
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Tracking Interacting Objects Using
Intertwined Flows

Xinchao Wang∗ , Engin Türetken∗, François Fleuret, and Pascal Fua, Fellow, IEEE

Abstract—In this paper, we show that tracking different kinds of interacting objects can be formulated as a network-flow Mixed Integer
Program. This is made possible by tracking all objects simultaneously using intertwined flow variables and expressing the fact that
one object can appear or disappear at locations where another is in terms of linear flow constraints. Our proposed method is able
to track invisible objects whose only evidence is the presence of other objects that contain them. Furthermore, our tracklet-based
implementation yields real-time tracking performance. We demonstrate the power of our approach on scenes involving cars and
pedestrians, bags being carried and dropped by people, and balls being passed from one player to the next in team sports. In particular,
we show that by estimating jointly and globally the trajectories of different types of objects, the presence of the ones which were not
initially detected based solely on image evidence can be inferred from the detections of the others.

Index Terms—Multi-object tracking, interactions, network flows, mixed integer programming

F

1 INTRODUCTION

Tracking people or objects over time can be achieved by first
running detectors that compute probabilities of presence in
individual images and then linking high probability detections
into complete trajectories. This can be done recursively [1],
using dynamic programming [2], [3], or using Linear Pro-
gramming [4], [5].

Most of these approaches focus on one kind of object, such
as pedestrians or cars, and only model simple interactions,
such as the fact that different instances may repel each other to
avoid bumping into each other or synchronize their motions to
move in groups [6], [7]. In this paper, we introduce a network-
flow Mixed Integer Programming framework that lets us model
the more complex relationship between the presence of objects
of a certain kind and the appearance or disappearance of
objects of another kind. For example, when tracking people
and cars on a parking lot, this enables us to express that people
may only appear or disappear either at the edge of the field of
view or as they enter or exit cars. Similarly, when attempting
to check if a bag has been abandoned in a public place, we can
express that this can only happen at locations through which
somebody has been the instant before. The same goes for the
ball during a basketball or soccer match; it is usually easiest
to detect the ball when it has left one player and before it has
been caught by another.

* The authors contributed equally.

• X. Wang and P. Fua are with the Computer Vision Laboratory, IC Faculty,
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015,
Switzerland. E-mail: {xinchao.wang, pascal.fua}@epfl.ch

• E. Türetken is with Swiss Center for Electronic and Microtechnology,
Neuchâtel CH-2002, Switzerland. E-mail:engin.turetken@epfl.ch

• F. Fleuret is with the Computer Vision and Learning Group, Idiap research
institute, Martigny CH-1920, Switzerland, and with École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland. E-mail:
francois.fleuret@idiap.ch

• This project was supported in part by the Swiss National Science Founda-
tion.

We will show that tracking interacting objects simultane-
ously can be achieved by modeling their motions with inter-
twined flow variables, and by imposing linear flow constraints
to enforce the fact that one object can only appear or disappear
at locations where another is or has been. This results in
a Mixed Integer Programming problem. In theory, it is NP-
hard. In practice however, a very close approximation to the
global optimum can be found using a standard optimization
package [8]. Since different object types are handled simulta-
neously, the presence of any one of them can be evidence
for the appearance of any other. Fig. 1(a) depicts a case
where simply thresholding the response of the car detector we
use leads to a car being missed. However, because people are
properly detected disappearing at a location in the middle of
the parking lot, our algorithm eventually concludes correctly
that there must have been a car there which they entered, as
shown in Fig. 1(c). In this scenario, not only does the presence
of a vehicle explain the apparent disappearance of pedestrians
but also their disappearance is evidence of the presence of a
vehicle.

This is much more general than what is done in approaches
such as [7], in which the appearance of people is used to infer
the possible presence of a static entrance. It also goes beyond
recent work on interaction between people and objects [9].
Due to the global nature of the optimization and the generality
of the constraints, we can deal with objects that may be
completely hidden during large portions of the interaction
and do not require any training data. We first introduced this
approach in a conference paper [10] and described a relatively
slow implementation. In this paper, we introduce a faster
tracklet-based one that preserves optimality while yielding
real-time performance.

Our contribution is therefore a mathematically principled
approach to accounting for the relationship between flows
representing the motions of different object types, especially
with regard to their container/containee relationship and ap-
pearance/disappearance, as well as an efficient tracklet-based

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

(a) POM [2] (b) KSP [5] (c) Ours

Fig. 1. Motivation for our approach. (a) Thresholding the Probability Occupancy Map (POM) detector [2] scores for
cars and people produces only one strong detection in this specific frame of a complete video sequence. (b) Linking
people detections across frames using the K-Shortest Paths (KSP) algorithm [5] reveals the presence of an additional
person. (c) This additional person constitutes evidence for the presence of a car he will get in. This allows our algorithm
to find the car as well in spite of the car detection failure. Because we treat people and cars symmetrically, the situation
could have been reversed: The car could have been unambiguously detected and have served as evidence for the
appearance of a person stepping out of it. This would not be the case if we tracked cars first and people potentially
coming out of them next.

implementation that yields real-time performance. We will
demonstrate this in the case of people entering and leaving
cars, bags being carried and dropped, and balls being passed
from one player to the next during a game.

2 RELATED WORK

In this section, we first discuss approaches to multiple object
tracking and then review those that focus on tracking interact-
ing objects.

2.1 Tracking Multiple Objects
Existing multiple object tracking approaches can be broadly
divided into two categories: tracking by model evolution and
tracking by detection. In this section, we briefly review the
state-of-the-art representatives from both categories.

2.1.1 Tracking by Model Evolution
Early approaches of this category focused on tracking a single
object and relied on gating and Kalman filtering [1]. Because
of their recursive nature, they are prone to errors such as drift,
which are difficult to recover from. Particle-based approaches
such as [11], [12], [13], [14], among many others, partially
address this issue by exploring multiple hypotheses. However,
they can handle only relatively small batches of frames without
their state space becoming unmanageably large and often
require careful parameter setting.

Many approaches in this category aim at improving tracking
accuracy by updating a classifier frame by frame. It can be
a support vector machine [15], boosting [16], [17], naive
Bayes [18] or an ensemble classifier [19]. The approach of [20]
updates its classifier based on a combination of matting and
tracking while that of [21] ignores the temporal order of the
frames and selects easy-to-track ones first. These techniques
have proved effective for single object tracking. However,
when dealing with multiple objects that interact with each
other, such as basketball players competing for possession of
the ball, our experience is that they are prone to drift and
identity switches, and thus not suitable for our purpose.

2.1.2 Tracking by Detection

In recent years, techniques that optimize a global objective
function over many frames have emerged as powerful alterna-
tives. They rely on Conditional Random Fields [22], [23], [24],
Belief Propagation [25], [26], Dynamic or Linear Program-
ming [27], [28], or Network Flow Programming [29], [30].
Among these algorithms, some operate on graphs whose nodes
can either be all the spatial locations where an object can be
present [2], [5], [31], only those where a detector has fired [4],
[32], [33], [34], mid-level features of objects [35], [36], [37],
[38], [39], [40], or short temporal sequences of consecutive
detections that may correspond to the same target [41], [42],
[43], [44], [45], [46], [47].

The K-Shortest Paths (KSP) algorithm [5] works on the
graph of all potential locations over all time instants, and
finds the ground-plane trajectories that yield the overall min-
imum cost. However, it assumes that the nodes in the graph
are independent and it can not handle additional constraints
such as spatial exclusion. Furthermore, the KSP approach is
designed to handle only a single type of object and can not
explain a container/containee relationship between different
object classes. Running it twice, first on the containers and
then on the containees, is suboptimal and can result in errors as
shown in Fig. 1. As the KSP algorithm, the Successive Shortest
Paths (SSP) approach [3] links detections using sequential
dynamic programming. However, the SSP approach works
on sparse graphs and links detections on the image plane,
meaning that it is not able to track an object that is missed by
the detector.

Other algorithms use sampling techniques to solve the
data association problem. Unlike KSP and SSP that rely on
minimum cost flow algorithms, they perform simple local
operations, such as growing trajectories or merging detections,
to minimize an energy function [48], [49]. Such algorithms
may explore a large portion of the state space but often involve
many parameters that needs to be learned or tuned.

Some recent tracking algorithms incorporate higher-order
motion models. Many of them collapse detections from con-
secutive temporal frames into single vertices. They are then

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

used to build spatio-temporal graphs in which the motion
costs are encoded either in the vertices [50], [51] or in the
edges connecting them [52], [53]. The final trajectories are
found by minimizing a cost function defined on that potentially
complicated graph and that usually involves many variables.
In practice, relaxation techniques are often used to speed
up the optimization at the cost of not guaranteeing that the
solution is the true global optimum [52], [54]. Furthermore, all
these approaches focus on a single class of objects, and when
applied on multi-class interacting objects such as containers
and containees, we have to run the algorithms twice and thus
they suffer the same problem as KSP.

Many of the approaches discussed above rely on discrim-
inant classifiers to detect target objects in individual images,
which makes them sensitive to occlusions. To alleviate this
problem, some approaches add occlusion hypotheses and
enlarge the state space to allow for occluded tracks [55],
while others attempt to boost the probabilities of detections
corresponding to potentially occluded targets [56], [57]. The
approach of [58] introduces a confidence map based on
geometric information, while the approach of [59] explicitly
trains people detector on the failure cases of a tracker to exploit
the occlusion patterns. In our framework, the detector [2] is
explicitly designed to account for occlusions. Furthermore,
because we model the container-containee relationship, we can
handle not only short-term occlusions but also extended ones
where objects remain completed occluded.

2.2 Tracking Interacting Objects

On balance, global techniques such as [5], [3] tend to be
more robust than others. But, among those designed for people
tracking, few can handle complex interactions between them
and other scene objects. Some existing approaches model the
group behavior of pedestrians during the tracking process by
including priors that only account for the fact that people tend
to avoid hitting each other and sometimes walk in groups [6],
[7], [60], [61], [62]. In [7], there is also a mechanism for
guessing where entrances and exits may be by recording
where tracklets start and end. However, there is no provision
for mobile entry points to allow objects of different natures
to appear or disappear at varying locations. The approach
of [62] focuses on tracking individual targets across groups
by modeling split and merge events. It handles only one type
of targets and relies on a post-processing step to recover their
identities within a group.

There have been several recent attempts at modeling peo-
ple interactions in specific scenarios, such as playing team
sports [63], [64] or time-varying regular patterns [65]. How-
ever, such approaches require a new model to be trained for
each specific scenario. In the case of [63], which looks into
the behavior of sports players, the player trajectories are also
assumed to be given. As a result, even though these approaches
yield state-of-the-art performance in specific cases, it is not
clear how general they are.

The approach of [9] exploits person-to-person and person-
to-object interactions to more reliably track both people and
objects. It relies on a Bayesian Network model to enforce

frame-to-frame temporal consistency, and on training data to
learn object types and appearances. Furthermore, it requires
the objects to be at least occasionally visible during the interac-
tion. By contrast, we propose a global optimization framework
that does not require training and can handle objects that
remain completely invisible during extended periods of time,
such as a person inside a car.

