
Learning an event sequence embedding for dense event-based deep stereo

Stepan Tulyakov
Space Engineering Center at

École Polytechnique Fédérale de Lausanne
stepan.tulyakov@epfl.ch

Francois Fleuret
École Polytechnique Fédérale de Lausanne

and Idiap Research Institute
francois.fleuret@idiap.ch

Martin Kiefel, Peter Gehler, Michael Hirsch
Amazon, Tübingen, Germany

{mkiefel, pgehler, hirsch}@amazon.de

Abstract

Today, a frame-based camera is the sensor of choice for
machine vision applications. However, these cameras, orig-
inally developed for acquisition of static images rather than
for sensing of dynamic uncontrolled visual environments,
suffer from high power consumption, data rate, latency and
low dynamic range.

An event-based image sensor addresses these drawbacks
by mimicking a biological retina. Instead of measuring the
intensity of every pixel in a fixed time interval, it reports
events of significant pixel intensity changes. Every such
event is represented by its position, sign of change, and
timestamp, accurate to the microsecond.

Asynchronous event sequences require special handling,
since traditional algorithms work only with synchronous,
spatially gridded data. To address this problem we in-
troduce a new module for event sequence embedding, for
use in different applications. The module builds a repre-
sentation of an event sequence by firstly aggregating infor-
mation locally across time, using a novel fully-connected
layer for an irregularly sampled continuous domain, and
then across discrete spatial domain. Based on this module,
we design a deep learning-based stereo method for event-
based cameras. The proposed method is the first learning-
based stereo method for an event-based camera and the
only method that produces dense results. We show large
performance increases on the Multi Vehicle Stereo Event
Camera Dataset (MVSEC), which became the standard set
for the benchmarking of event-based stereo methods.

1. Introduction
Stereo matching is the problem of finding for every point

in an image taken from one viewpoint its physically corre-
sponding one in an image taken from another viewpoint.

Given the parameters of a stereo camera setup, the match-
ing results allow to compute the 3d structure of a scene,
with many applications, e.g. in robotics [29], medical imag-
ing [32], remote sensing [47], or computational photogra-
phy [55, 2].

1.1. Deep stereo for frame-based cameras

Currently, most successful stereo matching methods are
based on deep learning. First successes of deep learning
in stereo matching were achieved by replacing individual
algorithmic elements in legacy methods (often [28, 16])
with neural networks, e.g. similarity metric [62, 24, 51, 61,
8], smoothness penalty [45, 21], matching confidence [46]
and disparity post-processing [13].

Current works solve the stereo matching by training a
neural network end-to-end, which combines embedding,
matching, regularization, and sometimes refinement mod-
ules in a single model [10, 27, 20, 63, 36, 19, 23, 7, 52, 59,
50]. An embedding module computes image descriptors for
left and right images, a matching module performs a corre-
lation [10, 27, 36, 19, 23, 59, 50], computes matching signa-
tures [52] or simply concatenates [20, 7, 63] left and shifted
right descriptors for every disparity. The regularization
module, implemented as an hourglass network with short-
cut connections between the contracting and the expanding
parts and 2d [27, 10, 36, 23] or 3d [20, 52, 63, 19, 7] con-
volutions, enforces stereo matching constraints and com-
putes disparities or a distribution over disparities. Finally,
some methods [36, 23, 19] have a refinement module, that
improves the initial low-resolution disparity relying on left-
right warping error.

Best results are obtained with fully-supervised training
on large synthetic datasets with ground truth [27] and an L1

or cross-entropy [52] loss, while some methods use weakly
supervised settings [63, 39, 59], relying on geometric con-
straints of the task. Most recent methods [59, 50] further

Table 1. Comparison of event-based image sensor, such as [3] to
a frame-based sensor. The numbers show orders of magnitude
for every characteristic, rather than precise values. Advantages
of event-based sensors are highlighted.

Characteristic Frame-based Event-based
Dynamic range, [dB] 50 130
Power consumption, [W] 1 0.01
Data rate, [Mb/s] 100 0.1
Latency, [ms] 10 0.001
Resolution, [MP] 1 0.01
Intensity information 3 7

improve results using multi-task learning.
Many stereo methods exist for frame-base cameras, how-

ever, stereo matching with novel bio-inspired event-based
sensors is a relatively new area of research, with many in-
teresting research challenges.

1.2. Event-based sensors

Conventional frame-based camera sensors capture stro-
boscopic sequences of still pictures at a fixed time interval
or frame rate. In contrast, the retina in the human eye op-
erates on completely different principles. Nobel prize win-
ing experiments [18] showed that the retina is most sensi-
tive to temporal brightness gradients, and is blind to static
scenes in absence of eye movements [41]. These princi-
ples inspired the development of event-based image sen-
sors [49, 3].

In an event-based image sensor, pixels are sensitive
to temporal brightness contrast and trigger binary events
with a rate proportional to the temporal gradient of photo-
current. Events can have positive or negative polarity de-
pending on the sign of the gradient (i.e. “dark to bright” or
“bright to dark”). Triggered events are recorded from the
sensor in an asynchronous manner with information about
their spatial positions, polarities, and timestamps accurate
to microseconds.

Event-based image sensors have several advantages over
frame-based sensors. First, they have higher dynamic range
and thus do not saturate in extreme lighting conditions,
such as bright daylight and night with minimum illumina-
tion, thanks to pixel-wise gain and integration time con-
trol. Secondly, they have lower power consumption and
data rates, since they only transmit information about sig-
nificant brightness changes. This enables use in power-
constrained systems. Finally, due to immediate transmis-
sion of every triggered event with a microsecond-accurate
timestamp, event-based sensors have lower latency and can
be used in time-critical applications. However, these advan-
tages come at a cost. Event-based sensors have lower res-
olution, because their pixels are more complex, and do not
provide rich intensity information. A comparison between
frame-based and event-based sensors is shown in Table 1.

Unique properties of event-based image sensors make

them attractive for low-latency dynamic vision applications
in environments with uncontrolled illumination, such as
tracking [12], robot control [25], or object recognition [48].
Depth estimation, that we investigate in this work, could
drastically improve performance in these applications, and
open the way to novel use cases, such as augmented reality.

1.3. Event-based stereo

Due to the novelty of event-based image sensors, only a
few event-based stereo methods have been proposed, none
of which is learning-based.

One line of research investigates how to represent and
compare events. This is a hard problem because events
have few spatio-temporal neighbors and only one binary
feature. Early methods [22, 42] compared events using
only their timestamps which led to matching ambiguities,
due to the noise, variable cameras sensitivity, and imper-
fect camera synchronization. Therefore, later methods re-
lied on hand-crafted descriptors [4, 68, 69] and similarity
measures [44, 67, 38]. In [4] descriptors are computed as a
bank of orientation-sensitive spatial filter responses, in [68]
as a vector of distances to closest events in several spatial
directions, in [69] as a histogram of orientations of vectors
pointing to the closest events in a spatial window. As for
similarity measures, spatial windows with event are com-
pared in [44] using average distances to the closest events,
in [38] using average inverse timestamp difference between
corresponding events, and in [67] using intersection-over-
union of events.

