
Knowledge Transfer with Jacobian Matching

Suraj Srinivas 1 François Fleuret 1

Abstract
Classical distillation methods transfer representa-
tions from a “teacher” neural network to a “stu-
dent” network by matching their output activa-
tions. Recent methods also match their Jacobians,
or the gradient of output activations with the input.
However, this involves making some ad hoc deci-
sions, in particular, the choice of the loss function.
In this paper, we first establish an equivalence
between Jacobian matching and distillation with
input noise, from which we derive appropriate
loss functions for Jacobian matching. We then
rely on this analysis to apply Jacobian matching
to transfer learning by establishing equivalence
of a recent transfer learning procedure to distilla-
tion. We then show experimentally on standard
image datasets that Jacobian-based penalties im-
prove distillation, robustness to noisy inputs, and
transfer learning.

1. Introduction
Consider that we are given a neural network A trained on a
particular dataset, and want to train another neural network
B on a similar (or related) dataset. Is it possible to leverage
A to train B more efficiently? We call this the problem of
knowledge transfer. Distillation (Hinton et al., 2015) is a
form of knowledge transfer where A and B are trained on
the same dataset, but have different architectures. Transfer
Learning (Pan & Yang, 2010) is another form of knowledge
transfer where A and B are trained on different (but related)
datasets. If the architectures are the same, we can in both
cases simply copy weights from A to B. The problem
becomes more challenging when A and B have different
architectures.

A perfect distillation method would enable us to easily trans-
form one neural network architecture into another, while
preserving generalization. This capability would allow us

1Idiap Research Institute & EPFL, Switzerland. Correspon-
dence to: Suraj Srinivas <suraj.srinivas@idiap.ch>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

to easily explore the space of neural network architectures,
which can be used for neural network architecture search,
model compression, or creating diverse ensembles. A per-
fect transfer learning method, on the other hand, would use
little data to train B, optimally using the limited samples at
its disposal.

This paper deals with improving knowledge transfer by
matching the Jacobians of the networks’ outputs with re-
spect to their inputs. This approach has also been re-
cently explored for the case of distillation by Czarnecki
et al. (2017), who considered the general idea of matching
Jacobians, and by Zagoruyko & Komodakis (2017) who
viewed Jacobians as attention maps. However it was unclear
how these methods were related to classical distillation ap-
proaches (Ba & Caruana, 2014; Hinton et al., 2015), making
it difficult to identify reasons for improved performance.

Recently Li & Hoiem (2016) proposed a distillation-like
approach to perform transfer learning. However its precise
relationship to distillation was unclear, making it difficult to
predict whether improvements in distillation would lead to
improvements in transfer learning.

The overall contributions of our paper are:

1. We show that matching Jacobians is a special case of
classical distillation, where noise is added to the inputs.

2. We show that a recent transfer learning method (LwF
by Li & Hoiem, 2016) can be viewed as distillation,
which allows us to match Jacobians for this case.

3. We provide methods to match Jacobians of practical
deep networks, where architecture of both networks
are arbitrary.

We experimentally validate these results by providing ev-
idence that Jacobian matching helps both distillation and
transfer learning, and that Jacobian-norm penalties can be
used to learn models robust to noise.

2. Related Work
Several Jacobian-based regularizers have been proposed
in recent times. Sobolev training (Czarnecki et al., 2017),
showed that using higher order derivatives along with the tar-
gets can help in training with less data. This work is similar

Knowledge Transfer with Jacobian Matching

to ours. While we also make similar claims, we clarify the
relationship of this method with regular distillation based on
matching activations. Specifically, we show how specifying
the loss function used for activation matching also specifies
the loss function for Jacobian matching. Similarly, Wang
et al. (2016) used Jacobians for distillation and showed that
it helps improve performance. Zagoruyko & Komodakis
(2017) introduced the idea of matching attention maps, of
which Jacobians were an instance. This work found that
combining both activation matching and Jacobian matching
was helpful, which is a natural consequence of analysis in
our work.

Drucker & Le Cun (1992) considered penalizing the Jaco-
bian norm of neural networks. The intuition was to make
the model more robust to small changes in the input. We
find that this conforms to our analysis as well.

Knowledge Distillation (Hinton et al., 2015) first showed
that one can use softmax with temperature to perform knowl-
edge transfer with neural nets. Ba & Caruana (2014) found
that squared error between logits worked better than the
softmax method, and they used this method to train shallow
nets with equivalent performance to deep nets. Romero et al.
(2014) and Zagoruyko & Komodakis (2017) showed how
to enhance distillation by matching intermediate features
along with the outputs, but used different methods to do
so. Sau & Balasubramanian (2016) found that adding noise
to logits helps during teacher-student training. We show that
the use of the Jacobian can be interpreted as adding such
noise to the inputs analytically.

3. Jacobians of Neural Networks
Let us consider the first order Taylor series expansion of
a function f : RD → R around a small neighborhood
{x + ∆x : ‖∆x‖ ≤ ε}. It can be written as

f(x + ∆x) = f(x) +∇xf(x)T (∆x) +O(ε2) (1)

We can apply this linearization to neural nets. The source
of non-linearity for neural nets lie in the elementwise non-
linear activations (like ReLU, sigmoid) and pooling oper-
ators. It is easy to see that to linearize the entire neural
network, one must only linearize such non-linearities.