T the number of frames
I the set of all temporal frames
L the number of spatial locations on the ground
O the number of poses within each location

i, j, k, r indices of the state of an object, which is a triple of
spatial location, pose and time

l,m, n indices of the spatial locations of an object
l(k) the spatial location of state k
o(k) the pose of state k
t(k) the time of state k
vk the vertex representing an object at state k
ekj the edge between vk and vj
V the set of all vertices vk
E the set of all edges ekj
G the directed acyclic graph, G = (V,E)

N (k) the neighborhood of state k, i.e., the set of states that can
be reached from state k

Xk the binary variable denoting the occupancy event by a
containee object at state k

Yk the binary variable denoting the occupancy event by a
container object at state k

ρk the detector-estimated posterior of the occupancy event by a
containee object at state k, ρk = P (Xk = 1 | It(k))

βk the detector-estimated posterior of the occupancy event by a
container object at state k, βk = P (Yk = 1 | It(k))

fkj the binary flow variable denoting a containee object moving
from state k to state j

gkj the binary flow variable denoting a container object moving
from state k to state j

hlm the counter variable denoting the number of containee objects
contained by a container that moves from location l to m

Nf (k) the spatial exclusion neighborhood for a containee object
at state k

Ng(k) the spatial exclusion neighborhood for a container object
at state k

Ts(l) the temporal span of spatial location l
Tp(k) the temporal span of state k
Nm(l) the movement neighborhood of a car at location l

S the set of all joint spatial vertices
K the set of all non-joint spatial tracklets

Ns(l) the spatial neighborhood of spatial location l
τq a set of spatial vertices that can be either a trajectory

or a spatial tracklet
tq the first time instant of τq
Tq the last time instant of τq

v̂t(τq) the spatial vertex at time tq − 1 in the neighborhood of τq
v̂T (τq) the spatial vertex at time Tq + 1 in the neighborhood of τq

γiq a pose tracklet on τq
G′ the tracklet graph

TABLE 1
Notations

3 FORMULATION

In this section, we first formulate the problem of simultane-
ously tracking multiple instances of two kinds of objects, one
of which can contain the other, as a constrained Bayesian
inference problem. Here, we take “contain” to mean either
fully enclosing an object, as a car does to its occupants,
or simply being in possession of and partially hiding it, as
a basketball player holding the ball. We then discuss the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

(a) (b)

Fig. 2. A graph representing three spatial locations
at three consecutive times. (a) Each ellipse denotes a
spatial vertex, representing a spatial location at a time
instant. Some are connected to a source and a sink to
allow entrances and exits. (b) Each circle inside an ellipse
denotes a pose vertex, representing a pose on a spatial
location or a state of an object. In this case, there are four
possible poses on each spatial location.

constraints and show that they result in a Mixed Integer
Program (MIP) on a large graph. We will discuss in the
following section our approach to nevertheless solving it fast.

3.1 Bayesian Inference

Given image sequences from one or more cameras, we will
refer to the set of all images taken simultaneously as a
temporal frame. Let the number of time instants be T and
the corresponding set of temporal frames be I= (I1, . . . , IT).

We discretize the ground plane of the monitored area into
a grid of L square cells, which we will refer to as spatial
locations. Within each one, we assume that a target object can
be in any one of O poses. For oriented objects such as cars, we
define the pose space to be the set of regularly spaced object
orientations on the ground plane; for non-oriented objects such
as basketball and soccer ball, we define the pose space to be
the regularly discretized height of the ball.

Let k denote the state of a target object, which we define to
be the triple of location l, pose o and time t. In other words,
we say an object occupies state k if it is located at l with pose
o at time t. Let N (k) denote the neighborhood of k, that is,
the states an object at state k at time t can reach at the next
time instant t+1. Note that, the cardinality of N (k) depends
on the target velocity and the frame rate. Let also l(k), o(k)
and t(k) respectively denote the location, pose and time of k.

Similar to [5], which treats spatial locations as graph
vertices, we build a directed acyclic graph (DAG) G = (V,E)
on both the locations and poses, where the vertices V = {vk}
represent the states of objects, and the edges E = {ekj} rep-
resent allowable transitions between them. More specifically,
an edge ekj ∈ E connects vertices vk and vj if and only if
j ∈ N (k). The number of vertices and edges are therefore
roughly equal to OLT and |N (.)|OLT , respectively. We
show an example of such DAG in Fig. 2.

Recall that we are dealing with two kinds of objects, one
of which can contain the other. Let X = {Xk} be the vector
of binary random variables denoting whether a containee type
object occupies state k, and x = {xk} a realization of it,
indicating presence or absence of a containee object. Similarly,
let Y = {Yk} and y = {yk} respectively be the random

occupancy vector and its realization for the container object
class.

As will be discussed in Appendix C, we can estimate
image-based probabilities ρk = P (Xk = 1 | It(k)) and
βk = P (Yk = 1 | It(k)) that a containee or container
object occupies state k at time t(k) in such a way that their
product over all k is a good estimate of the joint probability
P (X = x, Y = y | I). Among other things, this is done by
accounting for objects potentially occluding each other.

Given the graph G and the probabilities ρk and βk, we look
for the optimal set of paths as the solution of

(x,y)∗ = argmax
(x,y)∈F

P (X = x, Y = y | I) (1)

≈ argmax
(x,y)∈F

∏
k

P (Xk = xk | It(k))P (Yk = yk | It(k)) (2)

= argmax
(x,y)∈F

∑
k

logP (Xk = xk | It(k))

+ logP (Yk = yk | It(k)) (3)

= argmax
(x,y)∈F

∑
k

xk log ρk + (1− xk) log(1− ρk)

+ yk log βk + (1− yk) log(1− βk) (4)

= argmax
(x,y)∈F

∑
k

log

(
ρk

1−ρk

)
xk+log

(
βk

1−βk

)
yk (5)

where F stands for the set of all feasible solutions as defined
in the following section. Eq. 2 comes from the aforementioned
property that the product of image-based probabilities is close
to true posterior of Eq. 1, which will be discussed in more
details in Appendix C, and from the assumption that all
feasible transitions between two consecutive time instants are
equally likely. Eq. 3 is obtained by taking the log of the
product of probabilities. Eq. 4 is true because both xk and
yk are binary variables. Finally, Eq. 5 is obtained by dropping
constant terms that do not depend on xk or yk. The resulting
objective function is therefore a linear combination of these
variables.

However, not all assignments of these variables give rise
to a plausible tracking result. Therefore, the optimization of
Eq. 5 must be performed subject to a set of constraints defined
by F , which we describe next.

3.2 Flow Constraints
To express all the constraints inherent to the tracking problem,
we introduce two additional sets of binary indicator variables
that describe the flow of objects between two states at con-
secutive time instants. More specifically, we introduce flow
variables fkj and gkj , which stand respectively for the number
of containee and container type objects moving from state k
to state j ∈ N (k). The flow variables fkj and gkj are defined
on the edge ekj and intertwined together.

In the following, in addition to the integrality constraints on
the flow variables, we define five sets of constraints to obtain
structurally plausible solutions. Our only assumption is that
at each time instant, one container object can interact with at
most one containee object.

Spatial Exclusion: As detailed in Appendix C.1, we model
objects such as cars or people as rectangular cuboids, whose
size is usually larger than that of a single grid cell. We impose

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

spatial exclusion constraints to disallow solutions that contain
overlapping cuboids in the 3D space. Let Nf (k) and Ng(k)
denote the spatial exclusion neighborhoods for the containee
and container objects respectively. We write∑

i:k∈N (i)

fik +
∑

j∈Nf (k),

i:j∈N (i)

fij ≤ 1, (6)

∑
i:k∈N (i)

gik +
∑

j∈Ng(k),
i:j∈N (i)

gij ≤ 1, ∀k . (7)

Flow Conservation: We require the sum of the flows
incoming to a graph vertex vk to be equal to the sum of the
outgoing flows for each container object type. We write

yk =
∑

i:k∈N (i)

gik =
∑

j∈N (k)

gkj , ∀k . (8)

This ensures that the container objects cannot appear or
disappear at locations other than the ones that are explicitly
designated as entrances or exits. Graph vertices associated to
these entrance and exit points serve respectively as a source
and a sink for the flows. To allow this, we introduce two
additional vertices vs and vn into our graph G, which are
linked to all the vertices representing positions through which
objects can respectively enter or leave the observed area.
Furthermore, we add directed edges from vs to all the vertices
of the first time instant and from all the vertices of the last
time instant to vn, as illustrated by Fig. 2.

To ensure that the total container flow is conserved in the
system, we enforce the amount of flow generated at the source
vs to be equal to the amount consumed at the sink vn. We write∑

j∈N (s)

gsj =
∑

i:n∈N (i)

gin . (9)

Consistency of Interacting Flows: We allow a containee
type object to appear or disappear at the locations designated
as the entrances or exits, and when it comes into contact with
or leaves a container object. We write

−
∑

r:l(k)=l(r),
i:r∈N (i)

gir ≤ a(k) ≤
∑

r:l(k)=l(r),
j∈N (r)

grj , ∀k (10)

a(k) =
∑

i:k∈N (i)

fik −
∑

j∈N (k)

fkj . (11)

In Eq. 10, the total amount of container flow passing through
the location l(k) is denoted by the two sums on both sides of
the inequality. When they are zero, these constraints impose
the conservation of flow for the containee objects at location
l(k). When they are equal to one, a containee object can appear
or disappear at l(k). Therefore, at the locations other than the
entrances and exits, a containee object can appear or disappear
only when it interacts with a container object in its vicinity.
Note that, here we assume multiple containee objects never
interact with a container one at exactly the same moment.
For example, at one time instant only one person is allowed
to enter the car. Given modern digital cameras recording at
more than 25 fps, this assumption imposes at most 1/25 second
delay, which is barely noticeable in practice.

Note that all four sums in Eqs. 10 and 11 can be equal to
one. As a result, these constraints allow for a container and

Fig. 3. Flow constraints in a two-pose case. In each of the
eight examples, the two circles represent two pose nodes
at the same spatial location. The solid and the dotted
arrows represent respectively non-zero flows gkj and fkj
of the container and of the visible containee objects. Top
Row. Forbidden configurations, which are all cases where
a containee and a container coexist at the same location
and at the same time instant without interacting with each
other. For example, the configuration on the left could be
interpreted as someone jumping in and out of the car at
the same time. Bottom Row: Feasible configurations.

a containee object to coexist at the same location and at the
same time instant. For scenarios such as cars and people, this
can give rise to several undesirable results as shown in the
top row of Fig. 3. To avoid this, we bound the total amount
of containee flow incoming to and outgoing from a location
by one when there is a container object at that location. We
express this as∑

k:l=l(k),
i:k∈N (i)

fik +
∑

k:l=l(k),
j∈N (k)

fkj ≤ 2−
∑

k:l=l(k),
j∈N (k)

gkj , ∀l . (12)

Note that, we do not impose this set of constraints in the
basketball and soccer scenarios, where we do allow a flying
ball and a player to coexist at the same spatial location.