The second research direction explores how to apply
regularization in stereo matching. This is a challeng-
ing problem due to the sparsity of data in both time and
space, which consequently cannot be represented with con-
ventional Markov Random Field (MRF) models. Some
works [37, 11, 38] adopt heuristic cooperative regulariza-
tion from [26] by defining a spatio-temporal inhibitory
and excitatory neighborhood for each event, while oth-
ers [56, 57] use belief propagation and semi-global match-
ing on sparse MRF models, were nodes are active only dur-
ing a fixed interval after receiving an event.

The third line of research explores how to accumulate
events over time to cope with the fact of individual events
being noisy and not very informative, though leading to the
undesirable effect of blurring object boundaries when using
long accumulation times. Most methods use fixed accumu-
lation intervals [22, 42, 4, 44], while [69] sets accumulation
time equal to the average of the inverse of the event rate,
and [67] warps event positions as if they were all triggered
at the same time using depth hypothesis and known camera
motion.

Another challenging problem is to perform dense stereo
matching using sparse event data. While most of the meth-
ods produce sparse disparity, the work [64] reconstructs

semi-dense disparities by fusing information from several
view-points using a known camera motion. In [69] a dis-
parity is computed at every location without an event by
fitting a plane to its neighbor disparities.

Finally, a variety of works is dedicated to implement and
perform stereo matching on neuromorphic chips and field-
programmable gate arrays (FPGA) [1, 9].

All existing methods use hand-crafted event represen-
tations and grid-based image models, which support only
simplistic priors, such as smoothness. Meanwhile, most
successful frame-based stereo methods use learning-based
representations [61] and regularization based on deep net-
works, which are able to perform area-based regulariza-
tion [20] and even use monocular depth cues [14]. This
motivates our work: an end-to-end deep learning model for
event-based stereo matching.

1.4. Deep learning with event sequences

Event sequences can be processed using convolutional
neural networks (CNNs), recurrent neural networks (RNNs)
and specialized networks for event data.

One option is to use off-the-shelf CNNs, that are success-
ful in frame-based image processing. However, one prob-
lem is that convolutional modules work with dense images,
where each pixel lies in a 2d or 3d (in case of video) discrete
space, with an intensity value assigned to it. In contrast,
an event sequence is a sparse number of 3d points, with
two discrete spatial dimensions, one continuous temporal
dimension, and with a binary variable (polarity) as a fea-
ture. Therefore, such a sequence needs to be transformed to
a frame-based representation before it can be input to a stan-
dard CNN. Note, however, that naive binning of the time di-
mension is problematic since it would produce tensors with
a prohibitively large temporal dimensions.

Existing methods [34, 25, 30, 53, 66, 60] use hand-
crafted transformations to convert event sequences to
frame-based representations, that we call event images. For
example, [34] saves the polarity of the last event, [30] sums
event polarities in every location during a predetermined
time interval, and [25] counts the number of positive and
negative events to avoid information loss due to polarity
cancellation. To preserve time information, in addition to
positive and negative event counts, [66] stores the times-
tamp of the last positive and negative events at every lo-
cation, while [60] saves the average timestamps of the up-
dates. To capture time dynamic, [53, 60] stack several
event images described earlier, for consecutive time inter-
vals. The main drawback of all these representations is that
they loose precise timing information about events.

Another seemingly natural choice, given the sequential
nature of the data, is to use RNNs. An application to
even-based recognition with RNNs and long-term memory
is [33]. That model has the drawback that it does not pre-

serve the spatial information, which is a crucial ingredient
for example to stereo matching. Note, that convolutional
RNNs, such as [58], preserve spatial information, but are
not applicable for the same reason as CNNs.

Finally, one can use asynchronous networks, where ev-
ery neuron has an internal state that is updated by events,
such as Spiked Neural Networks (SNN) [6] or specially
designed convolutional neural networks [5, 35]. Unfortu-
nately, it is hard to build and train such networks, because
they are not easily differentiable, and additionally difficult
to implement in a standard framework that enable the use of
available computational back-ends such as GPUs.

1.5. Contribution

The contributions of this paper are the following:

1. We propose a learnable representation (embedding)
for event sequences that, explicitly treats sequences as
stream of sparse 3d points with two discrete spatial and
one continuous temporal coordinate. It takes into ac-
count both spatial positions and accurate timeing in-
formation of all recorded events.

2. We use this embedding to design the first deep
learning-based method for event-based stereo recon-
struction. The method is based on an architecture with
large receptive field that uses large context and al-
lows stereo reconstruction for locations without events.
We demonstrate that this method significantly outper-
forms other competing approaches on the Multi Vehi-
cle Stereo Event Camera Dataset (MVSEC).

2. Method

Let the left and right event sequences be El, Er, each
consisting of n events sorted by the time of arrival E =
((xi, yi, ti, pi) | ti+1 > ti)i=1...n. Each event is a
point in a three dimensional space with two discrete spa-
tial coordinates and one continuous temporal coordinate
(x, y, t) ∈ [0 . . . w)× [0 . . . h)×R and one polarity feature
p ∈ {−1, 1}, where w and h correspond to the width and
height of an image sensor. Given both El, Er, the network
computes an estimated disparity tensor D̂ as

D̂ = Net(El, Er | Θ, dmax) ∈ [0, dmax]h×w, (1)

where Θ is the tensor of network parameters and dmax is
a maximum disparity. An element of the disparity tensor
D̂y,x specifies that a pixel with coordinates (x, y) from the
left camera matches the pixel with coordinates (x−D̂y,x, y)
from the right camera. In §2.1 we describe the proposed
network architecture for event-based stereo matching, and
in §2.2 explain the novel embedding for event sequences.

2.1. Network architecture

Our architecture is inspired by recent stereo networks
for frame-based cameras, which use large image contexts
and produce disparities with sub-pixel accuracy [52, 20]. It
consists of embedding, matching, regularization modules,
followed by an estimator. The embedding module takes
as input an event sequence E and computes its descriptor
F of size c × h

4 ×
w
4 . The same module is applied to the

left and right event sequence independently. This approach
will be described in detail in §2.2. The matching module
for each disparity then takes the left descriptor and shifted
right descriptor and computes a matching signature of size
c
8 ×

h
4 ×

w
4 . All matching signatures for all disparities are

concatenated to a 4d tensor of size c
8×

dmax

4 × h
4×

w
4 , which

are then passed to the regularization module. The regular-
ization module is an hourglass neural network with 3d con-
volutions and shortcut connections between the contracting
and the expanding parts. It produces a matching cost tensor
C of size dmax

2 ×h×w (matching costs are computed only
for even disparities to save space), passed to the sub-pixel
estimator [52] which produces an estimated disparity tensor
D̂ as

D̂y,x =
∑
j

d(j) · softmin
j:|ĵ−j|≤δ

(Cj,y,x)

with ĵ = arg min
j

(Cj,y,x) , (2)

where ∆ = 2 is an estimator support and d(j) = 2 · j is
a disparity, corresponding to index j in the matching cost
tensor. More details about the network architecture are de-
scribed in the supplementary material.

Network training uses a sub-pixel cross entropy loss [52]

L(Θ) =
1

wh

∑
y,x

∑
j

Laplace(d(j) | µ = DGT
y,x , b)×

log(softmin
j

(Cj,y,x)), (3)

where Laplace(d | µ = DGT
y,x , b) is a discretized and nor-

malized Laplace probability density function over dispari-
ties with mean equal to the ground truth disparity µ = DGT

y,x

and diversity b = 2.