3.1. Special case: ReLU and MaxPool

For the ReLU nonlinearity, the Taylor approximation is
locally exact and simple to compute, as the derivative dσ(z)

dz
is either 0 or 1 (except at z = 0, where it is undefined). A
similar statement holds for max-pooling. Going back to
the definition in Equation 1, for piecewise linear nets there
exist ε > 0 such that the super-linear terms are zero, i.e.;
f(x + ∆x) = f(x) +∇xf(x)T (∆x) exactly.

3.2. Invariance to weight and architecture specification

One useful property of the Jacobian is that its dimensionality
does not depend on the network architecture. For k output
classes, and input dimension D , the Jacobian of a neural
network is of dimension D × k. This means that one can
compare Jacobians of different architectures.

Another useful property is that for a given neural network
architecture, different weight configurations can lead to the
same Jacobian. One simple example of this is permutation
symmetry of neurons in intermediate hidden layers. It is
easy to see different permutations of neurons leave the Jaco-
bian unchanged (as they have the same underlying function
mapping). In general, because of redundancy of neural net-
work models and non-convexity of the loss surface, several
different weight configurations can end up having similar
Jacobians.

Thus Jacobians naturally captures similarities between neu-
ral network mappings, making it desirable to use for knowl-
edge transfer. Note that these properties hold trivially for
output activations as well. Thus it seems sensible that both
these quantities must be used for knowledge transfer. How-
ever, the important practical question remains: how exactly
should this be done?

4. Distillation
This problem of distillation is as follows: given a teacher
network T which is trained on a dataset D, we wish to
enhance the training of a student network S on D using
“hints” from T . Classically, such “hints” involve activations
of the output layer or some intermediate layers. Recent
works (Czarnecki et al., 2017; Zagoruyko & Komodakis,
2017) sought to also match the Jacobians of S and T . How-
ever, two aspects are not clear in these formalisms: (i) what
penalty term must be used between Jacobians, and (ii) how
this idea of matching Jacobians relates to simpler methods
such as classical distillation or activation matching (Ba &
Caruana, 2014; Hinton et al., 2015). To resolve these issues,
we make the following claim.

Claim. Matching Jacobians of two networks is equivalent
to matching soft targets with noise added to the inputs dur-
ing training.

More concretely, we make the following proposition.

Proposition 1. Consider the squared error cost function for
matching soft targets of two neural networks with k-length
targets (∈ Rk), given by `(T (x),S(x)) =

∑k
i=1(T i(x)−

Si(x))2, where x ∈ RD is an input data point. Let ξ (∈
RD) = σ z be a scaled version of a unit normal random

Knowledge Transfer with Jacobian Matching

Teacher

Solution 1:

Match with

input noise

Solution 2:

Match

Jacobians

Figure 1. Illustration of teacher-student learning in a simple 1D
case. Here, x-axis is the input data, and y-axis denotes function
outputs. Given a limited number of data points, there exist multiple
student functions consistent with the data. How do we select the
hypothesis closest to the teacher’s? There are two equivalent
solutions: either by augmenting the data set by adding noise to the
inputs or by directly matching slopes (Jacobians) of the function
at the data points.

variable z ∈ RD with scaling factor σ ∈ R. Then,

Eξ

[
k∑
i=1

(
T i(x + ξ)− Si(x + ξ)

)2]

=

k∑
i=1

(
T i(x)− Si(x)

)2
+ σ2

k∑
i=1

‖∇xT i(x)−∇xSi(x)‖22 +O(σ4).

Notice that in this expression, we have decomposed the loss
function into two components: one representing the usual
distillation loss on the samples, and the second regularizer
term representing the Jacobian matching loss. The higher
order error terms are small for small σ and can be ignored.
The above proposition is a simple consequence of using
the first-order Taylor series expansion around x. Note that
the error term is exactly zero for piecewise-linear nets. An
analogous statement is true for the case of cross entropy
error between soft targets, leading to:

Eξ

[
−

k∑
i=1

T is (x + ξ) log
(
Sis(x + ξ)

)]
(2)

≈ −
k∑
i=1

T is (x) log(Sis(x)) − σ2
k∑
i=1

∇xT is (x)T∇xSis(x)

Sis(x)

where T is (x) denotes the same network T i(x) but with
a softmax or sigmoid (with temperature parameter T if

needed) added at the end. We do not write the super-linear
error terms for convenience. This shows that the Jacobian
matching loss does not need to be specified seperately, and
that it arises naturally from the choice of activation matching
loss and the noise model. This observation can be used in
practice to pick appropriate loss function by choosing a
specific noise model of interest.

These statements show that matching Jacobians is a natural
consequence of matching not only the raw network outputs
at given data points, but also at the infinitely many data
points nearby. This is illustrated in Figure 1, which shows
that by matching on a noise-augmented dataset, the student
is able to mimic the teacher better.

We can use the idea of noise augmentation to derive regu-
larizers for the case of regular neural network training as
well. These regularizers seek to make the underlying model
robust to small amounts of noise added to the inputs.

Proposition 2. Consider the squared error cost function
for training a neural network with k targets, given by
`(y(x),S(x)) =

∑k
i=1(yi(x) − Si(x))2, where x ∈ RD

is an input data point, and yi(x) is the ith target output.
Let ξ (∈ RD) = σ z be a scaled version of a unit normal
random variable z ∈ RD with scaling factor σ ∈ R. Then
the following is true.

