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Abstract Content-based image retrieval aims at substituting traditional in-
dexing based on manual annotation by using automatically-extracted visual
indexing features. Novel techniques are needed however to efficiently deal with
the semantic gap (i.e. the partial match between the low-level features and
the visual content). Here, we investigate a query-free retrieval approach first
proposed by Ferecatu and Geman. This approach relies solely on an iterative
relevance feedback mechanism that drives a heuristic sampling of the collec-
tion, and aims to take explicitly into account the semantic gap.

Our contributions are related to three complementary aspects. First, we
formalize a large-scale approach based on a hierarchical tree-like organization
of the images computed off-line. Second, we propose a versatile modulation of
the exploration/exploitation trade-off based on the consistency of the system
internal states between successive iterations. Third, we elaborate a long-term
optimization of the similarity metric based on the user searching session logs
accumulated off-line. We implemented a web-application that integrates all
our contributions, and distribute it under the AGPL Version 3 free software
license.

We organized user-based evaluation campaigns using ImageNet dataset,
and show empirically that our contributions significantly improve the retrieval
performance of the original framework, that they are complementary to each
other, and that their overall integration is consistently beneficial.
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1 Introduction

The trend in recent years shows that image retrieval needs are evolving beyond
the capabilities of traditional indexing based on manual annotation, and that
the most desirable characteristic of any image retrieval system is to deal with
automatically-extracted visual indexing features, while providing an intuitive
and simple interaction with users.

The expansion of the World Wide Web, accompanied by inexpensive record-
ing capabilities, mass storage and sharing tools, facilitate public access to col-
lections of unprecedented size. Facebook, Flickr, and less-known on-line repos-
itories such as Image Shack, host billions of images and keep growing at fast
rates. We adhere to the assumption that the collections are not only large
but also inherently un-structured (i.e. lacking a reliable semantic or thematic
indexing) and are continuously out-dated (i.e. images are frequently being
added, replaced or removed).

Research has begun to tackle these challenges via automatic tagging based
on annotation propagation [24, 20, 29]. However, formulating a query might
not be the most efficient way of searching for images since the visual con-
tent is often difficult to describe in terms of keywords. Relevance feedback is
envisioned by many researchers as the most appropriate alternative to cope
properly with the challenges in image retrieval, and multimedia retrieval in
general [22, 30].

We investigate an innovative query-free retrieval approach first proposed
by Ferecatu and Geman [13, 14]. Starting from an heuristic sampling of the
collection, this approach does not require any explicit query, neither keywords
nor image-examples. It relies solely on an iterative relevance feedback mecha-
nism driven by the user’s subjective judgments of image similarities. At each
iteration, the system displays a small set of images and the user chooses the
image that best matches in her opinion what she is searching for. The system
updates an internal state based on automatically-extracted indexing features,
and displays a new set of images accordingly. The system iteratively converges
towards what the user is searching for, and displays more and more relevant
images.

Our contributions are related to three complementary aspects of the itera-
tive relevance feedback mechanism. First, we formalize a large-scale approach
based on a hierarchical tree-like organization of the images computed off-line.
Second, we propose a versatile modulation of the exploration/exploitation
trade-off based on the consistency of the system internal states between succes-
sive iterations. Third, we elaborate a long-term optimization of the similarity
metric based on user searching session logs accumulated off-line. We rounded
up our research by integrating all our contributions together into one compre-
hensive retrieval system.

Experimental validation was carried out by implementing a web-application
which includes all our contributions. This software is distributed to the pub-
lic under the AGPL Version 3 free software license. We carried out plenty
of user-based evaluation campaigns with two collections from the ImageNet
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dataset [10], a large collection of 1,000,000 images and a small collection of
60,000 images, for which we acquired the provided pre-computed SIFT fea-
tures (Scale Invariant Feature Transform) [21]. We systematically analyzed all
our contributions, and got evidence that each of them significantly improves
the retrieval performance of the original framework. Moreover, empirical evi-
dence shows that they are complementary, and their integration is consistently
beneficial.

In § 2 we motivate our research by an overview of the relevant state-of-
the-art, and describe in § 3 the retrieval framework that is central to our
work. Next, we elaborate our contributions: the large-scale HEAT framework
in §4, the exploration/exploitation trade-off in §5, and the log-based similarity
metric in §6. Our experiments and user-based evaluations are in §7.

2 Related work

While relevance feedback is a very efficient solution for content-based image
retrieval, there are still many open questions in both the perceptual, cogni-
tive and the algorithmic, technical aspects. Regarding the cognitive aspect,
novel similarity measures or rankings are needed to better capture the hu-
man perception of image similarities. Regarding the technical aspect, novel
algorithms are needed to compute or efficiently approximate such similarity
measures at a large-scale [22, 30, 9]. Moreover, the relevance feedback is usu-
ally seen as a post-retrieval mechanism for refining the retrieved results of
an initial query formulated explicitly via query-by-example[25] or query-by-
sketching [15]. There are early works like MARS[5] and MindReader[19] that
develop mechanisms for rich feedback information (e.g. ranking many images,
tuning many parameters).

Our research is related to the innovative idea of searching images with-
out any explicit query, which was pioneered by Cox et al. [8]. The core of
their work is a Bayesian framework for iterative relevance feedback. Ferecatu
and Geman [13, 14] extended the framework and provided theoretically sound
interpretations. Moreover, they conducted user evaluations that demonstrate
the retrieval capabilities of such an approach. One can have a broader context
of the query-free retrieval by studying the perception-based image retrieval
system developed by Chang et al. [6]. In essence, the system models the user
retrieval needs as feature grouping of k -CNF/DNF Boolean form, and requires
an iterative rich relevance feedback consisting of positive and negative labeled
images. The ostensive models proposed by Campbell and Rijsbergen [4] and
more recently by Urban and Jose [28] share the assumption that the user infor-
mation need is dynamic and developing, and therefore they include a forgetting
process. The retrieval approach of Ferecatu and Geman [13, 14] replaces a few
iterations of rich feedback by multiple iterations of a minimalist feedback (i.e.
one positive example) which is intuitive, simple, efficient and robust to noisy
relevance feedback.
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Ω image collection, where the images are
identified by their indexes {1, 2, . . . }

S ⊂ Ω set of images that the user is searching
Dt ⊂ Ω set of images shown to the user at iteration t

x∗t ∈ Dt image chosen by the user at iteration t
{Dt, x∗t } relevance feedback event at iteration t
pt(k) probability of relevance of image k at iteration t