Tracking the Invisible: We say a containee object is
invisible when it is carried by a container. The constraints
described above do not allow us to keep track of the number
of invisible instances carried by a container object at a time.
To facilitate their tracking even when they are invisible, we
introduce additional flow variables hlm, which stand for the
number of invisible containees moving from spatial location
l to spatial location m ∈ Ns(l), where Ns(l) denotes the
spatial neighborhood of spatial location l. These variables
act as counters that are incremented or decremented when
a containee object respectively disappears or appears in the
vicinity of a container. We write∑

m∈Ns(l)

hlm =
∑

n:l∈Ns(n)

hnl +
∑

k:l=l(k),
i:k∈N (i)

fik −
∑

k:l=l(k),
j∈N (k)

fkj , ∀l (13)

hlm ≤
∑

k:l(k)=l,
j:l(j)=m,
j∈N (k)

c ∗ gkj , ∀l,m ∈ Ns(l) , (14)

where c is an integer constant standing for the maximum
number of containee instances a container can hold. For
example, in the case of cars and people, this constant is
set to five. Note that, Eq. 13 ensures that the hlm variables
are incremented or decremented always by an integer value.
Therefore, we allow hlm to be continuous in our optimization,
except only those that are connected to the source, i.e., hsl,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

which we restrict to be integers. Our experimental results show
that allowing hlm:l 6=s to be continuous slightly speeds up the
optimization, compared to imposing the integrality constraints
on them.

Additional Bound Constraints: Finally, we impose addi-
tional upper or lower bound constraints on the flow variables
when the maximum or minimum number of object instances
of a certain type in the scene is known a priori. For instance,
during a basketball game, the number of balls in the court is
bounded by one. We write this as∑

l:t∈Ts(l),
m∈Ns(l)

hlm +
∑

k:t∈Tp(k),
j∈N (k)

fkj ≤ 1 , ∀t , (15)

where Ts(l) and Tp(k) denote the temporal span of spatial
location l and state k respectively. Together with the invisible
flow constraints in Eqs. 13 and 14, these constraints allow us
to keep track of where the ball is and who has possession of it
even when it is invisible. Another interesting case arises from
the fact that a moving vehicle must have a driver inside. We
express this as

hlm ≥
∑

k:l(k)=l,
j:l(j)=m
j∈N (k)

gkj , ∀l,m ∈ Nm (l) , (16)

where Nm(l) denotes the movement neighborhood of the car
at location l. In other words, we say an object moves from l
to a different spatial location m, if m ∈ Nm (l) holds.

3.3 Mixed Integer Programming

The formulation defined above translates naturally into a
Mixed Integer Program (MIP) with variables fkj , gkj , hlm
and the linear objective∑

k,j∈N (k)

(αk fkj + γk gkj) , (17)

where αk and γk are the costs for the flow variables fkj and
gkj respectively, and they are defined as follows:

αk = − log

(
ρk

1− ρk

)
and γk = − log

(
βk

1− βk

)
. (18)

This objective is to be minimized subject to the constraints in-
troduced in the previous section. Since there is a deterministic
relationship between the occupancy variables (xk, yk) and the
flow variables (fkj , gkj), this is equivalent to maximizing the
expression of Eq. 5.

Solving the corresponding Linear Program (LP) obtained
by relaxing the integrality constraints is usually faster than
solving the original MIP but may result in fractional flow
values. In the result section, we will compare MIP results
against LP results after rounding them to integers.

4 OPTIMIZATION

In most practical situations, the MIP of Eq. 17 has too many
variables to be handled directly by ordinary solvers. In this
section, we show how to make the problem more tractable
and to achieve real-time tracking performance.

4.1 Pruned Intertwined Flows (PIF)
To reduce the computational time, we first eliminate spatial
locations whose probability of occupancy is low. A naive way
to do this would be to simply eliminate grid locations l(k)
whose purely image-based probabilities ρk and βk of being
occupied by either a container or containee object are below
a threshold. However, this would be self-defeating because it
would preclude the algorithm from doing what it is designed
to do, such as inferring that a car that was missed by the car
detector must nevertheless be present because people are seen
to be coming out of it.

Instead, we implemented the following two-step algorithm.
• Step 1: We designate all grid locations as potential

entries and exits, and run the K-Shortest Paths Algorithm
(KSP) [5] for containers and containees independently.
In our experiments, we used the publicly available KSP
code, which is shown to be very efficient. This produces
a set of container and containee trajectories that can start
and end anywhere and anytime on the grid.

• Step 2: We connect all the resulting trajectories both to
each other and to the original entrance and exit locations
using the Viterbi algorithm [66].

In this way, we obtain a set of spatial trajectories, whose nodes
belong either to the trajectories obtained in Step 1, or the paths
connecting them obtained in Step 2. The resulting subgraph
still contains the low ρk and βk locations that may correspond
to missed detections, while being considerably smaller than
the original graph. In our experiments, the pruning reduces
the number of variables by three orders of magnitude and the
number of kept spatial locations is about 10 times as large as
that of the ground truth. We solve the MIP of Eq. 17 on the
pruned graph, where the variables are flows that link two pose
vertices between two consecutive frames, as we did in our
original paper [10]. We will refer to this approach as Pruned
Intertwined Flows (PIF) in the remainder of the paper. Even
though PIF is an approximation to the MIP optimization on
the full graph, in practice both methods yield very similar
results as shown in Appendix B.

4.2 Tracklet-Based Intertwined Flows (TIF)
To further reduce the computational complexity while pre-
serving the optimality of the solution on the pruned graph,
we introduce a tracklet-based formulation of the optimization
problem, which we will refer to as TIF. As will be shown
in the result section, it yields a speed-up factor of up to
three orders of magnitude with respect to the PIF approach
introduced in the previous section.

We achieve this result by grouping unambiguous spatial
vertices into spatial tracklets and then removing redundant
pose vertices and edges, as depicted in Fig. 4. We summa-
rize the corresponding workflow below and formalize it in
Appendix A.
• Grouping Spatial Vertices into Tracklets We partition

the spatial vertices of the trajectories introduced in § 4.1
into two subsets, the joint vertices S and the non-joint
ones K. The vertices in S are those included in the
neighborhood of more than one trajectory and those at

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

	 	

	

	

z	

	

x

x

x
x

x

x

x

x
x

x

x x
x

x

⌧q

v̂T (⌧q)

v̂t(⌧q)

⌧q

tq + 1tq Tq

⌧q
�1

q

�2
q

�Oq
q

v̂t(⌧q) v̂T (⌧q)

tq + 1tq Tq Tq + 1tq � 1

(a) (b) (c)
Fig. 4. Construction of the tracklet graph. (a) We obtain a set of paths by the graph pruning approach as described
in § 4.1. We use the solid lines to denote the spatial trajectories obtained by the KSP approach described in Step
1, and the dotted lines to denote the paths obtained by dynamic programming in Step 2. We use the yellow circles
to denote the joint spatial locations. For each spatial tracklet τq, there is a unique predecessor spatial vertex and a
unique successor, denoted by v̂t(τq) and v̂T (τq) respectively. (b) We use tq and Tq to denote the first and last time
instant of τq respectively. We compute pose tracklets on τq using dynamic programming. The black arrows denote the
pose transitions with the lowest total cost among all transitions that connect the pose 0 at time tq to the pose 0 at time
Tq. Therefore, we treat the shortest path 0-1-0 as a pose tracklet of τq and collapse its vertices into a single vertex. (c)
We use γiq to denote a pose tracklet of τq. The graph can be further simplified by keeping only those edges along the
shortest path connecting a pose vertex at time tq − 1 to a pose vertex at time Tq + 1. The black arrows highlight the
two edges along the shortest path from pose 0 at time tq − 1 to pose 0 at time Tq + 1.

the beginning or end of a trajectory. The vertices in K are
the remaining ones and are located between joint vertices.
Note that an identity switch or an interaction event can
occur only at the joint vertices. We therefore group non-
joint vertices between two joint ones into a single spatial
tracklet, which we denote by τq .

• Computing the Poses of the Tracklets Each spatial
tracklet τq can be treated as a single spatial vertex as
shown in Fig. 4(b). The pose of such vertex is a pose
tracklet, which is a set of possible pose vertices on τq .
Since τq connects to other vertices only through the pose
vertices at its first frame tq and last frame Tq , the pose
of τq is uniquely defined by its starting and ending pose
vertices at tq and Tq respectively. In other words, among
all possible pose tracklets that share the same starting and
ending pose vertices, only the one with the lowest cost
can be potentially selected. We can therefore remove the
majority of pose tracklets of a spatial tracklet without loss
of optimality. For example, in the case of Fig. 4(b), the
pose tracklet 0-0-0 yields a higher cost than 0-1-0 and
will never be selected by the solver. To remove all such
pose tracklets while preserving the completeness of the
state space, for each τq , we run dynamic programming
on each pair of starting and ending poses and only keep
the best pose tracklet. In the specific case of Fig. 4(b),
we would do this 4 × 4 = 16 times and retain only 16
pose tracklets, which are treated as the poses of τq .

• Constructing the Tracklet Graph We can now construct
a tracklet graph G′ by treating each pose tracklet as
a single vertex and taking the edges to be allowable
transitions between them. However, some edges can
still be removed while preserving optimality. Consider
a spatial tracklet τq that has only one predecessor and
one successor vertex, which we denote by v̂t(τq) and

v̂T (τq) respectively. Since an interaction event will never
take place at τq , its incoming and outgoing flows should
always be conserved. In other words, if τq is selected by
the MIP solver, v̂t(τq) and v̂T (τq) must also be selected.
This means we can collapse all three into one. For each
pair of starting pose vertex at v̂t(τq) and ending pose
vertex at v̂T (τq), we compute the shortest path connecting
these two vertices and only keep those edges along the
shortest path. In the case of Fig. 4(c), given a starting pose
of 0 at v̂t(τq) and an ending pose of 0 at v̂T (τq), the black
arrows denote the pair of edges along the shortest path
and thus should be kept. We go though all combinations
and thus keep up to 4 × 4 = 16 pairs of edges between
v̂t(τq), τq and v̂T (τq).

4.2.1 MIP on the Tracklet Graph
The MIP of Eq. 17 defined on the original graph G applies
directly to the tracklet graph G′, where the flow variables fkj
and gkj are defined on the edges between pose tracklets. The
costs for such flow variables, αk and γk, become the sum of
costs for all poses within the pose tracklet k. As a result, the
MIP of TIF is strictly equivalent to the one of PIF.

4.3 Solving the LP and MIP
We implemented our algorithm in C++ using the Gurobi
library V6.0 [8]. To solve the MIP, the Gurobi solver uses
a branch-and-cut procedure that iterates the steps of solving
LPs and applying cuts to obtain integer solutions. The branch-
and-cut procedure minimizes the gap between a lower bound
obtained from LP relaxations and an upper bound obtained
from feasible integer solutions. It stops when the gap drops
below a specified tolerance value, set to 0.001 in practice. This
means that the solution is very close to the global optimum.
To use the Gurobi solver, we chose the dual simplex algorithm

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

(a) Car-People (b) PETS2006 (e) PETS2000 (c) FIBA (d) ISSIA

Fig. 5. Tracking results on five representative subsequences taken from our datasets. Top row. Sample frames with
the detected container objects highlighted with circles and containee ones with dots. Bottom Row. Corresponding
color-coded top-view trajectories for interacting objects in the scene. The arrows indicate the traversal direction and
the numbers on the top-right corners are the frame indices. Note that, in the FIBA case and the ISSIA case, even
though there are many players in the field, we plot only two trajectories: one for the ball and the other one for the
player in possession of the ball.

for solving LPs, which we found to be very efficient, and we
set all the other parameters to their default values.