2.2. Events sequence embedding

In this work, we focus on a special family of embed-
ding functions that can be represented as a composition
fS(fτ (·)) of two functions: temporal aggregation fτ (·)
and spatial aggregation fS(·). The temporal aggregation
function is defined per-location and it takes a local event
sequence E(x, y) = ((xi, yi, ti, pi) ∈ E | (xi, yi) =
(x, y)) as input, and produces a event image I of size

h
 x

 w

 κ

12

478

3

569

 First-In First-Out queue

polarities

timestamps

1 -1 1 0

t8 t7 t4 0

time

t9t8t7t6t5t4t3t2t1

 2

Figure 1. The event queue is a 4d tensor of size 2 × κ × h × w,
where κ is a queue capacity. The figure depicts the queue with
width and height fused to a single dimension. It stores polarities
and timestamps of the κ most recent events at each location in
order of arrival. When a new event, here (9), arrives, it pushes
older events (6, 5, 2) to the end of the queue and occupies the first
position and the oldest event (1) is pushed out of the queue.

c × h × w, as Iy,x = fτ (E(x, y)). The spatial aggrega-
tion is a translation-invariant function that is applied to sub-
windows of the event image and produces a event descriptor
F such that ∀y, x, Fy,x = fS (Iy−∆:y+∆,x−∆:x+∆).

The spatial grid structure of the event image allows the
use of standard 2d convolutions. Therefore, throughout our
experiments we use two convolutional residual blocks [15]
and focus on different temporal aggregation methods.

To implement different temporal aggregation methods
we need a way to efficiently accumulate events in each loca-
tion. For that we propose to use a First-In First-Out (FIFO)
queue shown in Figure 1. It saves the κ most recent events
at each location sorted by time of their arrival. This queue
could be efficiently implemented using linked lists or sim-
pler circular buffers. Note also, that this queue works well
regardless of the amount of motion: in presence of fast mo-
tion, when events are frequent, it stores only the recent ones,
while in presence of slow motion, when events are rare, it
preserves old ones. We prune events that arrived more than
τ seconds ago from the queue and replace them with ze-
ros before applying the temporal aggregation. We call κ the
capacity and τ the time horizon of the queue.

Hand-crafted. In §1.4 we reviewed existing methods for
converting event sequences to event images. All of them
can be thought of as hand-crafted temporal aggregations.
One of these methods produces an event image by counting
the number of positive and negative events, and recording
timestamps of the most recent positive and negative events
at every location. Since similar methods [34, 25, 30, 53, 66,
60] worked well in many applications, we use this solution
as our baseline.

Temporal convolutional network. Temporal convolu-
tional network seems like a natural choice for temporal ag-
gregation. However, a convolutional network usually ap-
plies to regularly sampled data, whereas in our case event
timestamps are sampled irregularly and the temporal dimen-

C
o
o
rd

in
a
te

:
ti

m
e
st

a
m

p
s

D
e
sc

ri
p

to
rp1

p2

pK

...

p3

p4

t1

t2

tK
Kernel
network

..
.

t3

t4 (d
o
t

p
ro

d
u
ct

)

 w
e
ig

h
ts

Fe
a
tu

re
s:

 p
o
la

ri
ti

e
s

I1
I2

w1

w2

wK

...

w3

w4

(2)

(2)

(2)

(2)

(2)

w1

w2

wK

...

w3

w4

(1)

(1)

(1)

(1)

(1)
σ +b=

Figure 2. In the continuous fully-connected layer depicted here,
for every timestamp the kernel network computes two weights, and
for all timestamps two vectors, each corresponding to a continuous
kernel. To get an event sequence descriptor we multiply each of
these vectors by polarity vector using dot product, add bias and
apply non-linearity. The corresponding weight vector, descriptor
element and continuous kernel are shown in same color.

sion in the queue only reflects the order of event arrival.
Actual timestamp difference between nearby events in the
queue might be different and arbitrary. To compensate for
that, we feed the timestamp of each event to the network
along with its polarity as a feature. Details of the network
with temporal convolutions can be found in our supplemen-
tary material.

Continuous fully-connected layer. Ideally, the fact that
event timestamps are continuous and sampled irregularly is
taken into account. To do so, we use a continuous fully-
connected layer (CFC), where continuous kernels are them-
selves approximated by a multi-layer perceptron (MLP),
that we call a kernel network. This network allows to model
arbitrary complex kernels by modulating their capacity, and
can be trained end-to-end along with the rest of the archi-
tecture. The overall idea is illustrated by Figure 2. Details
about kernel networks can be found in our supplementary
material.

Let us compare the proposed layer to a standard fully-
connected (FC) layer, to appreciate the differences. Given
event polarities p = [p1, p2, p3, p4, p5, 0, 0] for some loca-
tion stored in the event queue, a single output of the con-
ventional FC layer is computed as I = σ(

∑7
i wipi + b),

where w is a weights vector, b is a bias and σ(·) is a non-
linearity. In contrast, a single output of the proposed CFC
layer is computed as I = σ(1

5

∑5
i w(ti) · pi + b). Note that

as shown in Figure 3, for a standard FC layer, the weight of
each polarity simply depends on the events order i, while
for the proposed CFC, the weight is a continuous paramet-
ric function w(ti) = KernelNet(ti) (MLP), of real-valued
event timestamp ti. This allows to embed event sequences
with irregularly spaced time intervals between events.

A similar construction was used in [54] but with the use
of continuous convolutional layers. Here, we propose con-
tinuous fully-connected layer. Another difference is that
in [54] the input are 3d LIDAR points in a Euclidean space.

t1 t2t3 t41 2 3 4 5 6 7 t5

w
e
ig
h
ts

p
o
la
ri
ti
e
s

(a) Conventional FC (b) Proposed CFC

Figure 3. Comparison of (a) conventional fully-connected (FC)
layer to (b) proposed continuous fully-connected (CFC) layer. In
contrast to FC, CFC allows to embed event sequences with irreg-
ularly spaced time intervals between events.

3. Experiments

All experiments are done using the PyTorch frame-
work [40]. Network learning uses RMSprop with standard
settings. In all experiments we normalize event polarities in
the queue toN (0, 1) and subtract the timestamp of the most
recent event from all other event timestamps.

All experiments are done on publicly available datasets,
and our code is available on GitHub 1.

3.1. Dataset and evaluation protocol

We use the Multi Vehicle Stereo Event Camera
Dataset (MVSEC) [65] which is available online [31].
MVSEC is the only large publicly available dataset captured
with a real event-based stereo system, and over recent years
it has became the de-facto standard for comparing event-
based stereo methods [67, 64]. It is collected by a system
composed of a LIDAR and two event-based cameras with a
resolution of 346×260 pixels mounted on various vehicles,
such as a drone, a car and a motorcycle. LIDAR records
frames with sparse depth measurements at 20Hz, while the
event-based cameras acquire continuous streams of events
and gray-scale video frames, which we use for visualization
purposes only.

We unpack the original data in ROS bag format [43]. The
depths are converted to left-view sub-pixel disparities and
saved as images (sub-pixel precision is preserved by scal-
ing the disparities). All pixels with disparities > 36 are as-
sumed to have unknown disparities. Then, for each depth,
we find the closest gray-scale image in time, and events pre-
ceding the depth by 0.05 seconds in the left and right view.
We correct their optical distortions, rectify and save them.
The script for data conversion is available online with the
rest of the source code.

