200)
200
F.relu(.)
200
nn.Linear (200, 10)
10

32x (5% 4 1) = 832

64 X (32X 5> 4 1) = 51,264

200 x (256 + 1) = 51,400

10 X (200 + 1) = 2,010

32 x 242 x 52 = 460,800

32X 64 x 4% x 5% = 819,200

200 x 256 = 51,200

10 X 200 = 2,000

Total 105,506 parameters and 1,333,200 products for the forward pass.
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Francois Fleuret CAS

— Deep learning / 4.6. Writing a PyTorch module

Creating a module

— Deep learning / 4.6. Writing a PyTorch module
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PyTorch offers a sequential container module torch.nn.Sequential to build
simple architectures.

For instance a MLP with a 10 dimension input, 2 dimension output, ReLU
activation function and two hidden layers of dimensions 100 and 50 can be
written as:

model = nn.Sequential(
nn.Linear (10, 100), nn.RelLU(Q),
nn.Linear (100, 50), nn.RelLUQ),
nn.Linear (50, 2)

)

However for any model of practical complexity, the best is to write a sub-class
of torch.nn.Module.
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To create a Module, one has to inherit from the base class and implement the
constructor __init__(self, ...) and the forward pass forward(self, x).

class Net(nn.Module):
def __init__(self):
super (Net, self).__init__()
self.convl = nn.Conv2d(1, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.fcl = nn.Linear (256, 200)
self.fc2 = nn.Linear (200, 10)

def forward(self, x):

= F.relu(F.max_pool2d(self.convl(x), kernel_size=3, stride=3))
F.relu(F.max_pool2d(self.conv2(x), kernel_size=2, stride=2))
= x.view(-1, 256)

F.relu(self.fcl1(x))

self.fc2(x)

return x

MoM oM MM
I
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Inheriting from torch.nn.Module provides many mechanisms implemented in
the superclass.

First, the (...) operator is redefined to call the forward(...) method and
run additional operations. The forward pass should be executed through this
operator and not by calling forward explicitly.

Using the class Net we just defined

model = Net()

input = torch.empty(12, 1, 28, 28).normal_()
output = model (input)

print (output.size())

prints

torch.Size([12, 10])

CAS — Deep learning / 4.6. Writing a PyTorch module

Also, all Parameters added as class attributes are seen by
Module.parameters().

class Net(nn.Module):
def __init__(self):

super (Net, self).__init__()
self.convl = nn.Conv2d(1l, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.fcl = nn.Linear (256, 200)
self.fc2 = nn.Linear (200, 10)

/.../

model = Net()

for k in model.parameters():
print(k.size())

prints

torch.Size([32, 1, 5, 5])
torch.Size([32])
torch.Size([64, 32, 5, 5])
torch.Size([64])
torch.Size([200, 256])
torch.Size ([200])
torch.Size([10, 200])
torch.Size([10])
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A Parameters added in dictionaries or arrays are not seen.

class Buggy(nn.Module):
def __init__(self):
super (Buggy, self).

self.conv = nn.Conv2d(1, 32, kernel_size=5)
self .param = Parameter(torch.zeros(123, 456))
[ nn.Linear (543, 21) ]

self.other_stuff =

model = Buggy()

for k in model.parameters():

print(k.size())

prints

torch.Size([123, 456])
torch.Size([32, 1, 5, 5])
torch.Size([32])
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A simple option is to add modules in a torch.nn.ModuleList, which is a list
of modules properly dealt with by PyTorch’'s machinery.

class AnotherNotBuggy(nn.Module):

def __init__(self):

super (AnotherNotBuggy, self).__init__()
self.conv = nn.Conv2d(1, 32, kernel_size=5)
self.param = Parameter(torch.zeros(123, 456))
nn.ModuleList ()
self.other_stuff.append(nn.Linear (543, 21))

self.other_stuff =

model = AnotherNotBuggy()

for k in model.parameters():

print(k.size())

prints

torch.Size([123, 456])
torch.Size([32, 1, 5, 5])
torch.Size([32])
torch.Size([21, 543])
torch.Size([21])
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As long as you use autograd-compliant operations, the backward pass is
implemented automatically.

This is crucial to allow the optimization of the Parameters with gradient
descent.
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5.1. Cross-entropy loss
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We can train a model for classification using a regression loss such as the MSE
using a “one-hot vector” encoding: given a training set

(xn,yn) € RP x {1,...,C}, n=1,...,N,

we would convert the labels into a tensor z € RNXC  with

B 1 if m=y,
vn, zp,m = { 0 otherwise.