N nodes of the partitioning tree
C(N) children nodes of node N
Ω(N) set of images associated with node N

mt target mass for building the display set in the
original system

mzoomt target mass in the mass-zoom approach
zt change of the target mass at iteration t

α weighting vector learned off-line from the user logs
dα(k, h) weighted Euclidean distance between k and h
C cost function defined on the probabilities of relevance

of the images indicated by the users

Table 1 Notation

feedback event

Bt =
⋂t
i=0{Di, x∗i }

display model

Select the display set

Dt+1 ⊂ Ω, ‖Dt+1‖ = 8

update model

Estimate for all k ∈ Ω
pt+1(k) = P (k ∈ S | Bt)

Fig. 1 Relevance feedback loop. At iteration t the system displays Dt. The next iteration
t+ 1 is triggered by the relevance feedback event {Dt, x∗t }. The system will update pt+1(k)
for all k ∈ Ω, and will then select the new display set Dt+1.

Motivated by the potential of this query-free retrieval approach, we elab-
orated a large-scale HEAT framework in [26], and proposed an adaptive ex-
ploration/exploitation trade-off approach in [27]. Here we will extend these
precursors, and will elaborate a long-term optimization of the similarity met-
ric based on the user searching session logs accumulated off-line. These three
contributions are complementary to each other and result into one compre-
hensive retrieval system.
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Our large-scale HEAT framework [26] uses a hierarchical tree-like organiza-
tion of the image collection. Although hierarchical trees have been extensively
used for zoom-able user interfaces as PhotoMesa [2] and many other browsing
solutions [17], to the best of our knowledge there is no system that uses such
a concept in order to scale up relevance feedback mechanisms. The idea of a
dynamically adaptive and traceable cut within a hierarchical tree-like organi-
zation has been used in the field of information visualization and visual data
mining, where it is referred to as a tree map [23], and other equivalent terms
like fish-eye [1] or tree view [3].

Although there are plenty of sophisticated similarity metrics [11, 9], it
has been recognized that it is too ambitious to expect a single automatically-
derived metric to model reasonably well the user perception of image similarity.
The similarity metrics should go beyond the low-level automatically-derived
indexing information and should model explicitly the user perception. Exten-
sive research has been done in order to derive similarity metrics based fully
on user input such as for example relative similarity of pairs of images [7].
Unfortunately, collecting such user input is as prohibitive as the traditional
manual annotation of the images, and is not suitable for large-scale collections.
An interesting alternative is to attempt to tune an existing automatically-
generated similarity metric by learning from the user feedback. The use of
relevance feedback for learning the correlation between low-level indexing fea-
tures and high-level semantics has been attempted in Han et al. [16] and Hoi
et al. [18]. Our retrieval framework is particularly feasible for such machine-
learning approaches that require user logs information (i.e. image labeling)
since the relevance feedback is the core mechanism of searching.

3 Query-free retrieval framework

This section presents the retrieval framework proposed in [14]. Given a col-
lection of images Ω = {1, 2, . . . }, the objective of the retrieval process is to
identify the small subset S ⊂ Ω of images that the user is looking for. Notation
is shown in Table 1.

The retrieval framework embodies an iterative relevance feedback mech-
anism that has two components. First, there is a Bayesian framework that
models the probabilities of relevance of the images in the collection as con-
ditional probabilities, given the relevance feedback events. Second, there is a
strategy for selecting what images to show next given the estimates of the
probabilities of relevance of all the images in the collection.

For an intuitive illustration of the system behavior, a synthetic collection
it comes in handy, where each image has two indexing features in [0, 1]. These
features are interpreted as coordinates in the 2D Cartesian space, and are used
in a dual manner. On the one hand, the features define the image visual con-
tent as a single point positioned accordingly. On the other hand, the features
define the position of the image itself in the landscape of the entire collection.
Additionally, we can display the probabilities of relevances over the full collec-
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∗

t = 1

∗

t = 2

∗

t = 3

Fig. 2 The posterior probabilities pt(k) for all k ∈ Ω are updated iteratively. Here, the
relevance feedback events are given by a user who is searching for images with points close
to the center. One can see how the distribution of probabilities evolves towards matching
the user retrieval objective.

tion as a single picture by associating to every point a gray level corresponding
to the said probability.

3.1 Posterior probabilities of relevance

Relevance feedback events are accumulated iteratively as shown in Figure 1.
At iteration t, after the system displays a set of images Dt ⊂ Ω, ‖Dt‖ = 8,
the user chooses one single image x∗t ∈ Dt that she considers to be the closest
to S (i.e. the set of images that she is looking for), and this event is denoted
as {Dt, x

∗
t }. The cumulative event up to iteration t can be expressed as:

Bt = ∩ti=0{Di, x
∗
i } ∀t ≥ 0. (1)
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 The set of displayed images is generated via the Voronoi tessellation algorithm. To
illustrate its intermediate steps, the images already selected are marked in black and their
current Voronoi cells are indicated by colors. (a): The first image x(0) is selected, and the
first Voronoi cell C(0) is grown. (b): The second image x(1) is selected. (c): The Voronoi
cells C(0) and C(1) are grown in parallel. C(0) is shrunken by detaching the images closer to
x(1), and then re-grown by including other images that are still closer to x(0). (d-f): The
algorithm proceeds in the same manner until the display set is complete.

ϕ+

1

φ+(d)

δ+ d

ϕ−

1

φ−(d)

δ− d

Fig. 4 Calibration functions and their parameters. δ+, δ− are the thresholds that normalize
the distances, and ϕ+ and ϕ− are the attenuations that compensate for the semantic gap
as explained in [13].
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The conditional probabilities pt+1(k) = P (k ∈ S | Bt) are estimated after
each relevance feedback event. Initially, when there is no relevance feedback
yet, the probabilities p0(k) are initialized with 0.5 for all k ∈ Ω. Subsequently,
the conditional probabilities are estimated via an image similarity model de-
fined over the metric space of the indexing features. Before we return to this
issue in §3.2, we further elaborate the Bayesian modeling.