Eξ

[
k∑
i=1

(
yi(x)− Si(x + ξ)

)2]

=

k∑
i=1

(
yi(x)− Si(x)

)2
+ σ2

k∑
i=1

‖∇xSi(x)‖22 +O(σ4)

A statement similar to Proposition 2 has been previously
derived by Bishop (1995), who observed that the regular-
izer term for linear models corresponds exactly to the well-
known Tikhonov regularizer. This regularizer was also pro-
posed by Drucker & Le Cun (1992). The `2 weight decay
regularizer for neural networks can be derived by applying
this regularizer layer-wise separately. However, we see here
that a more appropriate way to ensure noise robustness is to
penalize the norm of the Jacobian rather than weights. We
can derive a similar result for the case of cross-entropy error
as well, which is given by -

Eξ

[
−

k∑
i=1

yi(x) log(Sis(x + ξ))

]
(3)

≈ −
k∑
i=1

yi(x) log(Sis(x)) + σ2
k∑
i=1

yi(x)
‖∇xSis(x)‖22
Sis(x)2

We notice here again that the regularizer involves Sis(x),
which has the sigmoid / softmax nonlinearity applied on top

Knowledge Transfer with Jacobian Matching

of the final layer of Si(x). Deriving all the above results is
a simple matter of using first-order Taylor series expansions,
and additionally a second-order expansion for log in the
case of Equation 3. Proof is provided in the supplementary
material.

Note that we can re-write the penalties for cross entropy
error in a more numerically stable form. In general, we
found that the penalties for squared error worked better
experimentally and were easier to tune. As a result, we use
squared error loss for distillation.

Why does Jacobian matching improve performance? One
reason is that Jacobian matching is derived from the ex-
pected value of the activation matching loss with noise,
and computing this expected loss is intractable in practice.
However it can be approximated by averaging over a large
number N of noise instances, i.e. a Monte Carlo approx-
imation. This is a form of data augmentation with noise.
Thus with Jacobian matching we analytically perform an
otherwise intractable data augmentation procedure.

4.1. Approximating the Full Jacobian

One can see that both in the case of Proposition 1 and
2, we are required to compute the full Jacobian. This is
computationally expensive, and sometimes unnecessary. For
example, Equation 3 requires only the terms where yi(x) is
non-zero.

In general, we can approximate the summation of Jacobian
terms with the one with largest magnitude. However, we
cannot estimate this without computing the Jacobians them-
selves. As a result, we use a heuristic where the only output
variable involving the correct answer c ∈ [1, k] is used for
computing the Jacobian. This corresponds to the case of
Equation 3. Alternately, if we do not want to use the labels,
we may instead use the output variable with the largest mag-
nitude, as it often corresponds to the right label (for good
models).

5. Transfer Learning
We now apply our Jacobian matching machinery to transfer
learning problems. In computer vision, transfer learning
is often done by fine-tuning (Yosinski et al., 2014), where
models pre-trained on a large source dataset Ds, such as Im-
agenet (Russakovsky et al., 2015), are used as initialization
for training on another smaller target datasetDt. Practically,
this means that the architecture used for fine-tuning must be
the same as that of the pre-trained network, which is restric-
tive. We would like to develop transfer learning methods
where the architectures of the pre-trained network and target
“fine-tuned” network can be arbitrarily different.

One way to achieve this is by distillation: we can match

Student

Teacher
(Pre-trained net)

Input
(target
dataset)

Match output
activations

Match with ground
truth labels (from
target dataset)

Match attention maps
and their Jacobians

Figure 2. Illustration of our proposed method for transfer learning.
We match the output activations of a pre-trained Imagenet network
similar to LwF (Li & Hoiem, 2016). We also match aggregated
activations or “attention” maps between networks, similar to the
work of Zagoruyko & Komodakis (2017). We propose to match
Jacobians of (aggregated) attention maps w.r.t. inputs.

output activations of a pre-trained teacher network and an
untrained student network. However, this procedure is not
general as the target dataset may not share the same label
space as the source dataset. To overcome this, we can
design the student network to have two sets of outputs (or
two output “branches”), one with the label space of the
smaller target dataset, while the other with that of the larger
source dataset. This leads to the method proposed by Li &
Hoiem (2016), called “Learning without Forgetting” (LwF).
Note that similar methods were concurrently developed
by Jung et al. (2016) and Furlanello et al. (2016). In this
method, the student network is trained with a composite loss
function involving two terms, one in each output branch.
The two objectives are (1) matching ground truth labels on
the target dataset, and (2) matching the activations of the
student network and a pre-trained teacher network on the
target dataset. This is illustrated in Figure 2. Crucially,
these losses are matched only on the target dataset, and the
source data is untouched. This is conceptually different
from distillation, where the teacher network is trained on
the dataset being distilled. In LwF, the pre-trained teacher
is not trained on the target dataset.

This makes it problematic to apply our Jacobian matching
framework to LwF. For distillation, it is clear that adding
input noise (or Jacobian matching) can improve overall
matching as shown in Figure 1. For the case of LwF, it is
not clear whether improving matching between teacher and
student will necessarily improve transfer learning perfor-
mance. This is especially because the teacher is not trained
on the target dataset, and can potentially produce noisy or in-
correct results on this unseen data. To resolve this ambiguity,

Knowledge Transfer with Jacobian Matching

we shall now connect LwF with distillation.

5.1. LwF as Distillation

In the discussion below we shall only consider the
distillation-like loss of LwF, and ignore the branch which
matches ground truth labels. For LwF to work well, it must
be the case that the activations of the pre-trained teacher net-
work on the target dataset must contain information about
the source dataset (i.e.; Imagenet). The attractiveness of
LwF lies in the fact that this is done without explicitly using
Imagenet. Here, we make the claim that LwF approximates
distillation on (a part of) Imagenet.