We use the Indoor Flying dataset from MVSEC, which
is captured from a drone flying in a room with various ob-

1https://github.com/tlkvstepan/event_stereo_
ICCV2019

https://github.com/tlkvstepan/event_stereo_ICCV2019
https://github.com/tlkvstepan/event_stereo_ICCV2019

Table 2. Summary of Indoor Flying splits. For each split we spec-
ify which sequences and frames are used for training and test.
For example, S1

140,..,1200 means that from sequence one only the
frames 140 to 1200 are used. We use the same test intervals as
in [67] to allow a fair comparison.

Set Sequence and frames Size

1
Training S2

160,..,1580 ∪ S3
125,..,1815 3110

Validation A ∈ S1
140,..,1200 200

Test B ∈ S1
140,..,1200 | A ∩B = ∅ 861

2
Training S1

80,..,1260 ∪ S3
125,..,1815 2870

Validation A ∈ S2
120,..,1420 200

Test B ∈ S2
120,..,1420 | A ∩B = ∅ 1101

3

Training S1
80,..,1260 ∪ S2

160,..,1580 2600

Validation A ∈ S3
73,..,1615 200

Test B ∈ S3
73,..,1615 | A ∩B = ∅ 1343

jects. We compare our method to existing methods using
the protocol from [67] and report results on the three se-
quences. The results are summarized in Table 2. Follow-
ing [67], take-off and landing frames are removed. The test
sequences are the same as in [67].

Similar to [67], we compute and report the mean depth
error (MDE) and one-pixel-accuracy (1PA) computed in
sparse locations corresponding to 15’000 events preceding
each depth measurement. The one-pixel-accuracy is the
percentage of locations for which the predicted disparity is
off by less than one pixel.

3.2. Comparison of temporal aggregation methods

In this section, we compare performance of the temporal
aggregation variants described in §2.2. We train the network
three times for each method using different random initial-
izations. For every trial we select the network that achieves
the highest 1PA on the validation set over all epochs. The
selected networks are then used to compute the performance
on the test set. In Table 3 we report average test results
along with standard deviations.

For each variant we use the architecture that was found
during the grid-search experiments with the shallow stereo
network from [61] on validation set. During training, we
consider only ground truth at locations corresponding to the
most recent 15’000 events.

All networks are initialized using the default PyTorch
initialization, except the kernel network, for which we de-
veloped a custom initialization that ensures that the outputs
of the network follow a normal distribution. More details
can be found in the supplementary materials.

As shown in Table 3, the proposed learning-based meth-
ods for temporal aggregation outperform the hand-crafted
method, probably due to the fact that they utilize times-
tamps of individual events. Among the learning-based

Table 3. Empirical results on the first split test set of the Indoor
Flying dataset. Shown is the average test set results over three
trials with the best performing method highlighted. Note, that
all proposed learning-based methods outperform the hand-crafted
method.

Method MDE, [cm] 1PA, [%]
Hand-crafted 16.5± 0.5 87.3±0.2
Temporal convolutional network 13.8± 0.1 90.7±0.1
Continuous fully-connected layer 13.6± 0.2 91.3±0.9

methods, the network with the continuous fully-connected
layer shows the best performance as it explicitly handles
events which are irregularly sampled from the continuous
time domain. In all following sections we use the latter
method, and call the resulting stereo matching method Deep
Dense Event Stereo (DDES).

3.3. Empirical results

Next, we compare the proposed stereo method to the
state-of-the-art event-based methods [67, 64, 38], and to
two traditional methods [16, 17] which were adopted to
work on event images in [64].

For quantitative comparison we use the protocol
from [67] described in §3.1. According to this protocol,
results are evaluated in sparse locations corresponding to
15’000 most recent events. We use the same parameters
and experiments settings as in §3.2. During the experiments
we noticed that for the second split there is a significant dif-
ference between test and training set. The test set has more
abrupt motions, triggering a larger number of events com-
pared to the training set (for details please refer the supple-
Table 4. Results on the Indoor Flying dataset using sparse ground
truth, following the protocol from [66] described in §3.1. Results
for TSES [67] and CopNet [38] are from [67] and results for Semi-
Dense 3D [64], SGM* [16, 64] and FCVF* [17, 64] are from [64].
SGM* and FCVF* methods implemented in [64] are similar to the
original frame-based methods but operate on event images. For
Semi-Dense 3D, SGM* and FCVF* results for the second split
are not available. We report average test set errors including stan-
dard deviations over the three randomized training trials. For other
methods the standard deviation are not available. All methods are
sorted in ascending order according to their test error. Our pro-
posed method dubbed Deep Dense Event Stereo (DDES) is high-
lighted. Note, that it outperforms other single viewpoint methods,
such as TSES, CopNet, SGM* and FCVF*, and even performs
on-par with Semi-Dense 3D method that fuses depths from sev-
eral viewpoints using known camera motion.

Method Mean depth error, [cm]
Split 1 Split 2 Split 3

Semi-Dense 3D [64] 13 – 33
DDES (proposed) 13.6±0.2 18.0±0.2 18.4±0.5
TSES [67] 36 44 36
CopNet [38] 61 100 64
SGM* [16, 64] 93 – 119
FCVF* [17, 64] 99 – 103

Table 5. Performance on the Indoor Flying dataset evaluated us-
ing dense ground truth. We train our method using the full ground
truth disparity, taking into account all locations, including those
without events. We select the network with the highest validation
1PA during a single training pass and report its results on the test
set. Note that the results are only slightly worse than results ob-
tained using sparse ground truth.

Mean depth error, [cm] One pixel accuracy, [%]
Split 1 Split 2 Split 3 Split 1 Split 2 Split 3

16.7 29.4 27.8 89.8 61.0 74.8

mentary materials). As a partial remedy, for the second split
we trained the network using a fixed number of 130’000
events instead of a fixed time horizon and show the results
in the tables. However, we believe that due to the domain
shift this split has limited significance and should not be
used.

The results are summarized in Table 4. Our proposed
Dense Deep Event Stereo (DDES) method performs better
than other single viewpoint methods, such as TSES [67],
CopNet [38], SGM* [16, 64] and FCVF* [17, 64] and even
performs on-par with the Semi-Dense 3D method [64] that
fuses depth from several viewpoints using known camera
motion.

We also train and test our method using the entire ground
truth, taking into account all locations, including those with-
out events. We select the network with the highest valida-
tion 1PA during a single training pass and report its results
on the test set. The results are summarized in Table 5. Note,
that the results are only slightly worse than results using the
sparse ground truth. To our knowledge, this is the first suc-
cessful attempt to compute dense stereo results for event-
based cameras.

For qualitative comparison we estimate disparity using
DDES trained on the full ground truth for example cases
similar to the ones used in [67, 64]. Figure 5 contains a vi-
sual comparison of our results with those of TSES [67] and
Semi-Dense 3D [64] borrowed from the respective papers.
Unlike previous techniques, DDES computes truly dense
and sub-pixel accurate disparity.

Our implementation of DDES runs at about 10 frames
per second on a desktop PC with a GeForce GTX TITAN X
GPU.

3.4. Weights of continuous fully-connected layer.

In this section, we visualize the output of the kernel net-
work. To this end, we input uniformly sampled timestamps
∈ [−0.5, 0] to the kernel network and plot every row of
the CFC weights tensor as a smooth curve, which we call
weight kernel.