Assuming that the events {Dt, x
∗
t } are conditionally independent from

each other given the retrieval objectives, and using Bayes theorem, pt(k) can
be expressed recursively:

pt+1(k) =
pt(k) · P+

t (k)

pt(k) · P+
t (k) + (1− pt(k)) · P−t (k)

, (2)

where

P+
t (k) = P ({Dt, x

∗
t } | k ∈ S) , (3)

P−t (k) = P ({Dt, x
∗
t } | k /∈ S) . (4)

One may observe that the probabilities in Equations (3-4) should model
as much as possible the user similarity judgments, and the better the model,
the more reliable the relevance feedback. We shall return to this issue in §3.2.

Figure 2 shows how the probabilities of relevance are gradually updated on
successive iterations. We can see how the system is calibrated in such a way
that images closer to the indicated image get higher probabilities and images
closer to the other displayed images get lower probabilities. The images far
from any of the displayed images keep their probabilities unchanged.

3.2 Similarity metric

The probabilities P+
t (k) and P−t (k) in Equations (3-4) are modeled based on

a similarity metric defined over the image feature space as in [14], which puts
higher probability on the images similar to the chosen ones and accounts for
an effect of “saturation” that ignores the increase in the image dissimilarities
beyond a certain threshold:

P+
t (k) =

φ+(d(k, x∗t ))∑
x∈Dt

φ+(d(k, x))
, (5)

P−t (k) =
φ−(d(k, x∗t ))∑
x∈Dt

φ−(d(k, x))
. (6)

The distance d between the images is the L2 norm between the image
feature vectors as in Equation (7).

d(k, h) =

√√√√ F∑
f=1

(kf − hf )2, (7)
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Function ComputeDisplaySet(p, Q,m)
for q = 1, . . . , Q do
C(1), . . . , C(q−1) ← ComputeCells(p, x(1), . . . , x(q−1),m)

x(q) ← argmax
k∈Ω\∪q−1

i=1 C
(i)

p(k)

end for
return x(1), . . . , x(Q)

Function ComputeCells(p, x(1), . . . , x(i),m)
return C(1), . . . , C(i)

s.t. ∀q
∑
k∈C(q) p(k) = m

and ∀q, r 6= q, ∀k ∈ C(q) ‖k − x(q)‖ ≤ ‖k − x(r)‖

Table 2 Procedures to compute a meaningful display set Dt.

where F is the dimensionality of the image feature space. As we explain in §7,
our experiments use bags-of-words based on SIFT, but any other indexing
feature vectors will do.

φ+ and φ− are calibration functions designed to capture the user perception
of image similarities and error-prone decision-making behavior. We consider
calibration functions of parametric form as shown in Figure 4 reasoning that
δ+, δ− are thresholds beyond which the L2 norm fails to resemble the user
perception, and ϕ+ and ϕ− are attenuations that compensate for the partial
mismatch between the distances and the user perception of similarities (i.e.
the semantic gap).

3.3 Selection of the displayed images

Ideally, each next display set Dt+1 should maximize the flow of information
from the user to the system, and therefore should minimize the uncertainty
about S given the relevance feedback history Bt and the new evidence x∗t+1

that would be provided on Dt+1 itself. This optimization is intractable since
it implies looping over all possible subsets in Ω.

Dt+1 = argmin
D∈Ω

H (S | Bt, {D,x∗}) . (8)

In our system, the display set Dt is generated via a Voronoi tessellation
algorithm proposed by Fang and Geman [12] that approximates the ideal in-
tractable case. The algorithm selects the images in Dt by growing Voronoi
cells based on the image similarity distances and their current probabilities
of relevance. The optimum probability mass of each Voronoi cell would be an
exact fraction mt of the total probability mass:

mt =
1

‖Dt‖
·
∑
k∈Ω

pt(k). (9)



10 Nicolae Suditu, François Fleuret

Table 2 formalizes the procedures to select the set Dt to be displayed next.
Given a target mass m, the procedure ComputeDisplaySet picks each image
successively, each time selecting the one with the highest pt which does not be-
long to the neighborhoods of mass m centered on the images already selected.
In the function ComputeCells, the neighborhoods are grown in parallel by
including images one by one, as ordered by their similarity distances, until the
probability mass of each neighborhood reaches the target mass m.

The first display set D0 is generated by running the algorithm with the
initial probabilities of relevance, p0(k) = 0.5 for all k ∈ Ω. The algorithm still
grows the Voronoi cells but chooses the images randomly between the equally
probable candidates.

Figure 3 shows the intermediate steps of the Voronoi tessellation algo-
rithm. One can see how the Voronoi cells are grown, and how the images to
be displayed are selected. Intuitively, the cells including regions with higher
probabilities are smaller than the cells including regions with lower probabil-
ities. In this way, the system concentrates on regions with high probabilities
while still sampling the entire collection.

4 Large-scale HEAT framework

The original approach requires a computational effort that is tightly related to
the size of the collection. The probabilities of relevance are computed for all the
images in the collection. Although the computational load of the probability
model is very light in itself, it requires access to the similarity distances from
all the images in the collection to each of the displayed images, and this implies
either storage capacity of O(‖Ω‖2) complexity off-line or computational effort
of O(‖Ω‖) on-the-fly. Additionally, the Voronoi tessellation algorithm involves
sorting operations of O(‖Ω‖ · log ‖Ω‖) complexity over the entire collection.

While maintaining all the core operations unchanged, our approach man-
ages to compute the probabilities of relevance of only a small set of repre-
sentative images. The probabilities of relevance of all the other images in the
collection are approximated from these ones. This is achieved by organizing
the image collection as a pre-computed hierarchical tree based on the image
similarity distances and by updating during the retrieval process a partitioning
of the image collection according to the estimated probabilities.

4.1 Tree and trace

The image collection Ω is organized in a hierarchical tree N as sketched in
the left side of Figure 5. Formally, each node N ∈ N has a set of children
denoted as C(N) ⊂ N , and is associated with a set of images Ω(N) ⊂ Ω.
Each leaf node is associated with one single image. Thus if N is a leaf node,
then C(N) = ∅ and ‖Ω(N)‖ = 1. These sets of images are hierarchically
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(a): partitioning with homogeneous resolution

(b): partitioning with varying resolution

Fig. 5 Relation between the hierarchical tree and the trace adaptive partitioning. The
graph depicted on the left stands for the tree N , and the square on the right stands for
the full image collection Ω. Intuitively, each node N ∈ N is associated with a subset of
images Ω(N). The thick black lines running through the trees show two different traces
T . The colored rectangles show the resulting partitions of the collection, as each rectangle
stands for the Ω(N) associated to the node N of same color. The trace in (a) stays at the
same depth, resulting in a homogeneous partitioning. The trace in (b) goes shallower in one
part of the collection and deeper in the other part, resulting in a partitioning with varying
resolution.

disjunctive and naturally respect the properties:

∀M,M ′ ∈ C(N), M 6= M ′ ⇒ Ω(M) ∩Ω(M ′) = ∅, (10)

∪M∈C(N) Ω(M) = Ω(N). (11)

Additionally, each node N ∈ N has a representative image k∗N that is the
closest image to the center of Ω(N) in the image feature space.