5 EXPERIMENTS

In this section, we first describe the video sequences and
metrics we used for validation purposes. We then introduce
several state-of-the-art baseline methods. Finally, we compare
our approach to these baselines both in terms of tracking
accuracy and computational cost. We will show that our
approach outperforms them consistently.

5.1 Test Datasets
We tested our approach on five datasets featuring four very
different scenarios: people and vehicles on a parking lot (Car-
People and PETS2000 dataset [67]), people and luggage in
a railway station (PETS2006 dataset [67]), basketball players
and the ball during a high-level competition (FIBA dataset),
and soccer players and the ball in a professional match
(ISSIA dataset [68]). These datasets are either multi-view or
monocular, and they all involve multiple people and objects
interacting with each other. In Fig. 5, we show one image
from each dataset with recovered trajectories. We describe
them below and give more details in Tab. 2.
• Car-People Dataset: We captured five sequences on a

parking lot with two synchronized cameras. They com-
prise from 300 to 5100 temporal frames, and they feature
many instances of people getting in and out of cars. This
dataset is challenging because the lighting in the scene
changes constantly and the color of the objects is similar
to that of the background, which makes the background
subtraction prone to errors.

• PETS2006 Dataset [67]: We use a 3020-frame sequence
acquired by two synchronized cameras that features peo-
ple entering and leaving a railway station while carrying

bags. Notably, one person brings a backpack into the
scene, puts it on the ground, and leaves. The monitored
area is relatively small and the pedestrians heavily oc-
clude each other.

• PETS2000 Dataset [67]: We use a 1450-frame monoc-
ular sequence featuring people and cars entering and
leaving a parking lot. This sequence contains multiple
car instances and two people getting out of one car, one
after the other.

• FIBA Dataset: We use a 2850-frame sequence captured
by six synchronized cameras at the 2010 FIBA Women
World Championship. It features two five-player-teams,
three referees and two coaches. This sequence is challeng-
ing due to the complex and frequent interactions between
the players and the ball, making it hard to detect the ball.

• ISSIA Dataset [68]: The dataset contains a sequence
featuring two eleven-player-teams and three referees. The
sequence is captured by six cameras, three on each side
of the court. There is little overlap between the cameras
on one side and each target is covered by two cameras
only.

5.2 Parameters and Baselines
For car and luggage tracking we take the pose to be the
orientation. For ball tracking, we take it to be the height.
We use two regularly distributed orientations for luggages
and twelve for cars. This allows us to take advantage of
the relatively high image resolution to handle occlusions
effectively. In the basketball and soccer cases, we discretize
the height of the ball into 50cm cells, which we found to be
sufficient given the camera resolution.

We will refer the Pruned Intertwined Flows described in
§ 4.1 as PIF and the Tracklet-Based Intertwined Flows in
§ 4.2 as TIF. As discussed, TIF preserves the completeness
of the state space and therefore the Mixed Integer Programs of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Sequence Name Cameras Frames Locations Containers Containees Container Poses Containee Poses
Car-People Seq.0 2 350 6848 1 3 12 1
Car-People Seq.1 2 1500 6848 2 3 12 1
Car-People Seq.2 2 296 6848 2 3 12 1
Car-People Seq.3 2 2759 6848 2 8 12 1
Car-People Seq.4 2 5100 6848 4 12 12 1

PETS2006 2 3020 8800 24 1 1 2
PETS2000 1 1450 11200 3 3 12 1

FIBA 6 2850 9728 15 1 1 16
ISSIA 6 1990 34020 25 1 1 17

TABLE 2
Validation sequences. From left to right, we give the number of cameras, frames, spatial locations, objects and

distinct poses respectively. For the Car-People, PETS2000 and PETS2006 datasets, we take the pose to be the
orientation of the targets, while for the FIBA and ISSIA dataset, we take it to be the height of the ball.

TIF and PIF are equivalent. We use TIF-MIP to denote the
approach that solves the Mixed Integer Program of TIF, and
TIF-LP to denote the approach that solves the Linear Program
with the integrality constraints relaxed.

We compare our TIF-MIP approach against the following
eight state-of-the-art methods whose code are public available.
We use the default parameters for all these methods.

• POM: We keep those pose nodes, for which one of the
occupancy probabilities ρtk or βt

k is greater than 0.5,
and suppress the others. The resulting detections lack
temporal consistency and may not satisfy the constraints
introduced in § 3.2.

• SSP: The Successive Shortest Paths (SSP) [3] is an
algorithm for tracking multiple objects. It first builds a
graph by linking pairs of object detections in consecutive
temporal frames and then sequentially applies Dynamic
Programming to find solutions. We run the publicly
available SSP code and compare the results with ours.

• LP2D: LP2D [69] is a multi-object tracking algorithm
that yields promising results in the recent Multiple Object
Tracking challenge (MOT) [70]. As SSP, it builds a graph
whose nodes are detections in the image plane and then
minimizes an energy using Linear Programming.

• LP3D: The LP3D approach [69] is similar to the LP2D
one, except that the graph nodes are detections in the 3D
world coordinates.

• KSP-free: As discussed in § 4.1, the KSP approach
of [5] can be used to compute object trajectories for
the container and containee objects independently using
their occupancy probabilities. We designate all the grid
locations as potential entries and exits prior to running the
KSP algorithm. As a result, this approach allows objects
to appear or disappear at any location at a certain cost.

• KSP-fixed: This algorithm is similar to KSP-free, except
that we use the original entrances and exits of the scene,
such as the edge of the field of view. Therefore, objects
can only appear or disappear at these predetermined
locations.

• KSP-sequential: We first use the KSP-fixed algorithm to
track the container objects and designate all the nodes that
belong to the resulting trajectories as potential entrances
and exits for the containees. We then use the same
algorithm to find the containee trajectories, which may
emerge from or enter the container ones. In other words,

unlike in our approach, the two object classes are not
treated symmetrically.

• TIF-LP: We relax the integrality constraints of the MIP
of Eq. 17 and solve the Linear Program (LP). The
resulting flow variables are then rounded to the nearest
integer to obtain the final solution.

For all the methods, we use the same detection results obtained
by POM, which explicitly accounts for mutual occlusion be-
tween the targets. More technical details about this algorithm
can be found in [2]. Note that, instead of using POM, we
could have relied on the popular Deformable Part Model
(DPM) [71]. However, as discussed in Appendix D, it is not
as well adapted to our needs because it is not designed to be
robust to occlusions.

5.3 Evaluation Metrics
To quantify the results, we use the standard CLEAR [72]
metrics: Multiple Object Detection Accuracy (MODA) and
Multiple Object Tracking Accuracy (MOTA). MODA is a
detection-based evaluation metric that penalizes false positive
(FP) and false negative (FN) detections, while MOTA is a
tracking-based metric that also accounts for identity switches
(IDS). To compute MODA and MOTA, we weight all three
types of errors equally. We also report the values for the three
kinds of errors separately for all tested methods.

The FP and FN scores are computed based on a threshold,
which is defined to be either the overlap ratio between a
detection and a ground truth on the image plane, or the dis-
tance between them on the ground plane. To evaluate oriented
object detections, the latter one is not suitable because it
does not penalize detections with incorrect orientations, while
the former one accounts for orientation on the image plane.
Therefore we use the overlap ratio as the threshold for FP and
FN for the Car-People, PETS2006 and PETS2000 Dataset.
However, for non-oriented objects such as balls, the distance
between the detection and the ground truth on the ground
is a good fit because it provides an absolute measurement
independent of camera views. We therefore use it as the
threshold for the FIBA and ISSIA Dataset.

5.4 Results
We ran all the baseline algorithms and ours on all the test
sequences introduced in § 5.1. In Fig. 5, we show qualita-
tive tracking results on representative subsequences of each

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

SSP LP2D LP3D KSP−fixed KSP−free KSP−sequential TIF−LP TIF−MIP

0.2 0.3 0.4 0.5 0.6 0.7
−0.5

0

0.5

1

Overlap Threshold

M
O

TA

0.2 0.3 0.4 0.5 0.6 0.7
−0.5

0

0.5

1

Overlap Threshold

M
O

TA

0.2 0.3 0.4 0.5 0.6 0.7

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Overlap Threshold

M
O

TA

(a) Car-People Seq.0 (b) Car-People Seq.1 (c) Car-People Seq.2

0.2 0.3 0.4 0.5 0.6 0.7

−0.2

0

0.2

0.4

0.6

0.8

M
O

TA

Overlap Threshold
0.2 0.3 0.4 0.5 0.6 0.7

−0.2

0

0.2

0.4

0.6

0.8

1

Overlap Threshold

M
O

TA

0.2 0.3 0.4 0.5 0.6 0.7
−0.5

0

0.5

1

Overlap Threshold

M
O

TA

(d) Car-People Seq.3 (e) Car-People Seq.4 (f) PETS2006

0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap Threshold

M
O

TA

Distance (cm)
20 40 60 80 100 120 140 160

M
O

TA

-0.2

0

0.2

0.4

0.6

0.8

Distance (cm)
50 100 150 200 250 300 350

M
O

TA

-2

-1.5

-1

-0.5

0

0.5

1

(g) PETS2000 (h) FIBA (i) ISSIA

Fig. 6. Comparing our proposed approach (TIF-MIP) against the baselines in terms of the MOTA scores. Our tracker
yields a significant improvement on all datasets, thanks to the joint-global optimization on both container and containee
objects. (a)-(g) We plot the MOTA curve w.r.t a range of overlap thresholds on the image plane. (h)-(i) We plot the MOTA
curve w.r.t a range of distances between the detections and the ground truths on the ground plane.

dataset. In Fig. 6, we plot MOTA curves for all the algorithms
on all the tested sequences. We show the results on a range
of thresholds as a monotonic curve. In Tab. 3, we show the
FP rate, FN rate, IDS rate and MODA for all methods at an
overlap threshold of 0.5 and distance threshold of 1m for FIBA
and 2m for ISSIA. We provide videos overlaid with tracking
results in the supplementary material.

5.4.1 Car-People, PETS2000 and PETS2006 Se-
quences
As we show in Fig. 6 and Tab. 3, our tracker yields signifi-
cant improvements over the baseline algorithms on all tested
sequences. The sequence Car-People Seq.0 is the one from
which we extracted the image shown in Fig. 1. It features three
people getting into a car stopped at the center of a parking lot.
In this case, the POM detector fails to detect the car in many
frames due to poor background subtraction. As a result, both
KSP-fixed and KSP-sequential yield poor results because they

do not create a car track, and hence are forced to explain
the people in the scene by hallucinating them entering from
the edges of the field of view. SSP, LP2D, LP3D and KSP-
free do better by allowing the car to appear and disappear as
needed but this does not correspond to physically plausible
behavior. POM also does better than KSP-fixed and KSP-
sequential because the people are in fact detected most of the
time. TIF-MIP performs best because the evidence provided
by the presence of the people along with the constraint that
they can only appear or disappear in the middle of the scene,
where there is a stopped car, forces the algorithm to infer that
there is one at the right place. As a result, the FN rate is
significantly lower than other baselines which further leads to
a higher MOTA and MODA score.