For instance, with N =5 and C = 3, we would have

0

OO+~ KHEO
HOOOK

2

1 0
1 = 0
3 1
2 0

Training can be achieved by matching the output of the model with these
binary values in a MSE sense.
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However, MSE is justified with a Gaussian noise around a target value that
makes sense geometrically. Beside being conceptually wrong for classification, in
practice it penalizes responses “too strongly on the right side” .

As we will see, the criterion of choice for classification is the cross-entropy.
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We can generalize the logistic regression to a multi-class setup with fi, ...

functionals that we interpret as “logit values”

exp f, (x; w)
>k exp fi(x; w) ’

1
PlY=y | X=x,W=w)= Eexpfy(x;w):
from which

log uw(w | 2 = d)
po(d | W =w)puw(w)
po(d)
= log ug(d | W = w) + log pw(w) — log Z

= log i (xn, yn | W = w) + log pw (w) — log Z

= log

= log P(Y =y | X = xp, W = w) + log py (w) — log Z’
n

Zk exp fi.(x; w)

-
Depends on the outputs

f .
= ZIOg( exp fy, (xi w) ) + logpw(w) —logZ’.
n A,—/

_ Depends on w
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If we ignore the penalty on w, it makes sense to minimize the average
N

” __i o exp fy, (xn; w)
Z(w) = NZ' g(Zkeprk(Xn;W))j.

n=1 N

~

P (Y=yn|X=x,)

Given two distributions p and g, their cross-entropy is defined as

H(p,q) = — > _ p(k) log q(k),
k

with the convention that Olog0 = 0. So we can re-write

exp fy, (xn; W) ) ~
> exp fi(Xn; w) ( | )

== 6y, (k) log Pu(Y = k| X = xy)
k

:H(ayn,/ﬁw(y: -|X:X,,)).

So & above is the average of the cross-entropy between the deterministic “true”

posterior 8, and the estimated P, (Y = - | X = xp).
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This is precisely the value of torch.nn.CrossEntropyLoss.

>>> f = torch.tensor([[-1., -3., 4.1, [-3., 3., -1.11)
>>> target = torch.tensor([0, 1])

>>> criterion = torch.nn.CrossEntropyLoss()

>>> criterion(f, target)

tensor(2.5141)

and indeed

L) e +1 e 2.5141
—=(lo o ~ 2. :
2\ BT e 3 et e fedtel

The range of values is O for perfectly classified samples, log(C) if the posterior
is uniform, and up to +oo if the posterior distribution is “worst” than uniform.
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Let's consider the loss for a single sample in a two-class problem, with a
predictor with two output values. The x axis here is the activation of the
correct output unit, and the y axis is the activation of the other one.

MSE Cross-entropy

o

o = N W H» OO N 0O © =

_4L .

4 2 0 2 4 4 2 0 2 4

P = (x— 12+ (y +1)? 7 = —10g (3%5)

MSE incorrectly penalizes outputs which are perfectly valid for prediction,
contrary to cross-entropy.
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The cross-entropy loss can be seen as the composition of a “log soft-max” to
normalize the score into logs of probabilities

exp a | exp ac
..., log =/—————
Seexpag gzkexpak ’

which can be done with the torch.nn.LogSoftmax module, and a read-out of
the normalized score of the correct class

(Oq, ce ,Ozc) — (Iog

1 N
L) = =1 D fyolxmi w),
n=1

which is implemented by the torch.nn.NLLLoss criterion.

>>> f = torch.tensor([[-1., -3., 4.1, [-3., 3., -1.11)
>>> target = torch.tensor([0, 1])

>>> model = nn.LogSoftmax(dim = 1)

>>> criterion = torch.nn.NLLLoss()

>>> criterion(model(f), target)

tensor(2.5141)

Hence, if a network should compute log-probabilities, it may have a
torch.nn.LogSoftmax final layer, and be trained with torch.nn.NLLLoss.
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exp a1 exp ac
(al,...,ac)>—>< e
>k €XP Ouc >k &XP o

is called soft-max since it computes a “soft arg-max Boolean label.”