A trace T ⊂ N is any set of nodes which is a partition of the image
collection:

∀A,B ∈ T , A 6= B ⇒ Ω(A) ∩Ω(B) = ∅, (12)

∪A∈T Ω(A) = Ω. (13)

These properties guarantee that any image in the collection is associated
to one and only one node in any trace. Therefore, if N ∈ T is a node included
in the trace, it can be used without ambiguity to represent all its associated
images Ω(N) as illustrated in Figure 5.

4.2 Approximation of pt

The computational effort is controlled by estimating the probabilities of rel-
evance only for the representative images of the nodes that are part of the
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t = 0 (initial) t = 0 (expand)

t = 1 (collapse) t = 1 (expand)

t = 2 (expand) t = 5 (expand)

Fig. 6 Evolution of the trace for the synthetic collection, when searching for images with
points close to the center. At iteration 0, the trace is initialized randomly. At each iteration,
the trace is collapsed and expanded, the probabilities of relevance are updated, and then the
display set to be shown next is selected. After 5 iterations, the trace concentrates mostly in
the intended region.

current trace. From this bounded set of probabilities, we both infer a sound
approximation of the Voronoi tessellation algorithm previously described in
§ 3.3 and optimize the resolution of the trace as presented next in § 4.3.

For any node N ∈ T , the probabilities of relevance of all the individual
images in Ω(N) are approximated by the probability of relevance of its repre-
sentative image k∗N .

At each iteration t, the conditional probabilities pt(k
∗
N ) are computed from

scratch based on the full history of relevance feedback events Bt−1 as shown
in § 3.1. They are not approximated in any way.

Furthermore, the prerequisites of the Voronoi tessellation algorithm de-
scribed in § 3.3 are reconsidered as follows. The probability mass of a node N
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is approximated as:

q(N) =
∑

k∈Ω(N)

pt(k) ≈ pt(k∗N ) · ‖Ω(N)‖. (14)

The probability mass of the entire collection is approximated as:

qall =
∑
k∈Ω

pt(k) ≈
∑
N∈T

q(N). (15)

The optimum probability mass of the Voronoi cells is approximated as:

qopt =
1

‖Dt‖
· qall ≈ 1

‖Dt‖
·
∑
N∈T

q(N). (16)

When a node N is expanded, its probability mass q(N) is substituted by
the probability masses of its children, and this results in a finer approximation:

q(N) =
∑

M∈C(N)

q(M) ≈
∑

M∈C(N)

pt(k
∗
M ) · ‖Ω(M)‖. (17)

When the nodes in C(N) are collapsed, the sum of their probability masses
is substituted by the probability mass of their parent, and this results in a
coarser approximation:∑

M∈C(N)

q(M) = q(N) ≈ pt(k∗N ) · ‖Ω(N)‖. (18)

Based on these approximations, the Voronoi tessellation algorithm is now
performed at the granularity level of the trace instead of the individual im-
ages. Therefore, the centers of the Voronoi tessellation are selected among the
nodes in the current trace, and the displayed images are their corresponding
representative images.

4.3 Trace refinement

The aim of the trace refinement is to optimize the approximation of the prob-
abilities of relevance of the individual images while keeping the trace size
bounded. Intuitively, this is achieved when the variances of the probabilities
within each node in the trace are small, or in other words when the probability
of each image in the collection is approximated as well as possible by the prob-
ability of its corresponding representative image. The trace refinement consists
of a collapsing operation followed immediately by an expansion operation.

Starting from the current trace, the collapsing operation book-keeps the
sets of children that are completely included in the trace, and thus may be
replaced by their parents. Recursively, one at a time, the set of children that
minimizes the mean-variance cost function

argmin
∀N, C(N)⊂T

µ(N) · (σ2(N) + ε · ‖Ω(N)‖), (19)



14 Nicolae Suditu, François Fleuret

where µ(N) is the mean and σ(N) is the standard deviation of the image prob-
ability distribution in the node N , is collapsed into its corresponding parent.
The probability of relevance of the representative image pt(k

∗
N ) is computed

from scratch as mentioned in § 4.2, and is then used for computing the subse-
quent mean-variance values. The recursive routine for collapsing nodes exits
when the size of the trace reaches the minimum bound.

The probability mean and variance of each node are estimated based on
its children:

µ(N) =

∑
M∈C(N) pt(k

∗
M ) · ‖Ω(M)‖∑

M∈C(N) ‖Ω(M)‖
, (20)

σ2(N) =

∑
M∈C(N) p

2
t (k
∗
M ) · ‖Ω(M)‖∑

M∈C(N) ‖Ω(M)‖
− µ2(N). (21)

In Equation (19), ε introduces an infinitesimal preference toward collapsing
the nodes with smaller cardinality when nodes with different cardinality have
comparable mean-variance values. Thus, ε is not a sensitive parameter and
was set to 10–6, a value related to the size of the collection.

As soon as the collapsing operation exits, the expansion operation replaces
all the nodes in the trace with their children and computes the probabilities
of relevance of their representative images. This expansion operation could be
seen as a sampling of the parent nodes that will be used in the subsequent
trace refinement, at the next iteration, in order to identify the new nodes that
should be further expanded or can be safely collapsed.

4.4 Algorithm integration

The skeleton of our proposed approach is as follows. At iteration t + 1, the
algorithms proceed with the trace from the previous iteration Tt:
1. Update the probabilities of relevance pt+1(k∗N ) for ∀N ∈ Tt based on the

previously computed pt(k
∗
N ) and according to the newly received relevance

feedback event {Dt, x
∗
t }.

2. Perform the trace refinement. The trace Tt is altered via the collapsing and
expanding operations resulting in the new trace Tt+1.

3. Update the probabilities of relevance pt+1(k∗N ) for ∀N ∈ Tt+1 according to
the full history of relevance feedback events Bt = ∩ti=0{Di, x

∗
i }.