Resulting kernels before and after the training are shown
in Figure 4. At the start of training, the output of the ker-
nel network is (by design) normally distributed, due to the
initialization. After training, the weight kernels become

Table 6. Impact of the event queue capacity on performance. The
table shows validation errors for split # 1 of the Indoor Flying set
averaged over 2 trials.

Queue capacity κ 1 3 7 15
Mean depth error, [cm] 13.3 13.4 13.5 13.3

smooth in time and converge to one of two shapes: bell-
shaped (kernels 2 and 3) or derivative (kernel 1). The bell-
shaped kernels detect events with particular timestamps,
while the derivative kernels compute event count changes
(time-derivative) at varying time scales. Most of the kernels
assign close to zero weights to old events.

3.5. Importance of spatial and temporal context.

During our initial experiments with the temporal embed-
ding we used the shallow stereo network with a small recep-
tive field of size 9× 9 from [61]. The shallow networks had
no access to a large spatial context and larger event queue
capacity and thus larger temporal context clearly helped to
achieve better results. For example, with an event queue ca-
pacity κ = 1 the MDE validation error was 80.4 cm, while
with κ = 7 it was 67.9 cm (the error was computed for Split
1 and averaged over two trials).

For the deep architecture from § 2.1, we noticed that the
performance became very similar for different event queue
capacities κ as shown in Table 6. This indicates that a net-
work with access to a larger spatial context tends to ignore
temporal context. We hypothesise, that spatial context is
more reliable than temporal context, particular in dynamic
sequences, such as drone videos.

4. Conclusion
In this work, we proposed a novel learning-based method

for embedding event sequences as recorded by event-based
vision sensors. It allows to model events as a stream of
sparse 3d data points, each with two discrete spatial coordi-
nates and one continuous temporal coordinate, and is able to
use timestamps and spatial positions of all events in a time
interval. We demonstrated state-of-the-art performance for

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
time, [sec]

−0.10

−0.05

0.00

0.05

0.10

we
ig

ht

kernel 1
kernel 2
kernel 3

(a) Before training

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
time, [sec]

−6

−4

−2

0

2

4

6

we
ig

ht

kernel 1
kernel 2
kernel 3

(b) After training

Figure 4. Visualization of kernel network output. Before train-
ing (a), the kernel network output is (by design) normally dis-
tributed. After training (b), the weight kernels have one of two
shapes: bell-shaped (kernels 2 and 3) and derivative (kernel 1).
Details are in the text. For clarity, we show 3 kernels out of 64.

(a) Events (b) Ground Truth (c) DDES (proposed) (d) TSES [67]

(a) Events (b) Ground Truth (c) DDES (proposed) (f) Semi-Dense 3D [64]
Figure 5. Qualitative comparison with recent event-based methods on the Indoor Flying dataset. For comparison, we select frames similar
to the ones used in [67] and in [64]. Results for TSES [67] and Semi-Dense 3D [64] are borrowed from the respective papers. Note,
that, unlike our method, Semi-Dense 3D fuses depth from several viewpoints using known camera motion. The rows correspond to frame
#100 from sequence 1, frame #340 from sequence 1, frame #1700 from sequence 3 and frame #980 from sequence 1 correspondingly.
To get the results for one sequence we trained the network using the remaining two. We tried to match the color-coding of the different
outputs. In all figures warmer colors correspond to closer objects. In (a) we visualize the 15’000 most recent events from the left camera,
overlaid with a gray-scale image, which is not used by the methods. Positive events are shown in red and negative events are shown in
blue. In (b,c,d) locations without disparities are shown in dark blue and in (f) in black. Note, that our proposed method (c) computes dense
disparities, while in TSES (d) some disparities are invalidated by outlier rejection and in Semi-Dense 3D (f) disparities are computed only
for locations with events. Similarly to Semi-Dense 3D method, our proposed method (c) estimates sub-pixel disparities, while TSES (d)
estimates integer disparities.

the task of stereo matching. Empirical results are better
than the best hand-crafted as well as a learning-based em-
bedding that uses on temporal convolutions in a discretized
time domain. Using the proposed embedding we developed
DDES, a deep neural network for stereo matching. This
is the first deep learning-based stereo matching method for
event-based cameras. We demonstrated that DDES perfoms
better than prior state-of-the-art on the standard MVSEC

dataset by a large margin.

Event-based cameras offer advantages such as
higher dynamic range and temporal resolution over
traditional frame-based cameras but require spe-
cialized handling of their event streams. We hope
that the proposed embedding finds applications to
more imaging algorithms beyond stereo matching.

References
[1] Alexander Andreopoulos, Hirak J Kashyap, Tapan K Nayak,

Arnon Amir, and Myron D Flickner. A low power, high
throughput, fully event-based stereo system. In CVPR, 2018.
3

[2] Jonathan T Barron, Andrew Adams, YiChang Shih, and Car-
los Hernández. Fast bilateral-space stereo for synthetic de-
focus. In CVPR, 2015. 1

[3] Christian Brandli, Raphael Berner, Minhao Yang, Shih-Chii
Liu, and Tobi Delbruck. A 240×180 130 db 3µs latency
global shutter spatiotemporal vision sensor. IEEE Journal of
Solid-State Circuits, 49(10):2333–2341, 2014. 2

[4] Luis Alejandro Camunas-Mesa, Teresa Serrano-
Gotarredona, Sio Hoi Ieng, Ryad Benjamin Benosman,
and Bernabe Linares-Barranco. On the use of orientation
filters for 3d reconstruction in event-driven stereo vision.
Frontiers in neuroscience, 8:48, 2014. 2

[5] Marco Cannici, Marco Ciccone, Andrea Romanoni, and
Matteo Matteucci. Event-based convolutional networks for
object detection in neuromorphic cameras. CoRR, 2018. 3

[6] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking
deep convolutional neural networks for energy-efficient ob-
ject recognition. IJCV, 113(1):54–66, 2015. 3

[7] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo
matching network. CVPR, 2018. 1

[8] Zhuoyuan Chen, Xun Sun, and Liang Wang. A Deep Vi-
sual Correspondence Embedding Model for Stereo Matching
Costs. ICCV, 2015. 1

[9] Georgi Dikov, Mohsen Firouzi, Florian Röhrbein, Jörg Con-
radt, and Christoph Richter. Spiking cooperative stereo-
matching at 2 ms latency with neuromorphic hardware. In
Conference on Biomimetic and Biohybrid Systems, pages
119–137. Springer, 2017. 3

[10] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick van der
Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-
ing optical flow with convolutional networks. In CVPR,
2015. 1

[11] Mohsen Firouzi and Jörg Conradt. Asynchronous event-
based cooperative stereo matching using neuromorphic sil-
icon retinas. Neural Processing Letters, 43(2):311–326,
2016. 2

[12] Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Da-
vide Scaramuzza. Asynchronous, photometric feature track-
ing using events and frames. In ECCV, 2018. 2

[13] Spyros Gidaris and Nikos Komodakis. Detect, replace, re-
fine: Deep structured prediction for pixel wise labeling.
CVPR, 2017. 1

[14] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In CVPR, pages 270–279, 2017. 3

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 4

[16] Heiko Hirschmuller. Stereo processing by semiglobal match-
ing and mutual information. PAMI, 2008. 1, 6, 7