>>> y = torch.tensor([[-10., -10., 10., -5. 1],

[ 3., 0., 0., 0.1,
- [ 1., 2., 3., 4.11)
>>> f = torch.nn.Softmax(1)

>>> f(y)

tensor([[ 2.0612e-09, 2.0612e-09, 1.0000e+00, 3.0590e-07],
[ 8.7005e-01, 4.3317e-02, 4.3317e-02, 4.3317e-02],
[ 3.2059e-02, 8.7144e-02, 2.3688e-01, 6.4391e-01]11)
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PyTorch provides many other criteria, among which

e torch.
e torch.
e torch.
e torch.
e torch.

e torch.

nn.

nn.

nn

nn

nn

nn.

MSELoss

CrossEntropyLoss

.NLLLoss
.LiLoss
.NLLLoss2d

MultiMarginlLoss
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5.2. Stochastic gradient descent
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To minimize a loss of the form

N
L(w) = £(F(xn; W), yn)

n=1 n(w)

the standard gradient-descent algorithm update has the form

Wip1 = wy — VL (wy).
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A straight-forward implementation would be

for e in range(nb_epochs):
output = model(train_input)
loss = criterion(output, train_target)

model.zero_grad()
loss.backward()
with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

However, the memory footprint is proportional to the full set size. This can be
mitigated by summing the gradient through “mini-batches”:

for e in range(nb_epochs):
model.zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad
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While it makes sense in principle to compute the gradient exactly, in practice:

o It takes time to compute (more exactly all our time!).

e It is an empirical estimation of an hidden quantity, and any partial sum is

also an unbiased estimate, although of greater variance.

e It is computed incrementally

N
VZ(wt) =) Ven(we),

n=1

and when we compute ¢, we have already computed 71, . ..

we could have a better estimate of w* than ws.
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To illustrate how partial sums are good estimates, consider an ideal case where
the training set is the same set of M < N samples replicated K times. Then

M=

g(W) = I/ﬂ(f(Xn;W)a_Vn)

1

3
Il

M
S~ £(F (xmi W), yim)

1 m=

I
M=

>
Il
=

M
K Z (f(Xm; W), Ym)-

m=1

So instead of summing over all the samples and moving by 77, we can visit only
M = N/K samples and move by Kn, which would cut the computation by K.

Although this is an ideal case, there is redundancy in practice that results in

similar behaviors.
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The stochastic gradient descent consists of updating the parameters w; after
every sample
Wep1 = we — NV ) (we).

However this does not benefit from the speed-up of batch-processing.

The mini-batch stochastic gradient descent is the standard procedure for deep
learning. It consists of visiting the samples in “mini-batches”, each of a few
tens of samples, and updating the parameters each time.

B
Wil = W — 772 V& p(t,b)(Wt)-
b=1

The order n(t, b) to visit the samples can either be sequential, or uniform
sampling, usually without replacement.

The stochastic behavior of this procedure helps evade local minima.
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So our exact gradient descent with mini-batches

for e in range(nb_epochs):
model .zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

can be modified into the mini-batch stochastic gradient descent as follows:

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

model.zero_grad()
loss.backward()
with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad
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Mini-batch size and loss reduction (MNIST)
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Limitation of the gradient descent
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The gradient descent method makes a strong assumption about the magnitude
of the “local curvature” to fix the step size, and about its isotropy so that the
same step size makes sense in all directions.
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CAS — Deep learning / 5.2. Stochastic gradient descent

Some optimization methods leverage higher-order moments, in particular second
order to use a more accurate local model of the functional to optimize.

However for a fixed computational budget, the complexity of these methods
reduces the total number of iterations, and the eventual optimization is worst.

Deep-learning generally relies on a smarter use of the gradient, using statistics
over its past values to make a “smarter step” with the current one.
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110 / 174

111 / 174



Momentum and moment estimation
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The “vanilla” mini-batch stochastic gradient descent (SGD) consists of

Wiyl = Wr — N8t,

where
B
8= Vi) (W)
b=1

is the gradient summed over a mini-batch.
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The first improvement is the use of a “momentum” to add inertia in the choice
of the step direction

U = yUe—1 + N8t

Wiyl = Wr — Ut.

(Rumelhart et al., 1986)

With v = 0, this is the same as vanilla SGD.

With ~ > 0, this update has three nice properties:

e it can “go through” local barriers,

e it accelerates if the gradient does not change much:

n
(u=qu+ng)=(u=—g],
1—~
e it dampens oscillations in narrow valleys.
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Frangois Fleuret CAS — Deep learning / 5.2. Stochastic gradient descent 115 / 174



Another class of methods exploits the statistics over the previous steps to
compensate for the anisotropy of the mapping.

The Adam algorithm uses moving averages of each coordinate and its square to
rescale each coordinate separately.