4. Select the set of images Dt+1 by performing the Voronoi tessellation algo-
rithm on the current trace Tt+1.

5. Display Dt+1. Wait for the relevance feedback event {Dt+1, x
∗
t+1} to occur,

and then proceed with the next iteration.

For an intuitive illustration of the system behavior, we set up the HEAT
system for the synthetic collection, and we once more take the case of search-
ing for images with points close to the center. Figure 6 shows how the trace
evolves at each iteration and how the image collection is sampled at different
resolutions in different regions.
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t = 0 (initial) t = 1

t = 2 t = 3

t = 4 t = 5

Fig. 7 Evolution of the display set for the original framework with the synthetic collection,
when searching for images with points close to the center. After 5 iterations, the displayed
images concentrate slightly on the intended region. Again, the selected images are marked
in black and their corresponding Voronoi cells are indicated by colors.

5 Exploration/exploitation trade-off

As argued by Ferecatu and Geman [13, 14], the original approach is well suited
for image category search and that is, in other words, the first retrieval regime
of exploring the image collection. They explicitly suggest that other retrieval
techniques should be employed to retrieve specific images among these iden-
tified categories and that is, in other words, the second retrieval regime of
exploiting the image collection.

A useful insight is given by analyzing the evolution of the retrieval sys-
tem for the synthetic collection, when searching for images near the center.
Figure 7 shows the evolution of the displayed images, and Figure 8 shows the
distribution of the probabilities of relevance.
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t = 0 (initial) t = 1

t = 4 t = 5

Fig. 8 Evolution of the distribution of probabilities of relevance for the searching session
illustrated in Figure 7. The plots have the probability bins on axis X, and the percentage of
images in the collection on axis Y. Initially, all images have the same probability, p0(k) =
0.5 ∀k ∈ Ω. After the very first iterations, the distribution evolves relatively slow.

As shown in Figure 8, the distribution of the probabilities evolves quite
rapidly in the first iterations. These early iterations correspond to the first
retrieval regime when the system is in the process of understanding broadly
the categories of interest to the user. Later, after the system has achieved a
good understanding of the user interest, the distribution of the probabilities
evolves quite slowly from one iteration to the next. These later iterations
correspond to the second retrieval regime when the system is meant to refine
the search and to converge to specific images.

As shown in Figure 7, the sets of displayed images include an image that is
closer and closer, with each iteration, to the user interest. After 3 iterations,
the system succeeds to display an image that is clearly in the intended region.
Still after 5 iterations, the displayed images concentrate only slightly on the
intended region.

The system succeeds efficiently to display an image in the intended region,
but has a hard time to display more and more images in the intended region.
The “sampling” algorithm insists on covering the entire collection even after
the distribution of probabilities becomes rather stable. One can say that the
original system has a big inertia to maintain an exploration regime and goes
very slowly into an exploitation regime.
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t = 0 (initial) t = 1

t = 2 (exploration) t = 3

t = 4 (exploitation) t = 5 (exploitation)

Fig. 9 Evolution of the display set for the mass-zoom system with the synthetic collec-
tion, when searching for images with points close to the center. After 5 iterations, the
displayed images concentrate mostly on the intended region. The displayed images provide
the freedom to escape the exploitation if necessary. The system continuously estimates the
exploration/exploitation trade-off that suits the user.

5.1 Mass-zoom extension

Intuitively, the system should be aware of the degree of alignment of the dis-
tribution of probabilities with the user intent. When the distribution of prob-
abilities is in line with the user intent, the system should concentrate the
“sampling” in regions with high probability.

First, we present an adaptive strategy to handle the trade-off between ex-
ploration and exploitation, by modulating the concentration of the display set
on promising images. Second, we present a heuristic that dynamically infers,
at each iteration, from the user actions a consistency score that achieve a
seamless trade-off that suits the user intent.
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Our mass-zoom algorithm handles the trade-off between exploration and
exploitation by modulating how much the display set should be concentrated
on the images assessed as the most relevant. This is achieved by estimating
at every iteration the target mass mt for the displayed image neighborhoods.
While this value was a constant fraction of the total mass in the baseline in
Equation (9) from § 3.3, we propose to link it to an estimate of the confidence
of our current estimate of the image relevance. Making the value of this target
mass smaller makes the neighborhoods around the images of the display set
smaller, which leads to a more compact display set, concentrated in the regions
of high probability.

Our approach increases the concentration of the display set if the choice
of the user is consistent with our current estimate, and decreases it otherwise.
We propose the following update scheme:

mzoom
t = zt ·mt, (22)

where zt ∈
(

1
mt
, 1
]

accounts for the consistency between our estimates of the

pt and the user choice.

5.2 Heuristics based on a consistency score

Immediately after the relevance feedback event {Dt, x
∗
t }, right at the begin-

ning of the next iteration t + 1, the consistency score aims to estimate the
alignment of the system and the user intent, which is defined in Equation (23)
as an increasing function of the probability, under our model, that an image
picked at random in the display set would have a lower probability than the
image chosen by the user

ct+1 ↗ P̂x∼U(Dt) [pt(x
∗
t ) ≥ pt(x)] . (23)

In the first iteration, the user intent is totally unknown and the consistency
score c0 is initialized to 1. Subsequently, the consistency score is estimated
based on the probability of relevance of the chosen image pt(x

∗
t ) versus the

probabilities of relevance of the other displayed images, namely pt(xt), for all
x ∈ Dt.

The consistency score is estimated based on the cumulative distribution
function for the Gaussian distribution. The proposed heuristic gives a consis-
tency score in the interval [0.5, 2.0]:

ct+1 = 0.5 + 1.5 ·
(

1

2
+ erf

(
pt(x

∗)− µ̂
σ̂ ·
√

2

))
, (24)

where µ̂ is the average of the probabilities in ‖Dt‖

µ̂ =
1

‖Dt‖
·
∑
x∈Dt

p(x), (25)
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and σ̂ is the standard deviation of the probabilities in ‖Dt‖

σ̂2 =
1

‖Dt‖
·
∑
x∈Dt

(p(x)− µ̂)2. (26)

This is motivated by the intuition that if the pt(x
∗
t ) is already among the

highest probabilities it means that the system has a distribution of the prob-
abilities that is in line with the user intent, and thus the system is consistent
with the user intent. If pt(x

∗
t ) is relatively low, the system is less consistent

with it.
The zoom value that impacts the exploration/exploitation trade-off of the

selection of the displayed images is derived from the consistency scores as
follows:

zt =

t∏
i=0

1

ci
. (27)

5.3 Capabilities of the mass-zoom system

For an intuitive illustration, we set up the mass-zoom system for the synthetic
collection described in §3, and we once more take the case of searching for
images with points close to the center. In Figure 9, we show the evolution
of the displayed images for intermediate iterations during one such searching
session.