Car-People Seq.1 features two people getting into the first
car, staying for a while, getting out and then entering the
second one. Here, KSP-free does slightly better than KSP-
fixed, which needs to hallucinate two false positive tracks to

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Sequence Name Metric POM SSP LP2D LP3D KSP-fixed KSP-free KSP- TIF-LP TIF-MIP
sequential

Car-People Seq.0

FP 0.06 0.04 0.05 0.05 0.46 0.10 0.46 0.07 0.07
FN 0.47 0.76 0.48 0.53 0.61 0.41 0.61 0.25 0.25
IDS N/A 0.04 0.06 0.06 0.07 0.07 0.07 0.04 0.04

MODA 0.47 0.20 0.47 0.42 -0.07 0.49 -0.07 0.67 0.67

Car-People Seq.1

FP 0.98 0.75 0.77 0.75 0.77 0.71 0.75 0.17 0.17
FN 0.23 0.25 0.21 0.25 0.25 0.25 0.25 0.25 0.25
IDS N/A 0.12 0.17 0.21 0.06 0.12 0.15 0.04 0.04

MODA -0.21 0.00 0.02 0.00 -0.02 0.04 0.00 0.58 0.58

Car-People Seq.2

FP 0.03 0.00 0.03 0.00 0.05 0.00 0.05 0.03 0.03
FN 0.47 0.59 0.62 0.58 0.72 0.59 0.72 0.47 0.47
IDS N/A 0.01 0.02 0.01 0.03 0.01 0.03 0.01 0.01

MODA 0.50 0.41 0.35 0.42 0.23 0.41 0.23 0.50 0.50

Car-People Seq.3

FP 0.59 0.35 0.43 0.27 0.46 0.43 0.43 0.14 0.14
FN 0.17 0.31 0.23 0.40 0.19 0.23 0.19 0.21 0.21
IDS N/A 0.27 0.34 0.33 0.19 0.25 0.21 0.07 0.05

MODA 0.24 0.34 0.34 0.33 0.35 0.34 0.38 0.65 0.65

Car-People Seq.4

FP 0.40 0.19 0.26 0.13 0.32 0.25 0.31 0.08 0.07
FN 0.15 0.19 0.16 0.18 0.17 0.17 0.16 0.16 0.15
IDS N/A 0.14 0.13 0.15 0.12 0.12 0.11 0.04 0.04

MODA 0.45 0.62 0.58 0.69 0.51 0.58 0.53 0.76 0.78

PETS2006

FP 1.15 0.32 0.32 0.32 0.62 0.42 0.56 0.33 0.33
FN 0.11 0.29 0.52 0.55 0.16 0.20 0.16 0.24 0.22
IDS N/A 0.18 0.16 0.16 0.17 0.20 0.18 0.07 0.06

MODA -0.26 0.39 0.16 0.13 0.22 0.38 0.28 0.43 0.45

PETS2000

FP 0.12 0.01 0.01 0.02 0.16 0.06 0.11 0.03 0.03
FN 0.19 0.26 0.30 0.30 0.20 0.20 0.20 0.20 0.20
IDS N/A 0.04 0.05 0.05 0.05 0.07 0.05 0.02 0.02

MODA 0.69 0.73 0.69 0.68 0.64 0.74 0.69 0.77 0.77

FIBA

FP 0.63 0.29 0.32 0.33 0.04 0.02 0.10 0.12 0.12
FN 0.43 0.50 0.57 0.55 0.66 0.56 0.56 0.12 0.12
IDS N/A 0.07 0.09 0.10 0.00 0.01 0.03 0.00 0.00

MODA -0.06 0.21 0.11 0.12 0.29 0.42 0.34 0.76 0.76

ISSIA

FP 0.65 1.35 1.35 1.21 0.73 0.71 0.70 0.20 0.19
FN 0.25 0.27 0.21 0.27 0.24 0.25 0.22 0.23 0.23
IDS N/A 0.07 0.05 0.08 0.04 0.03 0.16 0.01 0.01

MODA 0.10 -0.62 -0.56 -0.48 0.03 0.04 0.08 0.57 0.58

TABLE 3
Comparison of false positive (FP) rate, false negative (FN) rate and identity switches (IDS) rate between all the
methods at overlap ratio of 0.5. For FIBA and ISSIA, the distance is taken to be 1.0 m and 2.0 m respectively.

allow for the people emerging from the first car. TIF-MIP
yields a better result compared to other baselines because our
tracker removes spurious detections that physically overlap
each other thanks to spatial exclusion constraints. The case
of Car-People Seq.2 is similar to that of Car-People Seq.0,
where POM fails to detect the car in many frames but our
constraints enforce that there is a car at the location where
three people get out. Therefore, our approach works better
than other methods such as KSP-sequential that tracks cars
and people separately. The sequences Car-People Seq.3 and
Car-People Seq.4 feature more instances of people getting
in and out of cars, and our approach consistently yields an
overall better performance in terms of MOTA and MODA
as compared to all baseline methods, thanks to the global
optimization that accounts for all objects simultaneously.

In the PETS2006 sequence, a person enters the scene
and leaves a bag on the ground. In this case, KSP-fixed
hallucinates a false positive track of the bag starting from the
edge of the monitored area. Furthermore, when the scene gets
crowded, all the baseline algorithms produce solutions that
contain overlapping detections in the 3D space. The constraints
imposed by our tracker prevent such spurious detections. The
same happens for the PETS2000 sequence, where our tracker
yields better results by imposing the correct set of constraints

while optimizing for both cars and people simultaneously.

5.4.2 FIBA and ISSIA Sequences

As mentioned in § 3.2, our algorithm can keep track of
invisible containee objects. In the basketball and soccer cases,
where the ball is often occluded by the players, we utilize
the locations of the players to estimate the ball’s ground-plane
location. More specifically, when the ball is inferred as visible,
we use its trajectories directly; otherwise, we take the location
of the ball to be that of the player who is inferred to be in
possession of it, or equivalently, the location whose counter
variable is non-zero. Since we also impose the constraints that
there is at most one ball in the court, in each frame, there is
at most one spatial location whose counter variable is one.

In Figs. 6(h,i), we evaluate quantitatively our ball-tracking
results in terms of ground trajectory. We show the results for
the ball only because the people detections are very good and
therefore all baselines perform similarly. Our ball detector
produces many spurious and missing detections because of
the weak image evidence, which results in a low MODA
score. SSP yields a low MOTA score, because it operates on
the sparse detection graphs and links the detections on the
image plane. In contrast, all KSP-based algorithms operate
on the dense detection graphs and link detections on the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Sequence Methods Variables Constraints Non-zero DP Time Iterations Solving Time Speed
Name Coefficients (s) (s) (fps)

Car-People Seq.0
PIF 357K 441K 10.8M N/A 125.3K 225.68 1.6

TIF-LP 14K 84K 3.5M 0.03 3.3K 1.84 190.2
TIF-MIP 14K 84K 3.5M 0.03 3.2K 2.28 153.5

Car-People Seq.1
PIF 3.0M 4.0M 105.3M N/A 854.1K 5628.05 0.3

TIF-LP 334K 994K 37.3M 0.11 16.4K 7.89 190.1
TIF-MIP 334K 994K 37.3M 0.11 16.3K 13.32 112.6

Car-People Seq.2
PIF 149K 293K 5.6M N/A 44.1K 78.89 3.8

TIF-LP 10K 83K 5.0M 0.04 3.0K 2.01 147.3
TIF-MIP 10K 83K 5.0M 0.04 2.9K 3.27 90.5

Car-People Seq.3
PIF 3.0M+829K 4.2M+1.2M 91.9M + 26.0M N/A 1.1M+342.9K 4832.48+286.20 0.6

TIF-LP 535K+124K 1.2M+371K 36.4M + 14.4M 0.15+0.04 35.3K+10.2K 12.50+2.24 214.3
TIF-MIP 535K+124K 1.2M+371K 36.4M + 14.4M 0.15+0.04 44.1K+11.8K 39.59+6.50 68.5

Car-People Seq.4
PIF 6.0M+7.1M+3.1M 7.7M+9.1M+4.3M 213.1M+249.6M+110.7M N/A 2.4M+3.8M+2.0M 40.0K+95.1K+24.0K 0.0

TIF-LP 1.0M+1.2M+539K 1.5M+1.8M+1.0M 75.7M+82.0M+39.6M 0.12+0.06+0.08 41.1K+48.3K+32.3K 36.79+40.22+43.07 49.1
TIF-MIP 1.0M+1.2M+539K 1.5M+1.8M+1.0M 75.7M+82.0M+39.6M 0.12+0.06+0.08 54.3K+62.9K+43.0K 77.21+76.20+57.81 27.9

PETS2006
PIF 1.2M 1.1M 8.1M N/A 100.5K 57.46 52.6

TIF-LP 69K 496K 705K 0.06 24.3K 7.05 428.4
TIF-MIP 69K 496K 705K 0.06 27.0K 17.87 169.0

PETS2000
PIF 348K 846K 10.8M N/A 66K 29.09 49.8

TIF-LP 50K 273K 8.4M 0.04 6.5K 4.95 292.9
TIF-MIP 50K 273K 8.4M 0.04 7.6K 10.42 139.2

FIBA
PIF 5.1M 1.6M 30.7M N/A 51.0K 56.60 50.4

TIF-LP 891K 1.9M 8.4M 0.60 25.0K 8.94 318.8
TIF-MIP 891K 1.9M 8.4M 0.60 25.0K 14.13 201.7

ISSIA
PIF 5.8M 2.1M 34.0M N/A 33.7K 29.98 66.4

TIF-LP 1.3M 2.1M 8.3M 1.40 18.3K 5.54 359.2
TIF-MIP 1.3M 2.1M 8.3M 1.40 18.0K 14.49 137.3

TABLE 4
Comparison of computational costs for PIF, TIF-LP and TIF-MIP. From left to right, we show the total number of

variables, the number of constraints, the number of non-zero coefficients in the constraint matrix, the time for running
the dynamic programming on poses (DP time), the number of simplex iterations, the solving time by the Guorbi solver

and the speed in terms of frames per second (fps). Compared to PIF, TIF significantly reduces the number of
variables and constraints, and yields large speed-up factors up to three orders of magnitude. Due to the large number
of variables, we run Car-People Seq.3 and Car-People Seq.4 on batches of 2K frames with 20% overlap for both PIF

and TIF approaches, and then we use the Hungarian algorithm to glue the batches.

ground plane. When the ball is flying fast in the air, KSP-
based algorithms enforce physical constraints on the ground
plane, for example the maximum speed of the ball, which can
not be well accounted for on the image plane by SSP. KSP-
sequential yields a poor performance because of the spurious
ball detections close to the players. KSP-free eliminates some
false positive detections by requiring a cost to be paid for
every appearance or disappearance of the ball. Our tracker
achieves the best performance by enforcing that there can be
at most one ball in the field during the game and reasoning for
the players and the ball simultaneously, especially by tracking
the players in possession of the ball thanks to the counter
variables. In the FIBA sequence, our method outperforms the
baselines only for distance thresholds greater than 40cm. This
is because it uses discretized player locations to estimate the
ball locations when the ball is possessed by a player, which
degrades the accuracy.