The update rule is, on each coordinate separately

my = fime—1+ (1 — B1)gt

N my
my = ————
T 1-8
vi = Bavi—1 + (1 — B2)gt2
~ Vit
Vi = ——
T 1-5
. n ~
Wil = Wi — m¢

(Kingma and Ba, 2014)

This can be seen as a combination of momentum, with M, and a
per-coordinate re-scaling with ¥;.
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B1 = 0.9, B> = 0.999,
n=5.0e -2 e=1le—8,n=10e—-1
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These two core strategies have been used in multiple incarnations:

Nesterov's accelerated gradient,
Adagrad,
Adadelta,
RMSprop,
AdaMax,
Nadam ...
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5.3. PyTorch optimizers
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The PyTorch module torch.optim provides many optimizers.

An optimizer has an internal state to keep quantities such as moving averages,

and operates on an iterator over Parameters.

e Values specific to the optimizer can be specified to its constructor, and

e its step method updates the internal state according to the grad attributes
of the Parameters, and updates the latter according to the internal state.

Francois Fleuret CAS - Deep learning / 5.3. PyTorch optimizers

We implemented the standard SGD as follows

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
model.zero_grad()
loss.backward()
with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

which can be re-written with the torch.optim package as

optimizer = torch.optim.SGD(model.parameters(), lr = eta)

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
optimizer.zero_grad()
loss.backward()
optimizer.step()
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We have at

torch.

e torch
e torch.
e torch.
e torch

e torch.

our disposal many variants of the SGD:

optim.SGD (momentum, and Nesterov's algorithm),

.optim.Adam

optim.Adadelta
optim.Adagrad

.optim.RMSprop

optim.LBFGS

An optimizer can also operate on several iterators, each corresponding to a
group of Parameters that should be handled similarly. For instance, different
layers may have different learning rates or momentums.
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So to use Adam, with its default setting, we just have to replace in our example

optimizer

with

optimizer =

optim.SGD(model.parameters(), lr = eta)

optim.Adam(model.parameters(), lr = eta)

ﬁ The learning rate may have to be different if the functional was not
properly scaled.
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An example putting all this together

CAS - Deep learning / 5.3. PyTorch optimizers

We now have the tools to build and train a deep network:

fully connected layers,

convolutional layers,

pooling layers,

RelLU.

And we have the tools to optimize it:

e Loss,
e back-propagation,

e stochastic gradient descent.

The only piece missing is the policy to initialize the parameters.

PyTorch initializes parameters with default rules when modules are created.
They normalize weights according to the layer sizes (Glorot and Bengio, 2010)
and behave usually very well. We will come back to this.
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class Net(nn.Module):
def __init__(self):
super (Net, self).__init__()
self.convl = nn.Conv2d(1, 32, kernel_size = 5)
self.conv2 nn.Conv2d (32, 64, kernel_size = 5)
self.fcl = nn.Linear (256, 200)
self.fc2 = nn.Linear (200, 10)

def forward(self, x):

= F.relu(F.max_pool2d(self.convl(x), kernel_size = 3))
= F.relu(F.max_pool2d(self.conv2(x), kernel_size = 2))
= x.view(x.size(0), -1)

= F.relu(self.fc1(x))

= self.fc2(x)

return x

LT T I
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train_set = torchvision.datasets.MNIST(’./data/mnist/’,

train = True, download = True)
train_input = train_set.train_data.view(-1, 1, 28, 28).float()
train_target = train_set.train_labels

1r, nb_epochs, batch_size = le-1, 10, 100
model = Net()

optimizer = torch.optim.SGD(model.parameters(), lr = 1lr)
criterion = nn.CrossEntropyLoss()

model.to(device)
criterion.to(device)
train_input, train_target = train_input.to(device), train_target.to(device)

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu) .div_(std)

for e in range(nb_epochs):
for input, target in zip(train_input.split(batch_size),
train_target.split(batch_size)):

output = model (input)

loss = criterion(output, target)
optimizer.zero_grad()

loss.backward()

optimizer.step()
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5.6. Architecture choice and training protocol
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Choosing the network structure is a difficult exercise. There is no silver bullet.

e Re-use something “well known, that works”, or at least start from there,
o split feature extraction / inference (although this is debatable),

o modulate the capacity until it overfits a small subset, but does not overfit /
underfit the full set,

e capacity increases with more layers, more channels, larger receptive fields,
or more units,

e regularization to reduce the capacity or induce sparsity,
e identify common paths for siamese-like,
o identify what path(s) or sub-parts need more/less capacity,

e use prior knowledge about the "scale of meaningful context” to size filters
/ combinations of filters (e.g. knowing the size of objects in a scene, the
max duration of a sound snippet that matters),

o grid-search all the variations that come to mind (and hopefully have farms
of GPUs to do so).