Let f(·) be an untrained neural network, g(·) be a pre-
trained network, x,y be the input image and corresponding
ground truth label respectively. Let |D| be the size of the
dataset D. Let us denote ρ(x) = `(f(x), g(x)) for conve-
nience, where `(·, ·) is a loss function. Assume Lipschitz
continuity for ρ(x) with Lipschitz constant K, and distance
metric ψx in the input space

‖ρ(x1)− ρ(x2)‖ ≤ Kψx(x1,x2) (4)

Note here that the distance in the input space need not be in
terms of pixelwise distances, but can also be a learnt feature
distance, for example. Let us also define an assymetric
version of the Hausdorff distance between two sets A,B:

Ha(A,B) = sup
a∈A

inf
b∈B

ψx(a, b). (5)

Note that this is no longer a valid distance metric unlike the
Hausdorff. Given these assumptions, we are now ready to
state our result.

Proposition 3. Given the assumptions and notations de-
scribed above, we have

1

|Ds|
∑
x∼Ds

`(f(x), g(x)) ≤ max
x∼Dt

`(f(x), g(x)) (6)

+ KHa(Ds,Dt) (7)

On the left side of 6 we have the distillation loss on the
source dataset, and on the right we have a max-loss term on
the target dataset. Note that the LwF loss is an average loss
on the target dataset. As expected, the slack terms in the
inequality depends on the distance between the source and
target datasets (7). This bounds a loss related to the LwF loss
(i.e. max-loss instead of average) with the distillation loss.
If the Hausdorff distance is small, then reducing the max-
loss would reduce the distillation loss as well. A similar
theory was previously presented by Ben-David et al. (2010),
but with different formalisms. Our formalism allows us
to connect with Jacobian matching, which is our primary
objective. Note that this inequality can also be viewed as a
learning-theoretic generalization bound for distillation by

replacing the source and target datasets with train and test
sets for distillation instead.

In practice, the target dataset is often much smaller than
Imagenet and has different overall statistics. For example,
the target dataset could be a restricted dataset of flower
images. In such a case, we can restrict the source dataset to
its “best” subset, in particular with all the irrelevant samples
(those far from target dataset) removed. This would make
the Hausdorff distance smaller, and provide a tighter bound.
In our example, this involves keeping only flowers from
Imagenet.

This makes intuitive sense as well: if the source and target
datasets are completely different, we do not expect transfer
learning (and thus LwF) to help. The greater the overlap
between source and target datasets, the smaller is the Haus-
dorff distance, the tighter is the bound, and the more we
expect knowledge transfer to help. Our results capture this
intuition in a rigorous manner. In addition, this predicts
that Lipschitz-smooth teacher neural nets that produce small
feature distance between source and target images are ex-
pected to do well in transfer learning. Lipschitz-smoothness
of models has been previously related to adversarial noise
robustness (Cisse et al., 2017), and to learning theory as a
sufficient condition for generalization (Xu & Mannor, 2012).
It is interesting that this relates to transfer learning as well.

More importantly, this establishes LwF as an approximate
distillation method. The following result motivates input
noise added to the target dataset.

Corollary. For any superset D′t ⊇ Dt of the target dataset,
Ha(Ds,D′t) ≤ Ha(Ds,Dt)

Thus if we augment the target dataset Dt by adding noise,
we expect the bound in Proposition 3 to get tighter. This is
because when we add noise to points in Dt, the minimum
distance between points from Ds to Dt decreases. Proofs
are provided in the supplementary material.

To summarize, we have showed that a loss related to the LwF
loss (max-loss) is an upper bound on the true distillation
loss. Thus by minimizing the upper bound, we can expect
to reduce the distillation loss also.

5.1.1. INCORPORATING JACOBIAN MATCHING

Now that input noise and thus Jacobian matching is well
motivated, we can incorporate these losses into LwF. When
we implemented this for practical deep networks we found
that the optimizer was not able to reduce the Jacobian loss
at all. We conjecture that it might be because of a vanishing
gradient effect / network degeneracy on propagation of sec-
ond order gradients through the network (and not the first).
Hence we need an alternate way to match Jacobians.

Knowledge Transfer with Jacobian Matching

5.2. Matching attention maps

It is often insufficient to match only output activations be-
tween a teacher and a student network, especially when both
networks are deep. In such cases we can consider match-
ing intermediate feature maps as well. In general it is not
possible to match the full feature maps between an arbitrary
teacher and student network as they may have different ar-
chitectures, and features sizes may never match at any layer.
However, for modern convolutional architectures, spatial
sizes of certain features often match across architectures
even when the number of channels does not. Zagoruyko &
Komodakis (2017) noticed that it in such cases it helps to
match channelwise aggregated activations, which they call
attention maps. Specifically, this aggregation is performed
by summing over squared absolute value of channels of a
feature activation Z, and is given by -

A = AttMap(Z) =
∑

i∈channels

|Zi|2 (8)

Further, the loss function used to match these activations is

Match Activations =

∣∣∣∣∣∣∣∣ At
‖At‖2

− As
‖As‖2

∣∣∣∣∣∣∣∣
2

(9)

Here, At, As are the attention maps of the teacher and stu-
dent respectively. Zagoruyko & Komodakis (2017) note that
this choice of loss function is especially crucial.