After efficiently identifying the intended region, the mass-zoom system is
able to display more and more images in the intended region. The “sampling”
algorithm concentrates in the intended region after the distribution of prob-
abilities becomes rather stable. Although the “sampling” algorithm does not
cover the entire collection anymore, the system continuously estimates the
exploration/exploitation trade-off that suits the user.

Note that while the synthetic collection is very handy for intuitive illus-
trations, it should not be mistaken for a real image collection, which typically
involves high-dimensional image indexing feature spaces. Besides the miss-
alignment between the image feature space and the user subjective perception
of image similarities, the distribution of the image similarity distances impacts
the Voronoi tessellation algorithm as well as the distribution of the probabili-
ties of relevance. We argue that the exploration/exploitation trade-off has even
higher impact in the case of real image collections.

6 Log-based similarity learning

The similarity metric used by the system as explained in 3.2 must be aligned
reasonably well with the user similarity judgments, and the better the align-
ment, the more reliable the relevance feedback. In the original approach, the
parameters δ+/− and ϕ+/− in Figure 4 are learned via a statistical technique
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that requires an image labeling task. During the labeling session, the user
input is collected in the same manner as a searching session, with the key
difference that the visual target S is communicated to the user. The user is
supposed to indicate on the display sets D the image that is closest to the
target in her opinion as during a searching session. In this way, the labeling
session collects data triplets of the form (Si, Di, x

∗
i ) that can be used to

formulate a maximum likelihood technique.

We propose to derive a more optimal similarity measure between the images
by exploiting the user feedback histories that are acquired naturally during the
searching sessions (i.e. user logs information). During the on-the-fly sessions,
the user feedback histories are stored as user logs in a database. Then, as the
user logs are accumulated in the database, they can be used off-line to improve
the similarity metric. This approach has the major advantage that it does
not require any extra image labeling that would imply additional effort and
resources. As the retrieval system is used, the user logs will gradually cover
the entire collection, and the log-based similarity metric will systematically
improve.

We observe that the user feedback can be seen as a weak partially reliable
image labeling, and we formulate a technique that tunes off-line the image
similarity metric in order to model explicitly the user similarity judgments.
Internally, we define a weighted Euclidean metric over the image feature space
which we then optimize in order to maximize the probabilities of relevance of
the images chosen by the users. Then, we use this optimized log-based metric
instead of the original L2 norm on-the-fly to run the retrieval process.

Our retrieval system stores all the searching sessions that are performed by
the users during the evaluation campaigns in so-called user logs. Each user log
corresponds to a searching session, and contains all the data necessary to recall
the context of the evaluation campaign and to reproduce that corresponding
session. Besides the information about the user, the system configuration and
the target task, each user log contains the history of relevance feedback events
{Dt, x

∗
t }, t = 1, 2, . . . T where T ≤ 20 and the user label (i.e. successfully

terminated or failed).

Our challenge is that the searching session are labeled only globally as
successfully terminated or failed. This tells us if the last display set contains
target images or not, but unfortunately it does not explicitly tell which images.

6.1 Weighted Euclidean distance

The original framework employs a similarity metric that is the Euclidean met-
ric over visual-based feature vectors based on SIFT (Scale Invariant Feature
Transform) [21]. Our approach re-defines the similarity metric as a weighted
Euclidean distance over the image feature space as in Equation (28). Thus, we
introduce a weighting vector α for which we will elaborate an optimization
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scheme based on the user logs.

dα(k, h) =

√√√√ F∑
f=1

αf · (kf − hf )2, (28)

where F is the dimensionality of the image feature space.

6.2 Log-based weights learning

Our alternative is to adapt the weighting vector in the sense of making the
probabilistic model able to better predict the images indicated by the user.
We consider that, in the searching sessions that were successfully terminated,
all the history of relevance feedback events was for good and helped the user
to get to the final display set that satisfied her. With this assumption, all
the history of relevance feedback events are regarded as equally important,
and it makes sense to adapt the weighting vector in order to maximize the
probabilities of all the images chosen in all relevance feedback events.

With these considerations, we define the cost function as the total sum-
log of the probabilities of relevance of the chosen images at the time of their
display:

C =

U∑
u=1

T∑
t=0

log pt(x
∗
t ), (29)

where U stands for all the user logs (i.e. searching session histories) and T
stands for the number of iterations of each searching session.

Next, we should choose an optimization algorithm in order to learn the
optimal weighting parameter α that maximizes the cost function in Equa-
tion (29).

αoptim = arg max
α

C. (30)

We propose to optimize the weighting vector based on the full-batch gradi-
ent descent method combined with a simple line search. If the amount of user
logs becomes large, the cost function could be optimized using approximations
as for example the stochastic gradient descent method.

Initially, at iteration n = 0 the weighting vector α0 is set to 1. In the
subsequent iterations, the gradient descent algorithm is performed according
to Equation (31), which can be expanded for each weighting coefficient αi as
in Equation (32).

αn+1 = αn + γn · OC(αn), n > 0, (31)

αn+1
i = αni + γn · OC(αni )

= αni + γn · ∂C∂αi

∣∣∣
αi=αn

i

. (32)
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The partial derivatives can be elaborated starting from the top derivative
in Equation (33).

∂C

∂αi
=

U∑
u=1

T∑
t=0

1

pt(x
∗
t )
· ∂pt(x

∗
t )

∂αi
. (33)

We observe that the similarity metric learning has to deal with two inter-
dependent parts: the φ+/− parameters that align the user perception to the
similarity feature vectors and the α coefficients that align the similarity fea-
ture vectors to the user perception. Our proposed solution is optimizing the α
coefficients, and not the φ+/− parameters. However, we analyze the influence
of the φ+/− parameters in §7.1. We observe that the optimal φ+/− parameters
do not differ significantly from their initial values. Our interpretation is that
the α’s optimization compensates for the φ+/− parameters.