We will re-visit this list with additional regularization / normalization methods.
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Regarding the learning rate, for training to succeed it has to

e reduce the loss quickly = large learning rate,
e not be trapped in a bad minimum = large learning rate,
e not bounce around in narrow valleys = small learning rate, and

e not oscillate around a minimum = small learning rate.

These constraints lead to a general policy of using a larger step size first, and
a smaller one in the end.

The practical strategy is to look at the losses and error rates across epochs and
pick a learning rate and learning rate adaptation. For instance by reducing it at
discrete pre-defined steps, or with a geometric decay.
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CIFAR10 data-set

o
ol had - =D

32 x 32 color images, 50,000 train samples, 10,000 test samples.

(Krizhevsky, 2009, chap. 3)
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Small convnet on CIFAR10, cross-entropy, batch size 100, n = 1e — 1.
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Small convnet on CIFAR10, cross-entropy, batch size 100
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Using n = 1le — 1 for 25 epochs, then reducing it.

1 F
01
(2] F
[%2]
o
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While the test error still goes down, the test loss may increase, as it gets even
worse on misclassified examples, and decreases less on the ones getting fixed.
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We can plot the train and test distributions of the per-sample loss

exp(fy (X; w))
2k exp(fi(X; w))

through epochs to visualize the over-fitting.

£ =—lo

Epoch 1 Epoch 2 Epocha
Train Train Train
025 Tost 025 Tost 025 Tost
oz} oz} o2}
015 o1 015
o1l o1} oaf
o0s | oos | o0s |
o 3 o
105 10% 10 10° 10°% 103 10? 10t 105 10% 10 10t
Epoch 7 Epoch 9 Epoch 15
Train Train Train
025 Test 025 Test 025 Tost
o2} 02 02
015 015 015
oaf o1 01
005 | 005 005
0 0 0
10% 10% 10 10* 10% 10% 10 10* 10% 10% 10 10"
Epoch 25 Epoch 35 Epoch 50
Train Train Train
025 Test 025 Test 025 Test
02 o2} 02
015 osf 015
o1 o1} 01
005 oos | 005
o 3 0
10% 10% 10? 10* 10% 10° 107 10t 10% 10 10% 10°
Frangois Fleuret CAS — Deep learning / 5.6. Architecture choice and training protocol 136 / 174

7.2. Networks for image classification
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Image classification, standard convnets
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The most standard networks for image classification are the LeNet family (leCun
et al., 1998), and its modern extensions, among which AlexNet (Krizhevsky
et al., 2012) and VGGNet (Simonyan and Zisserman, 2014).

They share a common structure of several convolutional layers seen as a feature
extractor, followed by fully connected layers seen as a classifier.

The performance of AlexNet was a wake-up call for the computer vision
community, as it vastly out-performed other methods in spite of its simplicity.

Recent advances rely on moving from standard convolutional layers to local
complex architectures to reduce the model size.
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torchvision.models provides a collection of reference networks for computer
vision, e.g.:

import torchvision
alexnet = torchvision.models.alexnet()

The trained models can be obtained by passing pretrained = True to the
constructor(s). This may involve an heavy download given there size.

ﬁ The networks from PyTorch listed in the coming slides may differ slightly
from the reference papers which introduced them historically.
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LeNet5 (LeCun et al., 1989). 10 classes, input 1 x 28 x 28.

(features): Sequential (

(0): Conv2d(1l, 6, kernel_size=(5, 5), stride=(1, 1))

(1): ReLU (inplace)

(2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

(3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))

(4): ReLU (inplace)

(5): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
)

(classifier): Sequential (
(0): Linear (256 -> 120)
(1): RelLU (inplace)

(2): Linear (120 -> 84)
(3): ReLU (inplace)
(4): Linear (84 -> 10)
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Alexnet (Krizhevsky et al., 2012). 1,000 classes, input 3 x 224 x 224.

(features): Sequential (

(0):
(1
(2):
(3):
(4):
(5):
(6):
(7):
(8):
(9):
(10):
(11):
(12):
)

Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
ReLU (inplace)
MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
ReLU (inplace)
MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d (192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

Conv2d (384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

(classifier): Sequential (

(0):
(1):
(2):
(3):
(4):
(5):
(6):

Francois Fleuret

Krizhevsky et al. used data augmentation during training to reduce over-fitting.