5.4.3 TIF-LP vs. TIF-MIP
Solving the LP problem of § 3.3 and subsequently rounding
the resulting fractional flow variables as in TIF-LP system-
atically performs either very similarly or slightly worse than
explicitly imposing the integrality constraints as we do in the
TIF-MIP approach. We have observed by our experiments
that relaxing the integrality constraints in some cases leads
to breaks of tracks. In the PETS2006 sequence, where the
difference between TIF-MIP and TIF-LP is visible, the ratio
of fractional flows to non-zero flows is about 5.6%. In the
Car-People Seq.0, all resulting flows obtained by TIF-LP are

integers, meaning that the optimal solution of LP lies on one of
the vertices of the integral polyhedron. Therefore, the results
of TIF-LP and TIF-MIP are exactly the same. Interestingly,
we have observed that running TIF-LP and PIF-LP, that is,
running PIF without the integrality constraint, in few cases
leads to different results, meaning that the LP-relaxed version
of PIF and TIF are not equivalent.

5.4.4 Failure Cases
In the Car-People dataset, we observe a few failure cases where
a person gets into a car without the associated counter variable
being incremented. This is because the car is parked on the
boundary of the monitored area and the person is detected
closer to it than to the car. As a result, the optimizer explains
the disappearance of the person as him leaving the scene from
the boundary instead of entering the car. In the FIBA sequence,
we observe that in some cases the ball is assigned to a wrong
player. This is because there are some spurious ball detections
close to the players and the optimizer explains them by the
players catching and then throwing the ball.

5.5 Computational Cost
We compare the computational costs of PIF, TIF-LP, and
TIF-MIP in Tab. 4. TIF requires far fewer variables and
constraints than PIF and yields a speed-up of up to three orders
of magnitude. The only overhead is the dynamic programming
on poses, which requires much less time than solving the MIP
or LP. We also show the number of simplex iterations, which

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

is the number of pivot operations needed to solve MIP or LP.
It is independent of hardwares and thus provides an objective
measurement of the computational performance.

For Car-People Seq.1, we reduce the number of variables
from 3 million to 300 thousand and the number of constraints
from 4 million to one quarter. In this case, the dynamic
programming on poses takes only 0.1 second. The number of
iterations drops from 850 thousand to 16 thousand and solving
time drops from 5600 seconds to 13 seconds for the TIF-MIP
and 8 seconds for the TIF-LP. To process the whole Car-
People Seq.5 sequence, PIF takes more than 159 thousand
seconds (44 hours), while TIF takes only about 210 seconds.
Despite the large number of variables and constraints, both
PIF and TIF run fast on the sports sequences. This can be
partially explained by the fact that our player detections are
very good in such sequences. As a result, the optimization
is an easier problem to solve as compared to those of the
car sequences. TIF in such cases runs 2-3 times faster than
PIF. The same happens for PETS2000 and PETS2006, where
TIF yields a speed-up factor of a few times compared to PIF.
All methods run slower on the Car-People sequences, however
PIF yields a significant performance drop, because of the large
size of the model as indicated by the number of variables and
non-zero coefficients.

Note that we ran the Gurobi dual simplex algorithm intro-
duced in § 4.3 on a single thread. We would therefore expect
even faster convergence with multi-thread implementations.

5.6 Limitations and Future Work
Our approach to tracking interacting objects is generic and
can be applied to a wide range of scenarios. However, it has
two main limitations. First, since it relies on probabilities
of occupancy in 3D space, we require the cameras to be
calibrated. Second, it does not preserve identities throughout
interactions. For example, if someone gets into a car and then
gets out, our tracker will assign two different track identities
to that person. A simple solution to this problem would be to
post-process the results, to cluster the obtained trajectories, and
to assign identities to them. However, this would be suboptimal
because the tracking step and the identity recovery step are
decoupled.

In our future work, we will therefore attempt to unify
tracking interacting objects and re-identification in one global
optimization so that they can benefit each other. We will also
seek to replace POM by an occlusion-resistant people detector.

6 CONCLUSION

We have introduced a new approach to tracking multiple
objects of different types and accounting for their complex and
dynamic interactions. It relies on network-flow Mixed Integer
Programming and ensures convergence to a global optimum
using a standard optimizer. Furthermore, not only does it
explicitly handle interactions, it also provides an estimate for
the implicit transport of objects for which the only evidence is
the presence of other objects that can contain or carry them.
Our tracklet-based implementation preserves the optimality
and yields real-time tracking performance.

We demonstrated our method on real-world sequences that
feature people getting in and out of cars, carrying and dropping
luggages, and passing the ball during professional-level team
sports. Our method yields a significant improvement over the
state-of-the-art multi-object trackers.

REFERENCES
[1] A. Mittal and L. Davis, “M2Tracker: A Multi-View Approach to

Segmenting and Tracking People in a Cluttered Scene,” Int. J. Comput.
Vision, vol. 51(3), pp. 189–203, 2003.

[2] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multi-Camera People
Tracking with a Probabilistic Occupancy Map,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 30, no. 2, pp. 267–282, February 2008.

[3] H. Pirsiavash, D. Ramanan, and C. Fowlkes, “Globally-Optimal Greedy
Algorithms for Tracking a Variable Number of Objects,” in CVPR, June
2011.

[4] H. Jiang, S. Fels, and J. Little, “A Linear Programming Approach for
Multiple Object Tracking,” in CVPR, 2007.

[5] J. Berclaz, F. Fleuret, E. Türetken, and P. Fua, “Multiple Object Tracking
Using K-Shortest Paths Optimization,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 11, pp. 1806–1819, September 2011.

[6] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll Never Walk
Alone: Modeling Social Behavior for Multi-Target Tracking,” in ICCV,
2009.

[7] B. Yang and R. Nevatia, “Multi-Target Tracking by Online Learning of
Non-Linear Motion Patterns and Robust Appearance Models,” in CVPR,
2012.

[8] Gurobi, “Gurobi Optimizer,” 2012, http://www.gurobi.com/.
[9] T. Baumgartner, D. Mitzel, and B. Leibe, “Tracking People and Their

Objects,” in CVPR, 2013, pp. 3658–3665.
[10] X. Wang, E. Turetken, F. Fleuret, and P. Fua, “Tracking Interacting

Objects Optimally Using Integer Programming,” in ECCV, September
2014.

[11] M. Isard and A. Blake, “Condensation - Conditional Density Propagation
for Visual Tracking,” Int. J. Comput. Vision, vol. 29, no. 1, pp. 5–28,
August 1998.

[12] J. Giebel, D. Gavrila, and C. Schnorr, “A Bayesian Framework for Multi-
Cue 3D Object Tracking,” in ECCV, 2004.

[13] M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool,
“Online Multi-Person Tracking-By-Detection from a Single Uncali-
brated Camera,” IEEE Trans. Pattern Anal. Mach. Intell., 2010.

[14] J. Kwon, H. S. Lee, F. C. Park, and K. M. Lee, “A Geometric Particle
Filter for Template-Based Visual Tracking,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 36, pp. 625–643, 2014.

[15] S. Avidan, “Support Vector Tracking,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, pp. 1064–1072, 2004.

[16] Q. Bai, Z. Wu, S. Sclaroff, M. Betke, and C. Monnier, “Randomized
Ensemble Tracking,” in ICCV, 2013, pp. 2040–2047.

[17] H. Grabner, C. Leistner, and H. Bischof, “Semi-Supervised On-Line
Boosting for Robust Tracking,” in ECCV, 2008, pp. 234–247.

[18] K. Zhang, L. Zhang, and M. H. Yang, “Fast Compressive Tracking,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, pp. 2002–2015, 2014.

[19] Z. Kalal, J. Matas, and K. Mikolajczyk, “P-N Learning: Bootstrapping
Binary Classifiers from Unlabeled Data by Structural Constraints,” in
CVPR, 2010.

[20] J. Fan, X. Shen, and Y. Wu, “Scribble Tracker: A Matting-Based
Approach for Robust Tracking,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 34, pp. 1633–1644, 2012.

[21] S. Hong, S. Kwak, and B. Han, “Orderless Tracking through Model-
Averaged Posterior Estimation,” in ICCV, 2013, pp. 2296–2303.

[22] J. Lafferty, A. Mccallum, and F. Pereira, “Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data,” in
ICML, 2001, pp. 282–289.

[23] B. Yang and R. Nevatia, “An Online Learned CRF Model for Multi-
Target Tracking,” in CVPR, 2012.

[24] A. Milan, K. Schindler, and S. Roth, “Detection- And Trajectory-Level
Exclusion in Multiple Object Tracking,” in CVPR, 2013, pp. 3682–3689.

[25] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized Belief
Propagation,” in NIPS, 2000, pp. 689–695.

[26] W. Choi and S. Savarese, “A Unified Framework for Multi-Target
Tracking and Collective Activity Recognition,” in ECCV, 2012.

[27] R. Bellman, Dynamic Programming. Princeton University Press, 1957.
[28] A. V. Segal and I. Reid, “Latent Data Association: Bayesian Model

Selection for Multi-Target Tracking,” in ICCV, 2013, pp. 2904–2911.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[29] R. Ahuja, T. Magnanti, and J. Orlin, Network flows: theory, algorithms,
and applications. Prentice-Hall, 1993.

[30] A. Dehghan, Y. Tian, P. Torr, and M. Shah, “Target Identity-Aware
Network Flow for Online Multiple Target Tracking,” in CVPR, 2015,
pp. 1146–1154.

[31] H. BenShitrit, J. Berclaz, F. Fleuret, and P. Fua, “Multi-Commodity
Network Flow for Tracking Multiple People,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 36, no. 8, pp. 1614–1627, 2014.

[32] S. Tang, B. Andres, M. Andriluka, and B. Schiele, “Subgraph Decom-
position for Multi-Target Tracking,” in CVPR, 2015, pp. 5033–5041.

[33] G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, “Part-Based
Multiple-Person Tracking with Partial Occlusion Handling,” in CVPR,
2012.

[34] B. Benfold and I. Reid, “Stable Multi-Target Tracking in Real-Time
Surveillance Video,” in CVPR, 2011.

[35] A. Milan, L. Leal-taixe, K. Schindler, and I. Reid, “Joint Tracking and
Segmentation of Multiple Targets,” in CVPR, 2015.

[36] S. Chen, A. Fern, and S. Todorovic, “Multi-Object Tracking via Con-
strained Sequential Labeling,” in CVPR, 2014.

[37] K. Fragkiadaki, W. Zhang, G. Zhang, and J. Shi, “Two-Granularity
Tracking: Mediating Trajectory and Detection Graphs for Tracking
Under Occlusions,” in ECCV, 2012.

[38] S. Kwak, M. Cho, I. Laptev, J. Ponce, and C. Schmid, “Unsupervised
Object Discovery and Tracking in Video Collections,” arXiv, 2015.

