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Abstract

The performance of optimizers, particularly in
deep learning, depends considerably on their cho-
sen hyperparameter configuration. The efficacy
of optimizers is often studied under near-optimal
problem-specific hyperparameters, and finding
these settings may be prohibitively costly for prac-
titioners. In this work, we argue that a fair as-
sessment of optimizers’ performance must take
the computational cost of hyperparameter tuning
into account, i.e., how easy it is to find good hy-
perparameter configurations using an automatic
hyperparameter search. Evaluating a variety of
optimizers on an extensive set of standard datasets
and architectures, our results indicate that Adam
is the most practical solution, particularly in low-
budget scenarios.

1. Introduction
With the ubiquity of deep learning in various applications,
a multitude of first-order stochastic optimizers (Robbins
& Monro, 1951) have been in vogue. They have varying
algorithmic components like momentum (Sutskever et al.,
2013) and adaptive learning rates (Tieleman & Hinton, 2012;
Duchi et al., 2011; Kingma & Ba, 2015). As the field grows
with newer variants being proposed, the standard method
to benchmark the performance of these optimizers has been
to compare the best possible generalization performance.
While it is certainly an important characteristic to be taken
into account, we argue that in practice an even more im-
portant characteristic is the performance achievable with
available resources. A similar view of performance mea-
surement has been recently argued for in the deep learning
community owing to the strong debate on sustainable and
GreenAI (Strubell et al., 2019; Schwartz et al., 2019).
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The performance of optimizers strongly depends on the
choice of hyperparameter values such as the learning rate.
In the machine learning research community, the sensitivity
of models to hyperparameters has been of great debate re-
cently, where in multiple cases, reported model advances did
not stand the test of time because they could be explained
by better hyperparameter tuning (Lucic et al., 2018; Melis
et al., 2018; Henderson et al., 2018; Dodge et al., 2019).
This has led to calls for using automatic hyperparameter
optimization methods (HPO) with a fixed budget for a fairer
comparison of models (Sculley et al., 2018; Hutter et al.,
2019b; Eggensperger et al., 2019). This eliminates biases
introduced by humans through manual tuning. For indus-
trial applications, automated machine learning (AutoML,
Hutter et al., 2019a), which has automatic hyperparameter
optimization as one of its key concepts, is becoming increas-
ingly more important. In all these cases, an optimization
algorithm that achieves good performances with relatively

Pr
ob

ab
ili

ty
 o

f b
ei

ng
 th

e 
be

st

Adam (only l.r. tuned)

Adam (all params. tuned)

SGD (tuned l.r., fixed mom. and w.d.)

SGD (l.r. schedule tuned, fixed mom. and w.d.)

10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

Budget for hyperparameter optimization (# models trained)

58%

17%

13%

12%

Figure 1: Hyperparameter optimization budget affects the
performance of optimizers. We show the probability of
finding a hyperparameter configuration for an optimizer
that performs the best at a given search budget on any task
(sampled from our benchmark). This is encoded by the
height of the respective area in the chart. Generally, we
see that tuning more hyperparameters becomes more useful
with higher budgets. On our 9 diverse tasks that include
vision problems, natural language processing, regression
and classification, tuning only the learning rate for Adam is
the most reliable option, even at large budgets.
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Table 1: Experimental settings shown in the original papers of popular optimizers. The large differences in test problems
and tuning methods make them difficult to compare. γ denotes learning rate, µ denotes momentum, λ is the weight decay
coefficient.