Dropout (p = 0.5)
Linear (9216 -> 4096)
ReLU (inplace)
Dropout (p = 0.5)
Linear (4096 -> 4096)
ReLU (inplace)

Linear (4096 -> 1000)

CAS — Deep learning / 7.2. Networks for image classification

They generated 2,048 samples from every original training example through two

classes

of transformations:

e crop a 224 x 224 image at a random position in the original 256 x 256,
and randomly reflect it horizontally,

e apply a color transformation using a PCA model of the color distribution.

During

test the prediction is averaged over five random crops and their

horizontal reflections.

Francois Fleuret
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VGGNet19 (Simonyan and Zisserman, 2014). 1,000 classes, input
3 X 224 x 224. 16 convolutional layers + 3 fully connected layers.

(features): Sequential (

0):
(1):
(2):
(3):
(4):
(5):
(6):
(7
(8):
(9):

(10):
(11):
(12):
(13):
(14):
(15):
(16):
a7):
(18):
(19):
(20):
(21):
(22):
(23):
(24):
(25):
(26):
27):

/..

Francois Fleuret

Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
RelLU (inplace)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
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VGGNet19 (cont.)

(classifier): Sequential (
(0): Linear (25088 -> 4096)
(1): RelU (inplace)

(2): Dropout (p = 0.5)
(3): Linear (4096 -> 4096)
(4): RelLU (inplace)

(5): Dropout (p = 0.5)
(6): Linear (4096 -> 1000)

Francois Fleuret

CAS — Deep learning / 7.2. Networks for image classification

144 / 174

145 / 174



Francois Fleuret

Francois Fleuret

We can illustrate the convenience of these pre-trained models on a simple
image-classification problem.

To be sure this picture did not appear in the training data, it was not taken
from the web.

CAS — Deep learning / 7.2. Networks for image classification 146 / 174

import PIL, torch, torchvision

# Imagenet class names
class_names = eval(open(’imagenet1000_clsid_to_human.txt’, ’r’).read())

# Load and normalize the image

to_tensor = torchvision.transforms.ToTensor()

img = to_tensor(PIL.Image.open(’example_images/blacklab.jpg’))
img = img.view(1l, img.size(0), img.size(1), img.size(2))

img = 0.5 + 0.5 * (img - img.mean()) / img.std()

# Load and evaluate the network
alexnet = torchvision.models.alexnet(pretrained = True)
alexnet.eval()

output = alexnet(img)

# Prints the classes
scores, indexes = output.view(-1).sort(descending = True)

for k in range(15):
print(°%.02f’ % scores[k].item(), class_names[indexes[k].item()])
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12.26 Weimaraner
10.95 Chesapeake Bay retriever
10.87 Labrador retriever
10.10 Staffordshire bullterrier, Staffordshire bull terrier
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.55
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.94
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.07

flat-coated retriever
Italian greyhound

American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier

Great Dane

German short-haired pointer
Doberman, Doberman pinscher

Rottweiler
kelpie

barrow, garden cart, lawn cart, wheelbarrow

bucket, pail
soccer ball

= ,. ” 3.2

Weimaraner Chesapeake Bay retriever
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Fully convolutional networks
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In many applications, standard convolutional networks are made fully
convolutional by converting their fully connected layers to convolutional ones.

w(+D)

}W(/+2)

Reshape

x(1+2)
x( x(+1)
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This “convolutionization” does not change anything if the input size is such
that the output has a single spatial cell, but it fully re-uses computation to

get a prediction at multiple locations when the input is larger.

x(

Francois Fleuret

w(+1)

® ® E /W(/+2>

K (1+1) (1+2)
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We can write a routine that transforms a series of layers from a standard
convnets to make it fully convolutional:

def convolutionize(layers, input_size):
result_layers = []

X

torch.zeros((1, ) + input_size)

for m in layers:

if isinstance(m, torch.nn.Linear):
n = torch.nn.Conv2d(in_channels = x.size(1),
out_channels = m.weight.size(0),
kernel_size = (x.size(2), x.size(3)))
with torch.no_grad():
n.weight.view(-1).copy_(m.weight.view(-1))
n.bias.view(-1) .copy_(m.bias.view(-1))
m=n

result_layers.append (m)
x = m(x)

return result_layers

Francois Fleuret

This function makes the [strong and disputable] assumption that only

nn.Linear has to be converted.
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To apply this to AlexNet

model = torchvision.models.alexnet(pretrained = True)
print (model)

layers = list(model.features) + list(model.classifier)

model = nn.Sequential(*convolutionize(layers, (3, 224, 224)))
print (model)
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AlexNet (