[39] M. Andriluka, S. Roth, and B. Schiele, “People-Tracking-By-Detection
and People-Detection-By-Tracking,” in CVPR, June 2008.

[40] L. Wen, D. Du, Z. Lei, S. Z. Li, and M. Yang, “JOTS: Joint Online
Tracking and Segmentation,” in CVPR, 2015.

[41] A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and H. Wensheng,
“Multi-Object Tracking through Simultaneous Long Occlusions and
Split-Merge Conditions,” in CVPR, 2006.

[42] L. Wen, W. Li, J. Yan, Z. Lei, D. Yi, and S. Z. Li, “Multiple Target
Tracking Based on Undirected Hierarchical Relation Hypergraph,” in
CVPR, 2014.

[43] C. Huang, B. Wu, and R. Nevatia, “Robust Object Tracking by Hi-
erarchical Association of Detection Responses,” in ECCV, 2008, pp.
788–801.

[44] J. Sullivan and S. Carlsson, “Tracking and Labelling of Interacting
Multiple Targets,” in ECCV, 2006.

[45] P. Nillius, J. Sullivan, and S. Carlsson, “Multi-Target Tracking - Linking
Identities Using Bayesian Network Inference,” in CVPR, 2006, pp.
2187–2194.

[46] Z. Qin and C. Shelton, “Improving Multi-Target Tracking via Social
Grouping,” in CVPR, 2012.

[47] W. Brendel, M. Amer, and S. Todorovic, “Multiobject Tracking as
Maximum Weight Independent Set,” in CVPR, 2011.

[48] A. Milan, S. Roth, and K. Schindler, “Continuous Energy Minimization
for Multitarget Tracking,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, pp. 58–72, 2014.

[49] R. Collins and P. Carr, “Hybrid Stochastic / Deterministic Optimization
for Tracking Sports Players and Pedestrians,” in ECCV, 2014.

[50] A. Andriyenko and K. Schindler, “Globally Optimal Multi-Target Track-
ing on a Hexagonal Lattice,” in ECCV, 2010, pp. 466–479.

[51] A. R. Zamir, A. Dehghan, and M. Shah, “Gmcp-Tracker: Global Multi-
Object Tracking Using Generalized Minimum Clique Graphs,” in ECCV,
2012, pp. 343–356.

[52] A. A. Butt and R. T. Collins, “Multi-Target Tracking by Lagrangian
Relaxation to Min-Cost Network Flow,” in CVPR, 2013, pp. 1846–1853.

[53] V. Chari, S. Lacoste-julien, I. Laptev, and J. Sivic, “On Pairwise Costs
for Network Flow Multi-Object Tracking,” in CVPR, 2015.

[54] C. Arora and A. Globerson, “Higher Order Matching for Consistent
Multiple Target Tracking,” in ICCV, 2013, pp. 177–184.

[55] L. Zhang, Y. Li, and R. Nevatia, “Global Data Association for Multi-
Object Tracking Using Network Flows,” in CVPR, 2008.

[56] S. Rujikietgumjorn and R. T. Collins, “Optimized Pedestrian Detection
for Multiple and Occluded People,” in CVPR, 2013, pp. 3690–3697.

[57] C. Wojek, S. Walk, S. Roth, and B. Schiele, “Monocular 3D Scene
Understanding with Explicit Occlusion Reasoning,” in CVPR, 2011.

[58] H. Possegger, T. Mauthner, P. M. Roth, and H. Bischof, “Occlusion
Geodesics for Online Multi-Object Tracking,” in CVPR, 2014, pp. 1306–
1313.

[59] S. Tang, M. Andriluka, A. Milan, K. Schindler, S. Roth, and B. Schiele,
“Learning People Detectors for Tracking in Crowded Scenes,” in ICCV,
2013, pp. 1049–1056.

[60] A. Alahi, V. Ramanathan, and L. Fei-Fei, “Socially-Aware Large-Scale
Crowd Forecasting,” in CVPR, 2014.

[61] M. Rodriguez, I. Laptev, J. Sivic, and J. Audibert, “Density-Aware
Person Detection and Tracking in Crowds,” in ICCV, 2011, pp. 2423–
2430.

[62] J. F. Henriques, R.Caseiro, and J. Batista, “Globally Optimal Solution
to Multi-Object Tracking with Merged Measurements,” in ICCV, 2011.

[63] P. Lucey, A. Bialkowski, P. Carr, S. Morgan, I. Matthews, and Y. Sheikh,
“Representing and Discovering Adversarial Team Behaviors Using
Player Roles,” in CVPR, 2013.

[64] J. Liu, P. Carr, R. T. Collins, and Y. Liu, “Tracking Sports Players with
Context-Conditioned Motion Models,” in CVPR, 2013, pp. 1830–1837.

[65] J. Liu and Y. Liu, “Multi-Target Tracking of Time-Varying Spatial
Patterns,” in CVPR, 2010, pp. 1839–1846.

[66] G. Forney, “The Viterbi Algorithm,” in Proceedings of IEEE, March
1973, pp. 268–278.

[67] PETS, “Performance Evaluation of Tracking and Surveillance,” 2009,
http://www.cvg.rdg.ac.uk/slides/pets.html.

[68] T. D’Orazio, M. Leo, N. Mosca, P. Spagnolo, and P. L. Mazzeo, “A
Semi-Automatic System for Ground Truth Generation of Soccer Video
Sequences,” in International Conference on Advanced Video and Signal
Based Surveillance, 2009, pp. 559–564.

[69] L. Leal-taixe, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and S. Savarese,
“Learning an Image-Based Motion Context for Multiple People Track-
ing,” in CVPR, 2014.

[70] L. Leal-taixe, A. Milan, I. Reid, S. Roth, and K. Schindler, “Motchal-
lenge 2015: Towards a Benchmark for Multi-Target Tracking,” in arXiv,
2015.

[71] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object
Detection with Discriminatively Trained Part Based Models,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645, 2010.

[72] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo,
M. Boonstra, V. Korzhova, and J. Zhang, “Framework for Performance
Evaluation of Face, Text, and Vehicle Detection and Tracking in Video:
Data, Metrics, and Protocol,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 31, no. 2, pp. 319–336, February 2009.

Xinchao Wang received a Ph.D. in Computer
Vision in 2015 from EPFL, and a B.Sc. in Com-
puting in 2010 from the Hong Kong Polytechnic
University. His research interests include com-
puter vision, applied machine learning and com-
binatorial optimization.

Engin Türetken received his Ph.D. in Computer
Science in 2013 from EPFL. He is currently a
postdoctoral researcher at CSEM in Neuchâtel.
His research interests include computer vision,
microscopic image analysis, graph theory, and
combinatorial optimization.

François Fleuret received a Ph.D. in probability
from the University of Paris VI in 2000, and
the habilitation degree in Applied Mathematics
from the University of Paris XIII in 2006. He is
the head of the Computer Vision and Learning
group at IDIAP, Switzerland. Prior to that, he held
positions at the University of Chicago, at INRIA,
France, and at EPFL, Switzerland. He is an As-
sociate Editor of the IEEE journal Transactions
for Pattern Analysis and Machine Intelligence.

Pascal Fua is a Professor of Computer Sci-
ence at EPFL. His research interests include
shape modeling and motion recovery from im-
ages, analysis of microscopy images, and Aug-
mented Reality. He is an IEEE Fellow and has
been an Associate Editor of the IEEE journal
Transactions for Pattern Analysis and Machine
Intelligence.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Tracking Interacting Objects Using
Intertwined Flows

- Appendices -
Xinchao Wang, Engin Türetken, François Fleuret, and Pascal Fua, Fellow, IEEE

F

In the following appendices, we first provide the complete
derivation of the tracklet graph as discussed in § 4.2. Then we
show the comparative results obtained on the full graph and on
the pruned one. Next, we describe our approach to estimating
the probabilities of occupancy. Finally, we discuss why we
used this approach rather than the popular Deformable Part
Model (DPM) [1].

APPENDIX A
COMPLETE DERIVATION OF THE TRACKLET
GRAPH

We provide here the procedure to construct the tracklet graph
as described in § 4.2 using the notations in our main paper
and the ones below.

T the set of all spatial trajectories obtained from § 4.1
v̂l the spatial vertex representing an object at location l
S the set of all joint spatial vertices
K the set of all non-joint spatial tracklets

cρ(γiq) the cost of the pose tracklet γiq of a containee object
cβ(γ

i
q) the cost of the pose tracklet γiq of a container object
Oq the total number of poses on the spatial tracklet τq
v′k a vertex in G′

e′jk an edge in G′ that connects v′j and v′k
V ′ the set of all v′k
E′ the set of all e′jk

l′(k) the spatial location of v′k
N ′(k) the neighborhood of v′k on G′, i.e., the set of all

vertices that can be reached from v′k on G′

TABLE 1
Notations.

A.1 Grouping Spatial Vertices into Tracklets
The graph size reduction step as described in § 4.1 produces a
set of trajectories T . Each trajectory τq ∈ T is a set of spatial
vertices

τq = {v̂m, ..., v̂n}, v̂l ∈ V̂ , (1)

where v̂l denotes the spatial vertex corresponding to location
l, V̂ denotes the set of all such spatial vertices in the pruned
graph. We use Ns(l) and Ns(v̂l) interchangeably to denote the
spatial neighborhood of v̂l. We define the spatial neighborhood
of τq as the union of all spatial vertices that are reachable from
a vertex in τq , that is,

Ns(τq) =
⋃
v̂l∈τq

Ns(l) . (2)

We take the joint spatial vertices S to be the spatial vertices
included in more than one trajectory as well as those at the
beginning or end of a trajectory:

S = {v̂l ∈ V̂ :
∑
τq∈T

1(v̂l ∈ Ns(τq)) > 1 ∨

∃τq, v̂l ∈ τq ∧ Ts(l) ∈ {Tq, tq} , (3)

where tq and Tq denote the first and last time instant of τq
respectively, and Ts(l) denote the temporal span of location
l. Note that S comprises the only spatial vertices where an
interaction event or identity switch can occur. Based on these
joint vertices, we partition each trajectory τq into multiple
segments. We write

τq =
⋃
j

τ jq ∪
⋃
l

v̂l, s.t. ∀j τ jq ∩ S = ∅ ∧ ∀l v̂l ∈ S ∧

∀j,i τ jq ∩ τ iq = ∅ . (4)

In other words, we split each trajectory into two subsets, the
joint vertices and the non-joint tracklets. Let K be the set of
all non-joint tracklets. We write

K = {τ jq ⊂ τq, : τ jq ∩ S = ∅} . (5)

The construction of S and K ensures that for each non-joint
tracklet τq ∈ K, there must be one and only one joint spatial
vertex in the neighborhood of τq at both time tq−1 and Tq+1.
In other words, each non-joint tracklet must have one unique
predecessor spatial vertex and successor spatial vertex. Let
v̂t(τq) and v̂T (τq) respectively denote the predecessor vertex
and the successor vertex. We write

v̂m ∈ Ns(v̂t(τq)) s.t. v̂m ∈ τq ∧ Ts(m) = tq,

v̂T (τq) ∈ Ns(v̂n) s.t. v̂n ∈ τq ∧ Ts(n) = Tq. (6)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