[17] Asmaa Hosni, Christoph Rhemann, Michael Bleyer, Carsten
Rother, and Margrit Gelautz. Fast cost-volume filtering for
visual correspondence and beyond. PAMI, 2013. 6, 7

[18] David H Hubel and Torsten N Wiesel. Receptive fields of
single neurones in the cat’s striate cortex. The Journal of
physiology, 148(3):574–591, 1959. 2

[19] Zequn Jie, Pengfei Wang, Yonggen Ling, Bo Zhao, Yunchao
Wei, Jiashi Feng, and Wei Liu. Left-right comparative recur-
rent model for stereo matching. In CVPR, 2018. 1

[20] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep stereo
regression. ICCV, 2017. 1, 3, 4

[21] Patrick Knöbelreiter, Christian Reinbacher, Alexander
Shekhovtsov, and Thomas Pock. End-to-end training of hy-
brid cnn-crf models for stereo. CVPR, 2017. 1

[22] Jurgen Kogler, Martin Humenberger, and Christoph
Sulzbachner. Event-based stereo matching approaches for
frameless address event stereo data. In International Sympo-
sium on Visual Computing, pages 674–685. Springer, 2011.
2

[23] Zhengfa Liang, Yiliu Feng, Yulan Guo Hengzhu Liu Wei
Chen, and Linbo Qiao Li Zhou Jianfeng Zhang. Learning
for disparity estimation through feature constancy. CVPR,
2018. 1

[24] Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Ef-
ficient deep learning for stereo matching. In CVPR, 2016.
1

[25] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego,
Narciso Garcı́a, and Davide Scaramuzza. Event-based vision
meets deep learning on steering prediction for self-driving
cars. In CVPR, 2018. 2, 3, 4

[26] David Marr and Tomaso Poggio. Cooperative computation
of stereo disparity. Science, 194(4262):283–287, 1976. 2

[27] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In CVPR, 2016. 1

[28] Xing Mei, Xun Sun, Mingcai Zhou, Shaohui Jiao, Haitao
Wang, and Xiaopeng Zhang. On building an accurate stereo
matching system on graphics hardware. In ICCVW, 2011. 1

[29] Moritz Menze and Andreas Geiger. Object scene flow for
autonomous vehicles. In CVPR, 2015. 1

[30] Diederik Paul Moeys, Federico Corradi, Emmett Kerr,
Philip Vance, Gautham Das, Daniel Neil, Dermot Kerr,
and Tobi Delbrück. Steering a predator robot using a
mixed frame/event-driven convolutional neural network. In
EBCCSP, 2016. 3, 4

[31] Multi vehicle stereo event camera dataset. https://
daniilidis-group.github.io/mvsec/ Accessed:
09 March 2019. 5

[32] Kyoung Won Nam, Jeongyun Park, In Young Kim, and
Kwang Gi Kim. Application of stereo-imaging technology
to medical field. Healthcare informatics research, 2012. 1

[33] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased
lstm: Accelerating recurrent network training for long or
event-based sequences. In NIPS, 2016. 3

https://daniilidis-group.github.io/mvsec/
https://daniilidis-group.github.io/mvsec/

[34] Anh Nguyen, Thanh-Toan Do, Darwin G Caldwell, and
Nikos G Tsagarakis. Real-time 6dof pose relocalization for
event cameras with stacked spatial lstm networks. CVPR,
2019. 3, 4

[35] Garrick Orchard, Cedric Meyer, Ralph Etienne-Cummings,
Christoph Posch, Nitish Thakor, and Ryad Benosman. Hfirst:
a temporal approach to object recognition. PAMI, 2015. 3

[36] Jiahao Pang, Wenxiu Sun, JS Ren, Chengxi Yang, and Qiong
Yan. Cascade residual learning: A two-stage convolutional
neural network for stereo matching. In ICCVW, 2017. 1

[37] Ewa Piatkowska, Ahmed Belbachir, and Margrit Gelautz.
Asynchronous stereo vision for event-driven dynamic stereo
sensor using an adaptive cooperative approach. In ICCVW,
2013. 2

[38] Ewa Piatkowska, Jurgen Kogler, Nabil Belbachir, and
Margrit Gelautz. Improved cooperative stereo matching for
dynamic vision sensors with ground truth evaluation. In
CVPRW, 2017. 2, 6, 7

[39] Andrea Pilzer, Dan Xu, Mihai Puscas, Elisa Ricci, and Nicu
Sebe. Unsupervised adversarial depth estimation using cy-
cled generative networks. In 3DV. IEEE, 2018. 1

[40] Pytorch web site. http://http://pytorch.org/
Accessed: 08 March 2019. 5

[41] Lorrin A Riggs, Floyd Ratliff, Janet C Cornsweet, and
Tom N Cornsweet. The disappearance of steadily fixated
visual test objects. JOSA, 43(6):495–501, 1953. 2

[42] Paul Rogister, Ryad Benosman, Sio-Hoi Ieng, Patrick Licht-
steiner, and Tobi Delbruck. Asynchronous event-based
binocular stereo matching. IEEE Transactions on Neural
Networks and Learning Systems, 23(2):347–353, 2012. 2

[43] Robotic operation system. http://www.ros.org/ Ac-
cessed: 09 March 2019. 5

[44] Stephan Schraml, Ahmed Nabil Belbachir, and Horst
Bischof. Event-driven stereo matching for real-time 3d
panoramic vision. In CVPR, 2015. 2

[45] Akihito Seki and Marc Pollefeys. Sgm-nets: Semi-global
matching with neural networks. CVPR, 2017. 1

[46] Amit Shaked and Lior Wolf. Improved stereo matching with
constant highway networks and reflective confidence learn-
ing. CVPR, 2017. 1

[47] David E Shean, Oleg Alexandrov, Zachary M Moratto, Ben-
jamin E Smith, Ian R Joughin, Claire Porter, and Paul Morin.
An automated, open-source pipeline for mass production of
digital elevation models (DEMs) from very-high-resolution
commercial stereo satellite imagery. ISPRS, 2016. 1

[48] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier
Lagorce, and Ryad Benosman. Hats: histograms of averaged
time surfaces for robust event-based object classification. In
CVPR, 2018. 2

[49] Bongki Son, Yunjae Suh, Sungho Kim, Heejae Jung, Jun-
Seok Kim, Changwoo Shin, Keunju Park, Kyoobin Lee, Jin-
man Park, Jooyeon Woo, et al. A 640×480 dynamic vision
sensor with a 9µm pixel and 300meps address-event repre-
sentation. In 2017 IEEE International Solid-State Circuits
Conference (ISSCC), pages 66–67. IEEE, 2017. 2

[50] Xiao Song, Xu Zhao, Hanwen Hu, and Liangji Fang.
Edgestereo: A context integrated residual pyramid network
for stereo matching. CoRR, 2018. 1

[51] S. Tulyakov, A. Ivanov, and F. Fleuret. Weakly supervised
learning of deep metrics for stereo reconstruction. In ICCV,
2017. 1

[52] Stepan Tulyakov, Anton Ivanov, and Francois Fleuret. Prac-
tical Deep Stereo (PDS): Toward applications-friendly deep
stereo matching. In NeurIPS, 2018. 1, 4