Our approach has two major advantages. On the one hand, it exploits the
user feedback that is acquired naturally during the searching sessions, and
does not require any log acquisition campaigns. Even if the similarity models
would be changed, the user logs can still be used in the same manner. On
the other hand, it is generic and can leverage very large amounts of user logs.
As the retrieval system is used, the user logs will gradually cover the entire
collection, and the log-based similarity metric will systematically improve.

7 Experimental results

Our contributions touch different components of the retrieval system, and their
integration into a comprehensive system is straight-forward. For illustration
of the retrieval behavior, we once more take the case of searching for images
with points close to the center. Figure 10 shows how the comprehensive system
evolves at each iteration and how the image collection is sampled at different
resolutions in different regions in combination with the mass-zoom extension.

The retrieval system is developed as a web-application1. Besides the advan-
tage of permanent availability for evaluations, this implementation encourages
the adherence to a realistic system architecture. The application software is
distributed under the AGPL Version 3 free software license that enforces the
sharing of future extensions.

Since we are not aware of any other iterative relevance feedback mechanism
that can be applied to a collection of 1M images, our quantitative analysis
focuses on comparing systematically our contributions to the baseline non-
scalable version of the approach. The experiments were organized with two
collections obtained from the ImageNet database [10]. We obtained a large
collection of about 1,054,000 images by considering all the images provided
with valid url. Then, we obtained the small collection of 60,000 images by
sampling uniformly the large collection (i.e 5% of the large collection). The
indexing features are simply the histogram-like vectors (i.e. referred to also as

1 The web-application software is available at http://www.idiap.ch/software/imr/
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t = 0 (initial) t = 0 (expand)

t = 1 (collapse) t = 1 (expand)

t = 2 (expand) t = 5 (expand)

Fig. 10 Evolution of the comprehensive system for the synthetic collection, when searching
for images with points close to the center. At iteration 0, the trace is initialized randomly.
At each iteration, the zoom factor is estimated, the trace is collapsed and expanded, the
probabilities of relevance are updated, and then the images to be shown next are selected.
After 5 iterations, the trace concentrates mostly on the intended region.

bags of visual words) of dimension 1000, as they are provided by ImageNet.
For further reference, this means about 5GB of data downloading and storage.

Our experiments are presented in two parts. First, we analyze the robust-
ness of the optimization scheme and we obtain the optimal weighed Euclidean
distance in §7.1. Second, we organize user-based evaluations and analyze the
system behavior in §7.3.

7.1 Log-based weights analysis

In our optimization scheme, we make use of the user logs from some of our pre-
vious experiments in [27]. Namely, we considered all successfully terminated
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(a): Weights histogram (b): Distance distribution

Fig. 11 Weights analysis. (a): Histogram of the feature weights in the optimal weighting
vector α, which was obtained after running the gradient descent algorithm. About 15% of
the image features are zeroed, and the maximum weight is no larger than 5. (b): Cumulative
distribution of the similarity distances in the collection, for both the original distances and
the optimized distances. We can see that the distributions remain rather alike, which means
that the weighting vector is normalized properly by the optimization scheme.

ϕ+ ϕ−

δ+ δ−

Fig. 12 Influence of the calibration parameters on the cost function, for both the original
and the optimized distances. To identify the parameters, one should recall the calibration
functions in Figure 4. Here each plot corresponds to a parameter and shows how the cost
function depends on that parameter while keeping the others un-changed. We can see that
the cost functions corresponding to the optimized distances give similar peaks as the ones
corresponding to the original distances, which means that the weighting vector is normalized
properly by the optimization scheme.

searching sessions that were performed for the L2 type of distances. There are
in total 142 searching sessions, that results in a cumulative set of 1050 rele-
vance feedback events. With these data, we performed the full-batch gradient
descent algorithm with a simple line search. The algorithm converged after
8,000 iterations, but we let it run up to 10,000 iterations.
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The calibration parameters are set as in our previous works [26, 27]. δ+/−

are adjusted to saturate only after including on average 10% of the images in
the collection, see Figure 11(b). ϕ+/− are given the same optimum values as
derived in [13], namely 0.06 and 0.29.

Figure 11(a) shows the histogram of the weights in the final optimal weight-
ing vector α, which were obtained after performing the gradient descent algo-
rithm. Here we recall that the original distances are equivalent to the uniform
weighting vector 1. We can see that the optimal weighting vector remains
bounded although no upper constrains have been enforced.

Figure 11(b) shows the cumulative distributions of the image similarity
distances in the collection, for both the original and the optimized distances.
We can see that the distributions remain rather alike, which means that the
weighting vector is normalized properly by the optimization scheme. About
10% of the distances in the collection are smaller than 75, and about 10%
of them are larger than 125. The majority of the distances are in the range
75-125, and this is the “spherical” effect of the Euclidean distance on the
high-dimensional feature vectors.

Figure 12 shows the influence of the calibration parameters on the cost
function, for both the original and the optimized distances. Each plot corre-
sponds to a calibration parameter and shows how the cost function depends
on that parameter while keeping the others un-changed. We can see that cost
functions corresponding to the optimized distances give very much the same
peaks as the ones corresponding to the original distances, which means that
the weighting vector is normalized properly by the optimization scheme, with-
out imposing any ad-hoc hard constraints. The only parameter that may differ
from our initial settings is ϕ−, as the cost function is maximized when ϕ− col-
lapses to 0. Here we observe that in fact ϕ− = 0 is not a critical setting in our
setup since there are not many small distances in between the images in the
collection, as we explain in Figure 11(b).

7.2 Evaluation scenario

Evaluations have been conducted with 20 users using the interface shown in
Figure 13. In order to ensure a reliable diversity, there were 6 semantic cat-
egories described in words and accompanied by the corresponding images in
Figure 14. In order to ensure comparable difficulty, these categories were cho-
sen to be relevant for about 1% of our collections based on the evidence given
by the ImageNet categories ground-truth.

– portraits/close-ups of dogs, wolves
– electronic devices as laptop, mobile phone
– big boats as ferryboats, cargoes
– baskets/plates with fruits, vegetables
– furniture items as tables, chairs
– entrances/windows of shops, shopping centers
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Fig. 13 Web interface of the system used for user tests. The searching sessions were pre-
sented in a random fashion. The users were only told to end the sessions when they were
satisfied by one of the displayed images.

Fig. 14 The users were asked to search for semantic categories described in words and
accompanied by image examples as shown here. There were 6 semantic categories, each
being relevant for about 1% of our collections.