5.2.1. INCORPORATING JACOBIAN LOSS

As the activation maps have large spatial dimensions, it
is computationally costly to compute the full Jacobians.
We hence resort to computing approximate Jacobians in the
same manner as previously discussed. In this case, this leads
to picking the pixel in the attention map with the largest
magnitude, and computing the Jacobian of this quantity w.r.t.
input. We compute the index (i, j) of this maximum-valued
pixel for the teacher network and use the same index to
compute the student’s Jacobian. We then use a loss function
similar to Equation 9, given by

Match Jacobians =

∣∣∣∣∣∣∣∣ ∇xf(x)

‖∇xf(x)‖2
− ∇xg(x)

‖∇xg(x)‖2

∣∣∣∣∣∣∣∣2
2
(10)

We present a justification for this in the supplementary ma-
terial.

6. Experiments
We perform three experiments to show the effectiveness of
using Jacobians. First, we perform distillation in a limited
data setting on the CIFAR100 dataset (Krizhevsky & Hinton,
2009). Second, we show on that same dataset that penalizing

Jacobian norm increases stability of networks to random
noise. Finally, we perform transfer learning experiments on
the MIT Scenes dataset (Quattoni & Torralba, 2009). We
provide more detail about the experimental setups in the
supplementary material.

6.1. Distillation

For the distillation experiments, we use VGG-like (Si-
monyan & Zisserman, 2014) architectures with batch nor-
malization. The main difference is that we retain the con-
volutional layers and have one fully connected layer rather
than three. Our workflow is as follows. First, a 9-layer
“teacher” network is trained on the full CIFAR100 dataset.
Then, a smaller 4-layer “student” network is trained, but
this time on small subsets rather than the full dataset. As
the teacher is trained on much more data than the student,
we expect distillation to improve the student’s performance.

A practical scenario where this would be useful is the case of
architecture search and ensemble training, where we require
to train many candidate neural network architectures on the
same task. Distillation methods can help speed up such
methods by using already trained networks to accelerate
training of newer models. One way to achieve acceleration
is by using less data to train the student.

We compare our methods against the following baselines.
(1): Cross-Entropy (CE) training – Here we train the stu-
dent using only the ground truth (hard labels) available with
the dataset without invoking the teacher network. (2): CE
+ match activations – This is the classical form of dis-
tillation, where the activations of the teacher network are
matched with that of the student. This is weighted with
the cross-entropy term which uses ground truth targets. (3):
Match activations only – Same as above, except that the
cross-entropy term is not used in the loss function.

We compare these methods by appending the Jacobian
matching term in each case. In all cases, we use the squared-
error distillation loss shown in Proposition 1. We found that
squared loss worked much better than the cross-entropy loss
for distillation and it was much easier to tune.

From Table 1 we can conclude that (1) it is generally benefi-
cial to do any form of distillation to improve performance,
(2) matching Jacobians along with activations outperforms
matching only activations in low-data settings, (3) not match-
ing Jacobians is often beneficial for large data.

One interesting phenomenon we observe is that having a
cross-entropy (CE) error term is often not crucial to achieve
good performance. It performs only slightly worse than
using ground truth labels.

For Table 1, we see that when training with activations,
Jacobians and regular cross-entropy training (fourth row),

Knowledge Transfer with Jacobian Matching

we reach an accuracy of 52.43% when training with 100
data points per class. We observe that the overall accuracy
of raw training using the full dataset is 54.28%. Thus we
are able to reach close to the full training accuracy using
only about 1/5th of the data.

6.2. Noise robustness

We perform experiments where we penalize the Jacobian
norm to improve robustness of models to random noise. We
train 9-layer VGG networks on CIFAR100 with varying
amount of the regularization strength (λ), and measure their
classification accuracy in presence of noise added to the
normalized images. From Table 2 we find that using higher
regularization strengths is better for robustness, even when
the initial accuracy at the zero-noise case is lower. This
aligns remarkably well with the theory. Surprisingly, we
find that popular regularizers such as `2 regularization and
dropout (Srivastava et al., 2014) are not robust.

6.3. Transfer Learning

For transfer learning, our objective is to improve training
on the target dataset (MIT Scenes) by using Imagenet pre-
trained models. Crucially, we want our MIT Scenes model
to have a different architecture than the Imagenet model.
The teacher model we use is a ResNet-34 (He et al., 2016)
pre-trained on Imagenet, while the student model is an un-
trained VGG-9 model with batch normalization. We choose
VGG-9 because its architecture is based on fundamentally
different design principles than ResNets. In principle we
can use any architecture for the student. We modify this
VGG-9 architecture such that it has two sets of outputs, one
sharing the label space with Imagenet (1000 classes), and
another with MIT Scenes (67 classes). The pre-final layer is
common to both outputs.

Our baselines are the following. (1): Cross-Entropy (CE)
training of student with ground truth – Here we ignore
the VGG-9 branch with 1000 classes and optimize the cross-
entropy error on MIT Scenes data. The loss function on
this branch is always the same for all methods. (2): CE
on pre-trained network – This is exactly the same as the
first baseline, except that the VGG-9 model is initialized
from Imagenet pre-trained weights. We consider this as our
“oracle” method and strive to match its performance. (3):
CE + match activations (LwF) – This corresponds to the
method of Li & Hoiem (2016), where the Imagenet branch
output activations of the student are matched with those of
the teacher. (4): CE + match { activations + attention} –
This corresponds to the method of Zagoruyko & Komodakis
(2017), where attention maps are matched between some
intermediate layers.

We add our Jacobian matching terms to the baselines 3 and
4. We provide our results in Table 3. In all cases, we vary

the number of images per class on MIT Scenes to observe
the performance on low-data settings as well. In this case
we average our results over two runs by choosing different
random subsets.

Experiments show that matching activations and attention
maps increases performance at all levels of data size. It
also shows that Jacobians improve performance of all these
methods. However, we observe that none of the methods
match the oracle performance of using a pre-trained model.
The gap in performance is especially large at intermediate
data sizes of 10 and 25 images per class.