(features): Sequential (
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): RelLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): RelLU (inplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU (inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): RelLU (inplace)
(10): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): RelLU (dinplace)
(12) : MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

)

(classifier): Sequential (
(0): Dropout (p = 0.5)
(1) : Linear (9216 -> 4096)
(2): RelLU (inplace)
(3): Dropout (p = 0.5)
(4): Linear (4096 -> 4096)
(5): ReLU (inplace)
(6): Linear (4096 -> 1000)
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Sequential (

(0):
(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):
(9):

(10):
(11):
(12):
(13):
(14):
(15):
(16):
17):
(18):
(19):
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Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
ReLU (inplace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
ReLU (inplace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Conv2d (192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

Conv2d (384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)

MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

Dropout (p = 0.5)

Conv2d (256, 4096, kernel_size=(6, 6), stride=(1, 1))

ReLU (inplace)

Dropout (p = 0.5)

Conv2d (4096, 4096, kernel_size=(1, 1), stride=(1, 1))

ReLU (inplace)

Conv2d (4096, 1000, kernel_size=(1, 1), stride=(1, 1))
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In their “overfeat” approach, Sermanet et al. (2013) combined this with a stride
1 final max-pooling to get multiple predictions.

Doing so, they could afford parsing the scene at 6 scales to improve invariance.

Francois Fleuret

1000d 1000d
FC layers FC layers
Max-pooling Max-pooling
Conv layers Conv layers
Input image Input image
AlexNet random cropping Overfeat dense max-pooling
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This “convolutionization” has a practical consequence, as we can now re-use
classification networks for dense prediction without re-training.

Also, and maybe more importantly, it blurs the conceptual boundary between
“features” and ‘“classifier” and leads to an intuitive understanding of convnet
activations as gradually transitioning from appearance to semantic.
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In the case of a large output prediction map, a final prediction can be obtained
by averaging the final output map channel-wise.

If the last layer is linear, the averaging can be done first, as in the residual
networks (He et al., 2015).
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Image classification, network in network
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Lin et al. (2013) re-interpreted a convolution filter as a one-layer perceptron,
and extended it with an “MLP convolution” (aka “network in network™) to
improve the capacity vs. parameter ratio.

(Lin et al., 2013)

As for the fully convolutional networks, such local MLPs can be implemented
with 1 X 1 convolutions.
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The same notion was generalized by Szegedy et al. (2015) for their GoogLeNet,
through the use of module combining convolutions at multiple scales to let the
optimal ones be picked during training.

Filter
Filter concatenation
concatenation ﬂ
1x1 i 3x3 i 5x5 i 3x3 max pooling 1x1 5 ) ) 7

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer Previous layer
(a) Inception module, naive version (b) Inception module with dimension reductions

(Szegedy et al., 2015)
Frangois Fleuret CAS — Deep learning / 7.2. Networks for image classification

Szegedy et al. (2015) also introduce the idea of auxiliary classifiers to help the
propagation of the gradient in the early layers.

This is motivated by the reasonable performance of shallow networks that
indicates early layers already encode informative and invariant features.
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The resulting GoogleNet has 12 times less parameters than AlexNet and is
more accurate on ILSVRC14 (Szegedy et al., 2015).

(Szegedy et al., 2015)

It was later extended with techniques we are going to see in the next slides:
batch-normalization (loffe and Szegedy, 2015) and pass-through a la
resnet (Szegedy et al., 2016).
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Image classification, residual networks
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We already saw the structure of the residual networks and how well they
perform on CIFAR10 (He et al., 2015).

The default residual block proposed by He et al. is of the form

f Conv
. 3 X3 |

64

and as such requires 2 X (3 X 3 X 64 + 1) X 64 ~ 73k parameters.

Francois Fleuret

64 —> 64

BN

—| ReLU

Conv

3 X3 |—

64 —> 64

. _

RelU
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64

To apply the same architecture to ImageNet, more channels are required, e.g.

_/

256

Conv

3 X3 —

256 —> 256

BN

—| RelLU

Conv

3 X3 |— BN +
256 —> 256

RelU

256

However, such a block requires 2 x (3 x 3 x 256 + 1) x 256 ~ 1.2m parameters.