A.2 Computing the Poses of the Tracklets
Each non-joint spatial tracklet τq ∈ K can be collapsed into
a single spatial vertex. We take a pose of such vertices to be
a pose tracklet γiq , which is a set of temporally-ordered pose
vertices in τq . We write

γiq = {vj , ..., vk}, (7)

where vk denotes a pose vertex. Let cρ(γ
i
q) and cβ(γ

i
q)

denote the cost of pose tracklet for containee and container
respectively, we take them to be

cρ(γ
i
q) =

∑
k:vk∈γiq

− log

(
ρk

1− ρk

)
,

cβ(γ
i
q) =

∑
k:vk∈γiq

− log

(
βk

1− βk

)
. (8)

Since each spatial tracklet τq is treated as a single spatial
vertex by the MIP solver, the pose of τq is uniquely defined by
the starting pose at its first time instant and the ending pose at
its last time instant. That means among all the pose tracklets
of τq who share the same starting and ending poses, only the
one with the lowest cost can be potentially selected by the
MIP solver. As a results, we can remove some pose tracklets
with high costs while preserving the optimality. We achieve
this using dynamic programming. More specifically, for each
pair of starting pose vertex vj and ending pose vertex vk, we
run Viterbi algorithm to find the pose tracklet with the lowest
cost and keep it as the only pose tracklet that links the two
pose vertices. For each pair j and k, we compute

γiq = argmin
i′: vj∈γi

′
q ,Tp(j)=tq

vk∈γi
′

q ,Tp(k)=Tq

c(γi
′
q) . (9)

We omit the subscript of c as this holds for both the containee
and container objects. We compute the pose tracklets for all
combinations of starting-ending pose pairs, and we obtain a
set of pose tracklets for each τq , which we denote as γq:

γq = {γ1
q , ..., γ

Oq
q } (10)

where Oq denotes the number of kept pose tracklets on τq .
Since we compute pose tracklet for each starting-ending pose
pairs, we have Oq ≤ O2.

A.3 Constructing the Tracklet Graph
So far we have defined the poses for the joint spatial vertices
and non-joint spatial tracklets. We now construct a new graph
G′, by treating a pose tracklet as a single vertex in the
graph. Let v′k and e′jk to denote a vertex and an edge of G′

respectively, where the subscripts k and j denote the global
indices of pose vertices in G′. We take l′(k) to be spatial
location of v′k. We also define N ′(k) to be neighborhood of
vertex v′k in graph G′.

We take the vertex set V ′ to be the union of all the pose
vertices in the joint locations and all the pose tracklets. We
write

V ′ =
{
vk : v̂l′(k) ∈ S

}
∪
{
γiq ∈ γq : τq ∈ K

}
. (11)

We take E′ to be the set of all edges in G′. We partition E′

into two parts, E′
s for the edges only between joint vertices

and E′
n for the edges between joint vertices and non-joint

tracklets. Note that, the construction of set S precludes any
edges between two non-joint tracklets. We write

E′ = E′
s ∪ E′

n (12)

where E′
s is

E′
s =

{
e′jk : k ∈ N ′(j) ∧ v̂l′(j) ∈ S ∧ v̂l′(k) ∈ S

}
. (13)

To construct the set E′
n, we consider a spatial tracklet τq

together with its predecessor spatial vertex v̂t(τq) and suc-
cessor spatial vertex v̂T (τq). These two vertices are the only
ones in the neighborhood of τq . Since an interaction event can
never occur on τq , its incoming and outgoing flows must be
conserved. In other words, if τq is selected by the MIP solver,
these two vertices must also be selected. We can therefore
treat the three vertices as a whole and remove some redundant
edges that link v̂t(τq) to τq and τq to v̂T (τq), without loss of
optimality. More specifically, for each pair of starting pose
vertex v′j at v̂t(τq) and ending pose vertex v′k at v̂T (τq),
we compute the edge pair that preserves the lowest cost.
Equivalently, we seek a vertex v′i with the lowest cost that
is in the neighborhood of both v′j and v′k, and only keep the
edge pair

(
e′ji, e

′
ik

)
in the tracklet graph G′. We compute such

edge pairs for all combinations of starting and ending poses,
and define E′

n to be the set of all such edges. We write:

E′
n = {e′ji ∪ e′ik : i = argmin

i′:i′∈N ′(j),k∈N ′(i′)

c(v′i′) ∧

v̂l′(j) ∈ S ∧ v̂l′(k) ∈ S ∧ v̂l′(i) /∈ S} (14)

We have now completed the construction of our new tracklet
graph G′(V ′, E′).

APPENDIX B
FULL GRAPH VS. PRUNED GRAPH

The full graph contains all the possible states of all objects and
thus results in a huge number of variables in the MIP model.
For example, on a 10-frame sequence of PETS06 whose
monitored area is relatively small, the number of variables
reaches about 12 million and the number of constrains reaches
about 4.5 million. With the graph size reduction step as
described in § 4.1, we reduce the number of variables and
constraints to a few thousands.

To compare the results obtained on the full graph with that
on the pruned one, we use a 750-frame PETS2006 sequence
featuring people dropping a bag. Due to the huge size of the
full graph, we run optimization on both the full graph and
the pruned graph in batches of 10 frames with 20% overlap.
Then we use Hungarian algorithm to glue the results into
full trajectories. We show the comparison of MOTA scores
in Fig. 1. As can be seen, the result on the pruned graph is
very similar to that on the full one. Notably, we found that the
optimization on the full graph takes up to 50GB memory and
up to 10 hours on a single batch of 10 frames, while the TIF
approach only uses less than 10MB memory and 0.02 second.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Overlap Threshold

M
O

T
A

full

pruned

Fig. 1. Comparison of MOTA scores obtained by running
MIP on the full graph and the pruned graph.

On the whole 3020-frame PETS2006 sequence that features
25 pedestrians and 1 dropped backpack in a crowded scene,
TIF consumes less than 6.5GB memory.

APPENDIX C
PROBABILITIES OF OCCUPANCY

Our approach to computing the image-based probabilities of
presence ρtk and βtk that appear in Eq. 4 and Eq. 5 is an ex-
tension of the one proposed in [2]. This earlier algorithm was
designed to estimate such probabilities for pedestrians given
the output of background subtraction on a set of images taken
at the same time. Its basic ingredient is a generative model
that represents pedestrians as cylinders and projects them into
the images to create synthetic ideal images that we would
observe if the pedestrians were at given locations. Under this
model of the image given the true occupancy, the probabilities
of occupancy at every location are taken to be the marginals
of a product law minimizing the Kullback-Leibler divergence
from the “true” conditional posterior distribution. This makes
it possible to evaluate the probabilities of occupancy at every
location as the fixed point of a large system of equations.

Importantly, probabilities computed in this way exhibit
the property that allows us to go from Eq. 1 to Eq. 2 in
our derivation of the objective function. We have therefore
extended the approach to handling multiple classes of objects
simultaneously as follows.

C.1 Oriented Objects
To handle oriented objects such as cars or bags, we extend [2]
by introducing simple wireframe models to represent them,
as shown in Fig. 2. The only difficulty is that in the case of
cylinders, orientation is irrelevant whereas the projections of
our wireframe models depend on it. We solve this by allowing
the generative model to model objects of any type at any one
of the O regularly spaced orientations. This means that the
projections of our 3D models can have arbitrary shapes and
thus we cannot use the integral image trick of the publicly
available software anymore [2]. We therefore use an “integral
line” variant, which is comparably efficient. More specifically,
we compute the integral of the image values only along the
horizontal axis, and at detection time, we take the difference
between the left-most and right-most integral pixels of a
projected region and sum the resulting differences obtained

(a) (b)
Fig. 2. Simultaneously detecting people and cars. (a)
A person and a car is detected, as indicated by the red
and green wireframes. (b) The same boxes are projected
and filled as black boxes to create a synthetic image
that approximates as closely as possible the background
subtraction results, shown in green. Note that the white
car is the same as the one that appears in Fig. 1 in our
introduction section of the main paper. It remains unde-
tected because the background subtraction algorithm fails
to extract it.

from each row. This lets us detect objects of different types
simultaneously and compute the probabilities of occupancy ρtk
and βtk introduced in § 3.1.

Note however, that the white car in Fig. 2 is missed because
its color is similar to that of the background used for training,
which is taken under direct sunlight. Arguably, we could have
used a more powerful car detector but all detectors sometime
fail and the point of this paper is that our technique can recover
from such failures by leveraging information provided by other
objects, in this case the people getting in the car.

C.2 Objects off the Ground Plane
In [2], objects of interest are assumed to be on the ground and
the fact that they can move in the vertical direction, such as
when people jump, is ignored. For people, this is usually not
an issue because the distance of their feet to the ground tends
to be small compared to their total height and the generative
model remains roughly correct. However, in the case of an
object such as a ball, which is small and can be thrown high
into the air, this is not true anymore.

In theory, this could be handled by treating height over
ground as a state variable, much as we do for orientation.
However, in the specific case of the basketball game we show
in the result section, when the ball is in the air it is also in front
of the spectators, making the background non-constant and the
results of [2] unsatisfactory. Therefore, in this specific case,
we use a discriminative approach and run a ball detector based
on color and roundness in each one of the frames taken at the
same time, triangulate the 2D detections to obtain candidate
3D detections. Due to the small size of the ball compared to
that of people, its presence or absence in a frame has little
effect on the estimated probabilities of presence of people and
we can assume conditional independence of presence of people
and ball given the images, which means we can still multiply
the probabilities as required for the derivation of Eq. 2.

APPENDIX D
POM VS. DPM
As mentioned in § 5.2, we could have used a Deformable
Part Model (DPM) algorithm [1] instead of POM to compute

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

the probabilities of occupancy. However, DPMs operate in
the image plane and do not explicitly take orientation into
account. Since we need probabilities expressed in the ground
plane, a non-trivial conversion from one to the other would be
required. Furthermore, the DPM approach does not explicitly
account for mutual occlusions between target objects, while
the POM one does [2]. In Tab. 3, we show the detection results
of POM and DPM with different threshold settings. As can be
seen, when a background subtraction algorithm can be used to
provide useful information, the POM approach performs better
in terms of MODA scores.

In our future work, we will investigate on 3D object
detectors that explore richer image features. For example, if
we are to use DPM for this purpose, we will require the
probability conversion between ground plane and image plane
to account for factors like orientation and mutual occlusion. In
particular, the ground-plane probability should be normalized
to a proper scale for the MIP solver to produce reasonable
results.

-‐1	

-‐0.5	

0	

0.5	

1	

1.5	

MODA	 FP	 FN	

POM	 DPM(-‐0.5)	 DPM(0)	 DPM(0.5)	

Fig. 3. Detection results of POM and DPM with different
threshold settings (-0.5, 0, 0.5). A higher MODA score
indicates more accurate detection; a lower False Positive
rate (FP) or False Negative rate (FN) indates more accu-
rate detection.

REFERENCES
[1] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object

Detection with Discriminatively Trained Part Based Models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9,
pp. 1627–1645, 2010.

[2] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multi-Camera People
Tracking with a Probabilistic Occupancy Map,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 267–282,
February 2008.