[53] Lin Wang, Yo-Sung Ho, Kuk-Jin Yoon, et al. Event-
based high dynamic range image and very high frame rate
video generation using conditional generative adversarial
networks. CVPR, 2019. 3, 4

[54] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei
Pokrovsky, and Raquel Urtasun. Deep parametric continu-
ous convolutional neural networks. In CVPR, 2018. 5

[55] Ting-Chun Wang, Manohar Srikanth, and Ravi Ramamoor-
thi. Depth from semi-calibrated stereo and defocus. In
CVPR, 2016. 1

[56] Zhen Xie, Shengyong Chen, and Garrick Orchard. Event-
based stereo depth estimation using belief propagation. Fron-
tiers in neuroscience, 11:535, 2017. 2

[57] Zhen Xie, Jianhua Zhang, and Pengfei Wang. Event-
based stereo matching using semiglobal matching.
International Journal of Advanced Robotic Systems,
15(1):1729881417752759, 2018. 2

[58] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Ye-
ung, Wai-Kin Wong, and Wang-chun Woo. Convolutional
lstm network: A machine learning approach for precipitation
nowcasting. In NIPS, pages 802–810, 2015. 3

[59] Guorun Yang, Hengshuang Zhao, Jianping Shi, Zhidong
Deng, and Jiaya Jia. Segstereo: Exploiting semantic infor-
mation for disparity estimation. In ECCV, 2018. 1

[60] Chengxi Ye, Anton Mitrokhin, Chethan Parameshwara, Cor-
nelia Fermüller, James A Yorke, and Yiannis Aloimonos.
Unsupervised learning of dense optical flow and depth from
sparse event data. CoRR, 2018. 3, 4

[61] Jure Žbontar and Yann LeCun. Computing the Stereo Match-
ing Cost With a Convolutional Neural Network. CVPR,
2015. 1, 3, 6, 7

[62] Feihu Zhang and Benjamin W Wah. Fundamental prin-
ciples on learning new features for effective dense match-
ing. IEEE Transactions on Image Processing, 27(2):822–
836, Feb 2018. 1

[63] Yiran Zhong, Yuchao Dai, and Hongdong Li. Self-
supervised learning for stereo matching with self-improving
ability. CoRR, 2017. 1

[64] Yi Zhou, Guillermo Gallego, Henri Rebecq, Laurent Kneip,
Hongdong Li, and Davide Scaramuzza. Semi-dense 3d re-
construction with a stereo event camera. In ECCV, 2018. 2,
5, 6, 7, 8

[65] Alex Zihao Zhu, Dinesh Thakur, Tolga Özaslan, Bernd
Pfrommer, Vijay Kumar, and Kostas Daniilidis. The multive-
hicle stereo event camera dataset: An event camera dataset
for 3d perception. IEEE Robotics and Automation Letters,
3(3):2032–2039, 2018. 5

[66] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and
Kostas Daniilidis. Ev-flownet: self-supervised optical flow
estimation for event-based cameras. Robotics: Science and
Systems, 2018. 3, 4, 6

http://http://pytorch.org/
http://www.ros.org/

[67] Alex Zihao Zhu, Yibo Chen, and Kostas Daniilidis. Realtime
time synchronized event-based stereo. In ECCV, 2018. 2, 5,
6, 7, 8

[68] Dongqing Zou, Ping Guo, Qiang Wang, Xiaotao Wang,
Guangqi Shao, Feng Shi, Jia Li, and Paul-KJ Park. Context-
aware event-driven stereo matching. ICIP, 2016. 2

[69] Dongqing Zou, Feng Shi, Weiheng Liu, Jia Li, Qiang Wang,
Paul-KJ Park, Chang-Woo Shi, Yohan J Roh, and Hyun-
surk Eric Ryu. Robust dense depth map estimation from
sparse dvs stereos. In BMVC, 2017. 2, 3

Supplementary materials for paper:
Learning an event sequence embedding for dense event-based deep stereo.

Stepan Tulyakov
Space Engineering Center at

École Polytechnique Fédérale de Lausanne
stepan.tulyakov@epfl.ch

Francois Fleuret
École Polytechnique Fédérale de Lausanne

and Idiap Research Institute
francois.fleuret@idiap.ch

Martin Kiefel, Peter Gehler, Michael Hirsch
Amazon Research Tuebingen

{mkiefel, pgehler, hirsch}@amazon.de

1. Network architecture

The architecture of the proposed stereo network is shown
in Table 3. In this network, the temporal aggregation can
be implemented as either a hand-crafted function, a tempo-
ral convolutional network or the continuous fully-connected
layer as described in the paper in §2.2. The best-performing
architecture of the temporal convolutional network is shown
in Table 1. The best-performing architecture of the kernel
network in the continuous fully-connected layer is shown in
Table 2. The temporal convolutional network and the con-
tinuous fully-connected layer performs best with an event
queue with a capacity of κ = 7 events and a time hori-
zon of τ = 0.5 seconds, while the hand-crafted aggregation
performs best with an event queue of infinite capacity and
a time horizon of τ = 0.2 seconds. All best-performing
architectures were selected based on experiments with shal-
low stereo network from [3].

Table 1. Architecture of the best-performing temporal convolu-
tional network. The convolutions are computed without padding.
The network takes as an input an event queue of size 2×7×h×w
and produces an event image of size 64×h×w. By using 3d con-
volutions with a kernel size of 3×1×1 (instead of 1d convolutions
with a kernel size of 3), we can process the entire event queue. The
network has 25k parameters in total.

Layer Description Output Size
3D conv. 2× 3× 1× 1× 64 ◦ ReLU 64×5×h×w
2 × 3D conv. 64× 3× 1× 1× 64 ◦ ReLU 64×3×h×w
3D conv. 64× 3× 1× 1× 64 ◦ ReLU 64× h× w

2. Training parameters

In our experiments, all networks are trained for 12
epochs using the full-sensor event sequences, without aug-

Table 2. Architecture of the best-performing kernel network in the
fully-connected continuous layer. The network takes as an input
event timestamps of size 1× 7× h×w from the event queue and
produces a weights tensor of size 64×7×h×w. By using 3d con-
volutions with kernel 1× 1× 1 instead of a fully-connected layer
we can process the entire event queue. The network has 12.5k
parameters in total.

Layer Description Output Size
3D conv. 1× 1× 1× 1× 64 ◦ ReLU 64×7×h×w
2 × 3D conv. 64× 1× 1× 1× 64 ◦ ReLU 64×7×h×w
3D conv. 64× 1× 1× 1× 64 64×7×h×w

mentation. The learning rate is set to 0.1 for the hand-
crafted temporal aggregation, 10−4 for the temporal con-
volutional network. In the experiment with the continuous
fully-connected layer the learning rate is 10−3 for the kernel
network and 10−4 for the rest of the network. In all cases
the learning rates are kept fixed for 8 epochs and then are
halved every 2 epochs.