6.3.1. WHICH FEATURES TO MATCH?

An important practical question is the choice of intermediate
features to compute attention maps for matching. The recipe
followed by Zagoruyko & Komodakis (2017) for ResNets
is to consider features at the end of a residual block. 1 As
there are typically 3-5 max-pooling layers in most modern
networks, we have 3-5 intermediate features to match be-
tween any typical teacher and student network. Note that
we require the attention maps (channelwise aggregated fea-
tures) to be of similar spatial size to match. Zagoruyko &
Komodakis (2017) match at all such possible locations.

However, computing Jacobians at all such locations is com-
putationally demanding and perhaps unnecessary. We ob-
serve that if we compute Jacobians at later layers, we are
still not able to reduce training Jacobian loss, possibly due
to a “second-order” vanishing gradient effect. At suitable
intermediate layers, we see that loss reduction occurs. This
is reflected in Table 4, where we vary the feature match-
ing depth and observe performance. We observe that the
Jacobian loss reduction (during training) is highest for the
shallowest layers, and this corresponds to good test perfor-
mance as well. These ablation experiments are done on the
MIT Scenes dataset picking only 10 points per class.

6.3.2. FEATURE POOLING TO COMPUTE JACOBIANS

Instead of considering a single pixel per attention map to
compute Jacobians, we can aggregate a large number of
large-magnitude pixels. One way to do this is by average
pooling over the attention map, and then picking the maxi-
mum pixel over the average pooled map. In Table 5 we vary
the window size for average pooling and observe perfor-
mance. We observe that it is beneficial to do average pool-
ing, we find that using a window size of (feature size)/5
works the best. These ablation experiments are done on the
MIT Scenes dataset picking only 10 points per class.

1A residual block is the set of all layers in between two consec-
utive max-pooling layers in a ResNet. All features in a block have
the same dimensions.

Knowledge Transfer with Jacobian Matching

Table 1. Distillation performance on the CIFAR100 dataset. Table shows test accuracy (%). We find that matching both activations and
Jacobians along with cross-entropy error performs the best for limited-data settings. The student network is VGG-4 while the teacher is a
VGG-9 network which achieves 64.78% accuracy.

of Data points per class→ 1 5 10 50 100 500 (full)
Cross-Entropy (CE) training 5.69 13.9 20.03 37.6 44.92 54.28

CE + match activations 12.13 26.97 33.92 46.47 50.92 56.65
CE + match Jacobians 6.78 23.94 32.03 45.71 51.47 53.44

CE + match {activations + Jacobians} 13.78 33.39 39.55 49.49 52.43 54.57
Match activations only 10.73 28.56 33.6 45.73 50.15 56.59

Match {activations + Jacobians} 13.09 33.31 38.16 47.79 50.06 51.33

Table 2. Robustness of various VGG-9 models to gaussian noise added to CIFAR100 images at test time. Table shows test accuracy (%).
λ is the regularization strength of the Jacobian-norm penalty regularizer. γ is the `2 regularization strength and p is the dropout value. We
see that the Jacobian-norm penalty can be remarkably robust to noise, unlike `2 regularization and dropout.

Noise std. dev. → 0 0.1 0.2 0.3 0.4
λ = 0 64.78 61.9± 0.07 47.53± 0.23 29.63± 0.16 17.69± 0.17

λ = 0.1 65.62 63.36± 0.18 53.57± 0.23 37.38± 0.18 23.99± 0.19
λ = 1.0 63.59 62.66± 0.13 57.53± 0.17 47.48± 0.14 35.43± 0.11
λ = 10.0 61.37 60.78± 0.05 58.28± 0.13 52.82± 0.10 44.96± 0.19

`2 regularization (γ = 1e− 3) 66.92 60.41± 0.27 39.93± 0.28 23.32± 0.25 13.76± 0.16
Dropout (p = 0.25) 66.8 61.53± 0.10 44.34± 0.19 26.70± 0.24 15.77± 0.11

Table 3. Transfer Learning from Imagenet to MIT Scenes dataset. Table shows test accuracy (%). The student network (VGG9) is trained
from scratch unless otherwise mentioned. The teacher network used is a pre-trained ResNet34. Results are averaged over two runs.

of Data points per class→ 5 10 25 50 Full
Cross-Entropy (CE) training on untrained student network 11.64 20.30 35.19 46.38 59.33

CE on pre-trained student network (Oracle) 25.93 43.81 57.65 64.18 71.42
CE + match activations (Li & Hoiem, 2016) 17.08 27.13 45.08 55.22 65.22

CE + match {activations + Jacobians} 17.88 28.25 45.26 56.49 66.04
CE + match {activations + attention} (Zagoruyko & Komodakis, 2017) 16.53 28.35 46.01 57.80 67.24

CE + match {activations + attention + Jacobians} 18.02 29.25 47.31 58.35 67.31

Table 4. Ablation experiments over choice of feature matching
depth. (T , S) denotes teacher (ResNet34) and student (VGG9)
feature depths. These pairs are chosen such that resulting features
have same spatial dimensions. We see that matching the shallowest
feature works the best. Results are averaged over two runs.