They mitigated that requirement with what they call a bottleneck block:

f Conv
. 1 X1 | BN - ReLU

256 256 —> 64

Conv
3 X3
64 —> 64

BN [~ ReLU

64 —> 256

Conv E
— 1 X1 |——| BN aF

RelLU

256

256 X 64 + (3 x 3 x 64 + 1) x 64 + 64 x 256 ~ 70k parameters.

The encoding pushed between blocks is high-dimensional, but the “contextual
reasoning” in convolutional layers is done on a simpler feature representation.

Francois Fleuret

CAS — Deep learning / 7.2. Networks for image classification

166 / 174

167 / 174



Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-

layer name | output size 18-layer 34-layer 50-layer 101-layer 152-layer
convl 112x112 77, 64, stride 2
33 max pool, stride 2
1x1,64 ] [ 1x1,64 Ix1,64
conv2.. . , .
com2x | 5656 [222: }xz Bizgj ]x3 3x3,64 | x3 3x3,64 |3 3x3,64 |3
R > | 1x1,256 | | 1x1,256 | | 1x1,256 |
[ 1x1,128 [ 1x1,128 ] [1x1,128 ]
conv3x | 28x28 { ;ig :;2 }xz [ gi; gg }x4 3x3,128 | x4 3x3,128 | x4 3x3,128 | x8
’ ’ | 1x1,512 | | 1x1,512 | | 1x1,512 |
[ 1x1,256 ] 1x1,256 ] 1x1,256 ]
covhx | 14x14 { 2§§ gzg } { 2§§§§2 }xé 3x3,256 | x6 || 3x3,256 |x23 || 3x3,25 |x36
R Ir | 1x1,1024 | 1x1,1024 | 1x1,1024 |
1x1,512 ] 1x1,512 [ 1x1,512 ]
convSx | 7x7 { iizzg }x2 [ giizg }x3 3x3,512 | x3 3x3,512 | x3 3x3,512 | x3
R | 1x1,2048 | | 1x1,2048 | | 1x1,2048 |
1x1 average pool, 1000-d fc, softmax
FLOPs 18x10° [ 36x10° ] 3.8x10° [ 7.6x10° [ 11.3x107

sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

Francois Fleuret
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(He et al., 2015)

method top-5 err. (test)
VGG [41] ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’ 14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

CAS — Deep learning / 7.2. Networks for image classification

(He et al., 2015)
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This was extended to the ResNeXt architecture by Xie et al. (2016), with blocks
with similar number of parameters, but split into 32 “aggregated” pathways.

Conv Conv Conv
1 X1 | BN |- RelU ==— 3 X 3 || BN |~/ RelU |=——| 1 X 1 |—— BN
256 —> 4 4—>4 4 —> 256
P o« o e 4 RelLU
256 256
Conv Conv Conv
1 X1 |~ BN | ReLU |==— 3 X 3 || BN || ReLU |=—| 1 X 1 | BN
256 — 4 4—>4 4 — 256

When equalizing the number of parameters, this architecture performs better
than a standard resnet.
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Image classification, summary
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To summarize roughly the evolution of convnets for image classification:

standard ones are extensions of LeNet5,

e everybody loves Rel U,

o state-of-the-art networks have 100s of channels and 10s of layers,
o they can (should?) be fully convolutional,

e pass-through connections allow deeper “residual’ nets,

e bottleneck local structures reduce the number of parameters,

e aggregated pathways reduce the number of parameters.
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Image classification networks

LeNet5
(LeCun et al., 1989)

Bigger + GPU

Deep hierarchical CNN
(Ciresan et al., 2012)

Bigger + RelLU
Fully + dropout

convolutional
AlexNet

(Krizhevsky et al., 2012)
No recurrence
MLPConv
B

igger +
Overfeat smagllgfi\ters
(Sermanet et al., 2013)

Net in Net
(Lin et al., 2013)

Inception
A\ 4 VGG modules
Highway Net (Simonyan and Zisserman, 2014) G \L/N
. oogleNet
(Srivastava et al., 2015) (Szegedy et al., 2015)
Batch
Normalization
N4

BN-Inception

(loffe and Szegedy, 2015)
No gating

ResNet
(He et al., 2015)

Dense Aggregated
pass-through channels
\4

Wide ResNet DenseNet ResNeXt Inception-ResNet
(Zagoruyko and Komodakis, 2016) (Huang et al., 2016) (Xie et al., 2016) (Szegedy et al., 2016)
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