Fig. 15 Retrieval performance of the mass-zoom system in combination with the log-based
similarity metric for the 60K image collection. Each of our contributions taken individually
improves the retrieval performance of the original system. Furthermore, they complement
each other and their combination significantly improves the overall performance.
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In order to ensure a minimal variance in the scenario, each user was as-
signed to perform one searching session for each combination of the system
configurations and the semantic targets included in the evaluation. Thus, there
were 6× 20 = 120 searching sessions for each system configuration.

In order to avoid any bias, the searching sessions were presented in a ran-
dom fashion. The semantic categories and the system configurations were ran-
domized all together in one single user test. The evaluation interface is shown
in Figure 13. The users were not aware of the system configurations. The users
were only told to end the searching sessions when they were satisfied by one
of the displayed images.

7.3 Results analysis

We aim to evaluate the overall performance of the comprehensive system that
integrates all our contributions. First, we systematically evaluate two partial
combinations of our contributions, in order to get evidence that each contri-
bution complements each other, and that their combination performs consis-
tently. Then, we analyze the total integration.

7.3.1 Mass-zoom system with log-based similarity metric

The retrieval performance of the mass-zoom system in combination with the
log-based similarity metric is shown in Figure 15. Each contribution taken
individually improves the retrieval performance of the original system. Fur-
thermore, the two contributions complement each other and their combination
significantly improves the overall performance. The optimized system provides
80% rate of success in less than 8 iterations, while the baseline system reaches
the same rate only after 13 iterations, which is 5 iterations more. Experiments
were conducted only with the small collection, since the baseline system cannot
cope with the large collection.

7.3.2 HEAT framework with log-based similarity metric

Figures 16(a-b) show the performance of the HEAT system in combination
with the log-based similarity metric. For both collections, we can see that the
integration of the HEAT system with the optimized metric is beneficial. In
fact, the HEAT system benefits even more than the original system since the
log-based similarity metric improves not only the on-the-fly models but also
the quality of the pre-computed hierarchical organization of the collection.
The optimized system performs consistently better, and saturates about 10%
higher.

7.3.3 HEAT framework with mass-zoom extension

The retrieval performance of the HEAT system in combination with the mass-
zoom extension is shown in Figure 17 among other system combinations. We
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(a): 60K image collection

(b): 1M image collection

Fig. 16 Retrieval performance of the HEAT framework in combination with the log-based
similarity metric for both small and large collections. The integration of the HEAT system
with the log-based similarity metric is beneficial. The HEAT system benefits even more than
the original system since the log-based similarity metric improves not only the on-the-fly
models but also the quality of the pre-computed hierarchical organization of the collection.

can see that their integration improves their individual performances for both
small and large collections, which means that they complement each other.

7.3.4 Total integration

The retrieval performance of the comprehensive system that integrates all
our contributions is shown in Figure 17. Both individual integrations of the
mass-zoom extension and the log-based similarity metric improve the retrieval
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(a): 60K image collection

(b): 1M image collection

Fig. 17 Retrieval performance of the comprehensive system that integrates all our contri-
butions. Taken individually, the mass-zoom extension and the log-based similarity metric
improve the retrieval performance of the HEAT system. The contributions complement
each other and their combination significantly improves the overall retrieval performance.
Furthermore, the behavior of the system is stable and consistent for both small and large
collections.

performance of the HEAT system. Furthermore, they complement each other
and their combination significantly improves the overall retrieval performance.

The retrieval performance of the overall system is further analyzed in Fig-
ure 18. Here the performance is evaluated for three different trace sizes. We
can see how the retrieval performance depends on the trace size. The bigger
the trace, the better the performance, but the difference between 1,000 vs.
1,500 is smaller than the difference between 500 vs. 1,000.

Overall, about 50% of the sessions are successfully terminated in less than 5
iterations, and 80% in less than 15 iterations. The system performance remains
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(a): 60K image collection

(b): 1M image collection

Fig. 18 Retrieval performance of the comprehensive system for three different trace sizes.
The average performances for the small collection are shown in (a): We can see how the
performance depends on the trace size. The bigger the trace, the better the performance,
but the difference between 1,000 vs. 1,500 is smaller than the difference between 500 vs.
1,000. The average performances for the large collection are shown in (b): The performances
remain consistent.

very reasonable when thinking of the theoretical bounds. In the ideal case, if
the collection would be arranged as a tree with 8 branches at each node, the
perfectly-structured search will need log8 ‖Ω‖ ≈ 7 iterations at maximum. In
the worst case, if the collection would be totally unstructured, the uniformly-
random search will need ‖Ω‖/(‖D‖ · (L+ 1)) ≈ 13 iterations in average. Here,
‖Ω‖ ≈ 1, 000, 000, ‖D‖ = 8, L ≈ 1% of ‖Ω‖ are the sizes of the image
collection, the display set, and the semantic category.
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(a): 60K image collection

(b): 1M image collection

Fig. 19 Timing of the comprehensive system responses (in seconds) as the users experienced
them during the evaluations. Here we compare the computational cost (mean and standard
deviation) for three different trace sizes. The timings for the small collection are shown in
(a): The computational effort of the comprehensive system depends on the trace size, and has
roughly O(‖T ‖ · log ‖T ‖) complexity. In the first iterations, the computation is higher due
to the intensive collapse/expansion operations. In the later iterations, the trace is relatively
more stable, and the computation increases slowly with the number of iterations due to the
calculation from scratch of the probabilities of relevance. The timings for the large collection
are shown in (b): The timings remain comparable with the ones for the small collection. The
computational effort is decoupled from the collection size and it depends mainly on the trace
size.

Figure 19 gives an insight on the computational effort of the comprehen-
sive system, by showing the system response timing in seconds as the users
experienced it.
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8 Conclusion

We have presented a query-free retrieval approach that relies on iterative rele-
vance feedback. Our contributions extend and reshape the retrieval mechanism
in three complementary aspects, namely the large-scale HEAT framework, the
mass-zoom extension and the log-based image similarity metric.

We systematically evaluated different combinations of our contributions in
the same manner as each individual contribution, and we got evidence that the
contributions complement each other. We also evaluated the comprehensive
retrieval system, and showed that the overall integration of our contributions
is consistently beneficial.

We foresee that our contributions, along with our free software web-appli-
cation, will motivate further investigations and facilitate further experiments.
We hope that our research brings the iterative relevance feedback mechanism
one step closer to commercial applications.
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