Feature matching
depth (T , S) (7, 2) (15, 4) (27, 6) (33, 8)

Accuracy (%) 22.39 21.98 20.45 20.03
Jacobian loss
reduction (%) 25.88 15.59 11.55 1.25

7. Conclusion
In this paper we considered matching Jacobians of deep
neural networks for knowledge transfer. Viewing Jacobian
matching as a form of data augmentation with gaussian
noise motivates their usage, and also informs us about the
loss functions to use. We also connected a recent trans-

Table 5. Ablation experiments over the computation of Jacobian.
Here, s is the size of the attention map. “Full” is global average
pooling, and “None” is no average pooling. We see that using
average pooling while computing Jacobians helps performance.
Results are averaged over two runs.

Average Pool
Window size Full s/3 s/5 s/7 None

Accuracy (%) 20.00 21.20 21.87 21.09 19.74

fer learning method (LwF) to distillation, enabling us to
incorporate Jacobian matching.

Despite our advances, there is still a large gap between
distillation-based methods and the oracle method of using
pre-trained nets for transfer learning. Future work can focus
on closing this gap by considering more structured forms of
data augmentation than simple noise addition.

Knowledge Transfer with Jacobian Matching

Acknowledgements
This work was supported by the Swiss National Science
Foundation under the ISUL grant FNS-30209.

References
Ba, L. and Caruana, R. Do deep networks really need to be

deep. Advances in neural information processing systems,
27:1–9, 2014.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning from
different domains. Machine learning, 79(1-2):151–175,
2010.

Bishop, C. M. Training with noise is equivalent to tikhonov
regularization. Neural Computation, 1995.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and
Usunier, N. Parseval networks: Improving robustness
to adversarial examples. In International Conference on
Machine Learning, pp. 854–863, 2017.

Czarnecki, W. M., Osindero, S., Jaderberg, M., Świrszcz,
G., and Pascanu, R. Sobolev training for neural networks.
NIPS, 2017.

Drucker, H. and Le Cun, Y. Improving generalization perfor-
mance using double backpropagation. IEEE Transactions
on Neural Networks, 1992.

Furlanello, T., Zhao, J., Saxe, A. M., Itti, L., and Tjan,
B. S. Active long term memory networks. arXiv preprint
arXiv:1606.02355, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowl-
edge in a neural network. NIPS Deep Learning Workshop,
2015.

Jung, H., Ju, J., Jung, M., and Kim, J. Less-forgetting
learning in deep neural networks. arXiv preprint
arXiv:1607.00122, 2016.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. 2009.

Li, Z. and Hoiem, D. Learning without forgetting. In
European Conference on Computer Vision, pp. 614–629.
Springer, 2016.

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):
1345–1359, 2010.

Quattoni, A. and Torralba, A. Recognizing indoor scenes. In
2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta,
C., and Bengio, Y. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550, 2014.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115(3):
211–252, 2015.

Sau, B. B. and Balasubramanian, V. N. Deep model com-
pression: Distilling knowledge from noisy teachers. arXiv
preprint arXiv:1610.09650, 2016.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Wang, S., Mohamed, A.-r., Caruana, R., Bilmes, J., Plili-
pose, M., Richardson, M., Geras, K., Urban, G., and
Aslan, O. Analysis of deep neural networks with ex-
tended data jacobian matrix. In International Conference
on Machine Learning, pp. 718–726, 2016.

Xu, H. and Mannor, S. Robustness and generalization.
Machine learning, 86(3):391–423, 2012.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How
transferable are features in deep neural networks? In
Advances in neural information processing systems, pp.
3320–3328, 2014.

Zagoruyko, S. and Komodakis, N. Paying more attention
to attention: Improving the performance of convolutional
neural networks via attention transfer. ICLR, 2017.

Supplementary Material for
“Knowledge Transfer with Jacobian Matching”

Suraj Srinivas 1 François Fleuret 1

1. Proof for Proposition 1
Proposition. Consider the squared error cost function for
matching soft targets of two neural networks with k-length
targets (∈ Rk), given by `(T (x),S(x)) =

∑k
i=1(T i(x)−

Si(x))2, where x ∈ RD is an input data point. Let ξ (∈
RD) = σ z be a scaled version of a unit normal random
variable z ∈ RD with scaling factor σ ∈ R. Then the
following is locally true.

Eξ

[
k∑

i=1

(
T i(x+ ξ)− Si(x+ ξ)

)2]

=

k∑
i=1

(
T i(x)− Si(x)

)2
+ σ2

k∑
i=1

‖∇xT i(x)−∇xSi(x)‖22

+O(σ4)

Proof. There exists σ and ξ small enough that first-order
Taylor series expansion holds true

Eξ

[
k∑

i=1

(
T i(x+ ξ)− Si(x+ ξ)

)2]

= Eξ

[
k∑

i=1

(
T i(x) + ξT∇xT i(x)− Si(x)− ξT∇xSi(x)

)2]
+O(σ4)

=

k∑
i=1

(
T i(x)− Si(x)

)2
+Eξ

[
k∑

i=1

[
ξT
(
∇xT i(x)−∇xSi(x)

)]2]
+O(σ4) (1)

To get equation 1, we use the fact that mean of ξ is zero. To

1Idiap Research Institute & EPFL, Switzerland. Correspon-
dence to: Suraj Srinivas <suraj.srinivas@idiap.ch>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

complete the proof, we use the diagonal assumption on the
covariance matrix of ξ.

Proofs of other statements are similar. For proof for cross-
entropy loss of Proposition 2, use a second order Taylor
series expansion of log(·) in the first step.