3. Kernel network initialization

For the kernel network we developed a custom initializa-
tion. Usually network weights are initialized using a nor-
mal distribution N

(
0, 2

Nl+Nl−1

)
, where Nl−1 and Nl are

the numbers of inputs and outputs respectively. This ini-
tialization is called Xavier initialization [1] and it ensures
that the variances of network activations and parameter gra-
dients are kept constant across all layers. Since the ker-
nel network essentially produces weights of the continuous
fully-connected layer, we initialize its parameters such that
its output is normally distributed. This is done computation-
ally by sampling weights of the continuous fully-connected
layer for timestamps t1, t2, . . . tM from a normal distribu-

1

Table 3. Architecture of the proposed stereo matching network. The residual blocks consist of two 2d convolutions followed by shortcut
connections. The convolutions and transposed convolutions, including these in the residual blocks, are followed by LeakyReLU with
negative slope 0.2 and Instance Normalization (IN) [2], unless explicitly stated otherwise. The network receives as an input left and right
event queues of size 2× 7× h× w and returns disparity tensor of size h× w.

Layer Description Output Size
Temporal aggregation

Please, refer § 2.2 in the paper. 64× h× w
Spatial aggregation

S1 2D conv. 3× 5× 5× 64 stride 2 64× 1
2h×

1
2w

S2 2D conv. 64× 5× 5× 64 stride 2 64× 1
4h×

1
4w

S3 2× residual block with 64× 3× 3× 64 2D conv. 64× 1
4h×

1
4w

S4-redir. 2D conv. 64× 3× 3× 8 no IN, LeakyReLU 8× 1
4h×

1
4w

Matching module
M1 concatenate left-right embeddings S3 128× 1

4h×
1
4w

M2 2D conv. 128× 3× 3× 64 64× 1
4h×

1
4w

M3 2× residual block with 64× 3× 3× 64 2D conv. 64× 1
4h×

1
4w × 64

M4 2D conv. 64× 3× 3× 8 no IN, LeakyReLU 8× 1
4h×

1
4w

Regularization module
R1 concatenate joint embeddings M4 8× 1

4dmax × 1
4h×

1
4w

R2 3D conv. 8× 3× 3× 3× 8 8× 1
4dmax × 1

4h×
1
4w

R3 3D conv. 8× 3× 3× 3× 16, stride 2 16× 1
8dmax × 1

8h×
1
8w

R4 R3 + S4-redir. 16× 1
8dmax × 1

8h×
1
8w

R5 3D conv. 16× 3× 3× 3× 16 16× 1
8dmax × 1

8h×
1
8w

R6 R5 + R4 16× 1
8dmax × 1

8h×
1
8w

R7 3D conv. 16× 3× 3× 3× 32, stride 2 32× 1
16dmax × 1

16h×
1
16w

R8 3D conv. 32× 3× 3× 3× 32 32× 1
16dmax × 1

16h×
1
16w

R9 R8 + R7 32× 1
16dmax × 1

16h×
1
16w

R10 3D conv. 32× 3× 3× 3× 64, stride 2 64× 1
32dmax × 1

32h×
1
32w

R11 3D conv. 64× 3× 3× 3× 64 64× 1
32dmax × 1

32h×
1
32w

R12 R11 + R10 64× 1
32dmax × 1

32h×
1
32w

R13 3D conv. 64× 3× 3× 3× 128, stride 2 128× 1
64dmax × 1

64h×
1
64w

R14 3D transposed conv. 128× 4× 4× 4× 64, stride 2 64× 1
32dmax × 1

32h×
1
32w

R15 R14+R11 64× 1
32dmax × 1

32h×
1
32w

R16 3D conv. 64× 3× 3× 3× 64 64× 1
32dmax × 1

32h×
1
32w

R17 3D transposed conv. 64× 4× 4× 4× 32, stride 2 32× 1
16dmax × 1

16h×
1
16w

R18 R17+R8 32× 1
16dmax × 1

16h×
1
16w

R19 3D conv. 32× 3× 3× 3× 32 32× 1
16dmax × 1

16h×
1
16w

R20 3D transposed conv. 32× 4× 4× 4× 16, stride 2 16× 1
8dmax × 1

8h×
1
8w

R21 R20+R5 16× 1
8dmax × 1

8h×
1
8w

R22 3D conv. 16× 3× 3× 3× 16 16× 1
8dmax × 1

8h×
1
8w

R23 3D transposed conv. 16× 4× 4× 4× 8, stride 2 8× 1
4dmax × 1

4h×
1
4w

R24 R23+R3 8× 1
4dmax × 1

4h×
1
4w

R25 3D conv. 8× 3× 3× 3× 8 8× 1
4dmax × 1

4h×
1
4w

R26 3D transposed conv. 8× 4× 4× 4× 4, stride 2 4× 1
2dmax × 1

2h×
1
2w

R27 3D transposed conv 4× 3× 4× 4× 1, stride (1,2,2)
no IN, LeakyReLU

1
2dmax × h× w

Estimator
Please, refer Equation 2 in the paper h× w

Table 4. Average event rate (number of events per second) for all
sequences of the Indoor Flying dataset. Note, that the average
event rate for the second sequence is almost two times higher than
the one for the other sequences.

Average events rate, [events/second]
Sequence 1 Sequence 2 Sequence 3

180’000 280’000 190’000

tion W = [w(t1), . . . ,w(tM)] ∼ N
(
0, 2

Nl+Nl−1

)
and fit-

ting the kernel network to these weights. Besides keeping
the variances in check, this initialization ensures diversity of
the resulting continuous kernels. Its effect is shown in Fig-
ure 1. The bias weights of the fully-connected continuous
layer are initialized with zeros.

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
time, [sec]

−0.1

0.0

0.1

0.2

we
ig
ht

kernel 1
kernel 2
kernel 3

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
time, [sec]

−0.1

0.0

0.1

we
ig
ht

kernel 1
kernel 2
kernel 3

(a) w/ initialization (b) w/o initialization

Figure 1. Continuous kernels before training with and without our
custom initialization of the kernel network. Note, that without the
custom initialization (a) the continuous kernels are mostly linear
and very similar to each other, whereas with our proposed initial-
ization (b) they have complex and diverse shapes. For clarity, we
show 3 kernels out of 64.

4. Problem with the second split
During our experiments with various splits of the Indoor

Flying dataset we noticed significant differences between
the test and the training set of the second split. In the test
set, composed of the second sequence, there are much more
abrupt motions (triggering large numbers of events) than
compared to the training set, composed of sequences one
and three as shown in Table 4. This suggests that the test
and the training set of this split are drawn from very differ-
ent underlying distributions and thus should not be used in
the experiments.

5. Videos
We present two videos showing results of our proposed

method for sequences one and three. To compute the re-
sult for sequence one, we used the network trained on the
sequences two and three (split one) and to compute the re-
sult for sequence three, we use the network trained on the
sequences one and two (split three). We do not provide
the result for the sequence two (split two) for the reasons
discussed in § 4. The videos contain take-off and landing
frames without events, which are not used during training

and test time. The ground truth along with our results of our
proposed method are shown with the same adaptive color-
coding, i.e. warmer colors correspond to closer objects. Lo-
cations with unknown disparities are displayed in white.
The bottom-left panel in the videos shows the left cam-
era events that arrived during the last 0.5 seconds, which
constitutes the input of our method together with the corre-
sponding right camera events. The events are overlaid with
a gray-scale image, which is not used by our method. Posi-
tive events are shown in red and negative events are shown
in blue.

References
[1] Xavier Glorot and Yoshua Bengio. Understanding the diffi-

culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256, 2010. 1

[2] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 2

[3] Jure Žbontar and Yann LeCun. Computing the Stereo Match-
ing Cost With a Convolutional Neural Network. CVPR, 2015.
1