2. Proof for Proposition 3
Proposition. From the notations in the main text, we have

1

|Dl|
∑
x∼Dl

`(f(x), g(x)) ≤ max
x∼Ds

`(f(x), g(x))

+ KHa(Dl,Ds)

Proof. Let us denote ρ(x) = `(f(x), g(x)) for conve-
nience. Assume Lipschitz continuity for ρ(x) with Lip-
schitz constant K, and distance metric ψx(·, ·) in the input
space -

‖ρ(x1)− ρ(x2)‖1 ≤ Kψx(x1,x2)

=⇒ ρ(x1) ≤ ρ(x2) + Kψx(x1,x2)

Assuming that ρ(x1) ≥ ρ(x2). Note that it holds even
otherwise, but is trivial.

Now, for every datapoint xl ∈ Dl, there exists a point
xs ∈ Ds such that ψx(xs,xl) is the smallest among all
points in Ds. In other words, we look at the point in Ds

closest to each point xl. Note that in this process only a
subset of points ds ⊆ Ds are chosen, and individual points
can be chosen multiple times. For these points, we can write

ρ(xl) ≤ ρ(xs) + Kψx(xs,xl)

=⇒ 1

|Dl|
∑

xl∼Dl

ρ(xl) ≤
1

|Dl|
∑

xs closest to xl

ρ(xs)

+
1

|Dl|
∑

xs closest to xl

Kψx(xs,xl)

Knowledge Transfer with Jacobian Matching

We see that 1
|Dl|

∑
xs
ρ(xs) ≤ maxx∼ds

ρ(x) ≤
maxx∼Ds ρ(x), which is a consequence of the fact that the
max is greater than any convex combination of elements.

Also, we have ψx(xl,xs) ≤ Ha(Dl,Ds), which is the max-
imum distance between any two ‘closest’ points from Dl to
Ds (by definition).

Applying these bounds, we have the final result.

2.1. Proof for Corollary

Corollary. For any superset D′s ⊇ Ds of the target dataset,
Ha(Dl,D′s) ≤ Ha(Dl,Ds)

Proof. From the previous proof, we have ρ(xl) ≤ ρ(xs) +
Kψx(xs,xl) for an individual point xl. Now if we have
D′s ⊇ Ds, then we have ρ(xl) ≤ ρ(x′s) + Kψx(x

′
s,xl),

where x′s is the new point closest to xl. It is clear that
ψx(x

′
s,xl) ≤ ψx(xs,xl) for all xl. Hence it follows that

Ha(Dl,D′s) ≤ Ha(Dl,Ds).

3. Justification for Jacobian loss
We use the following loss term for Jacobian matching for
transfer learning.

Match Jacobians =

∣∣∣∣∣∣∣∣ ∇xf(x)

‖∇xf(x)‖2
− ∇xg(x)

‖∇xg(x)‖2

∣∣∣∣∣∣∣∣2
2
(2)

We can show that the above loss term corresponds to
adding a noise term ξf ∝ ‖∇xf(x)‖−12 for f(x) and
ξg ∝ ‖∇xg(x)‖−12 for g(x) for the distillation loss.
From the first order Taylor series expansion, we see that
g(x + ξ) = g(x) + ξg∇xg(x). Thus for networks f(·)
and g(·) with different Jacobian magnitudes, we expect dif-
ferent responses for the same noisy inputs. Specifically,
we see that Eξg

‖g(x + ξg) − g(x)‖22 = σ2
g‖∇xg(x)‖22 =

σ2 ‖∇xg(x)‖22
‖∇xg(x)‖22

= σ2 for a gaussian model with covariance
matrix being σ times the identity.

4. Experimental details
4.1. VGG Network Architectures

The architecture for our networks follow the VGG design
philosophy. Specifically, we have blocks with the following
elements:

• 3× 3 conv kernels with c channels of stride 1

• Batch Normalization

• ReLU

Whenever we use Max-pooling (M), we use stride 2 and
window size 2.

The architecture for VGG-9 is - [64 −M − 128 −M −
256 − 256 − M − 512 − 512 − M − 512 − 512 − M].
Here, the number stands for the number of convolution
channels, and M represents max-pooling. At the end of
all the convolutional and max-pooling layers, we have a
Global Average Pooling (GAP) layer, after which we have a
fully connected layer leading up to the final classes. Similar
architecture is used for the case of both CIFAR and MIT
Scene experiments.

The architecture for VGG-4 is - [64 −M − 128 −M −
512−M].

4.2. Loss function

The loss function for distillation experiments use the follow-
ing form.

`(S, T) = α×(CE)+β×(Match Activations)+γ×(Match Jacobians)

In our experiments, α, β, γ are either set to 1 or 0. In other
words, all regularization constants are 1.

Here, ‘CE’ refers to cross-entropy with ground truth la-
bels. ‘Match Activations’ refers to squared error term over
pre-softmax activations of the form (ys − yt)

2. ‘Match
Jacobians’ refers to the same squared error term, but for
Jacobians.

For the MIT Scene experiments, α, β, γ are either set to 10
or 0, depending on the specific method. To compute the
Jacobian, we use average pooling over a feature size/5
window with a stride of 1. We match the Jacobian after
the first residual block for resnet, and after the second max-
pool for VGG. This corresponds to feature level “1” in the
ablation experiments.

4.3. Optimization

For CIFAR100 experiments, we run optimization for 500
epochs. We use the Adam optimizer, with an initial learning
rate of 1e−3, and a single learning rate annealing (to 1e−4)
at 400 epochs. We used a batch size of 128.

For MIT Scenes, we used SGD with momentum of 0.9,
for 75 epochs. The initial learning rate is 1e− 3, and it is
reduced 10 times after 40 and 60 epochs. We used batch
size 8. This is because the Jacobian computation is very
memory intensive.