Method Datasets Network architecture Parameter tuning methods

SGD with momentum (Sutskever et al., 2013) Artificial datasets Fully-connected µ = 0.9 for first 1000 updates
MNIST LSTM then µ ∈ {0, 0.9, 0.98, 0.995}.

other schedules for µ are used
& log10(γ) ∈ {−3,−4,−5,−6}

Adagrad (Duchi et al., 2011) ImageNet ranking Single layer Perfomance on dev-set
Reuter RCV1 Handcrafted features
MNIST Histogram features
KDD Census

Adam (Kingma & Ba, 2015) IMDb Logistic regression β1 ∈ {0, 0.9}
MNIST Multi-layer perceptron β2 ∈ {0.99, 0.999, 0.9999}
CIFAR 10 Convolutional network log10(γ) ∈ {−5,−4,−3,−2,−1}

AdamW (Loshchilov & Hutter, 2019) CIFAR 10 ResNet CNN log2(γ) ∈ {−11,−10 · · · − 1, 0}
ImageNet 32×32 log2(λ) ∈ log2(10−3) + {−5,−4, . . . , 4}

little tuning effort is arguably substantially more useful than
an optimization algorithm that achieves top performance,
but reaches it only with a lot of careful tuning effort. Hence,
we advocate that benchmarking the performance obtained
by an optimizer must not only avoid manual tuning as much
as possible, but also has to account for the cost of tuning its
hyperparameters to obtain that performance.

Works that propose optimization techniques show their per-
formance on various tasks as depicted in Table 1. It is ap-
parent that the experimental settings, as well as the network
architectures tested, widely vary, hindering a fair compar-
ison. The introduction of benchmarking suites like DEEP-
OBS (Schneider et al., 2019) have standardized the archi-
tectures tested on, however, this does not fix the problem of
selecting the hyperparameters fairly. Indeed, recent papers
studying optimizer performances may employ grid search
to select the best values, but the search spaces are still se-
lected on a per-dataset basis, introducing significant human
bias (Schneider et al., 2019; Wilson et al., 2017; Shah et al.,
2018; Choi et al., 2019). Moreover, as only the best obtained
performance is reported, it is unclear how a lower search
budget would impact the results. This leads us to the ques-
tion: how easy is an optimizer to use, i.e. how quickly can
an automatic search method find a set of hyperparameters
for that optimizer that result in satisfactory performance?

In this paper, we introduce a simple benchmarking proce-
dure for optimizers that addresses the discussed issues. By
evaluating on a wide range of 9 diverse tasks, we contribute
to the debate of adaptive vs. non-adaptive optimizers (Wil-
son et al., 2017; Shah et al., 2018; Chen & Gu, 2018; Choi
et al., 2019). To reach a fair comparison, we experiment
with several SGD variants that are often used in practice
to reach good performance. Although a well-tuned SGD
variant is able to reach the top performance in some cases,
our overall results clearly favor Adam (Kingma & Ba, 2015),
as shown in Figure 1.

2. The Need to Incorporate Hyperparameter
Optimization into Benchmarking

The problem of optimizer benchmarking is two-fold as it
needs to take into account

1. how difficult it is to find a good hyperparameter con-
figuration for the optimizer,

2. the absolute performance of the optimizer.

To see why both are needed, consider Figure 2.a, which
shows the loss of four different optimizers as a function of
their only hyperparameter θ (by assumption). If we only
consider requirement #1, optimizer C would be considered
the best, since every hyperparameter value is the optimum.
However, its absolute performance is poor, making it of low
practical value. Moreover, due to the same shape, optimiz-
ers A and B would be considered equally good, although
optimizer A clearly outperforms B. On the other hand, if we
only consider requirement #2, optimizers B and D would be
considered equally good, although optimizer D’s optimum
is harder to find.

As we discuss in Section 3, no existing work on optimizer
benchmarking takes both requirements into account. Here
we present a formulation that does so in Procedure 1.

We have already established that fairly comparing optimiz-
ers needs to account for how easy it is to find good hy-
perparameter values. When proposing new optimization
methods, most often algorithm designers only specify the
permissible set of values the hyperparameters can take, and
informally provide some intuition of good values. For ex-
ample, for Adam, Kingma & Ba (2015) bound β1, β2 to
[0, 1) and specify that they should be close to 1. These are
valuable information for users of their algorithm, but they
do not allow to formally incorporate that information into a
benchmarking procedure. Instead, we argue that we need
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2.a: Illustration. It is important
to consider both the absolute
performance of optimizers as
well as the tuning effort to get
to good performances.
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2.b: Illustration. While opti-
mizer E can achieve the best
performance after careful tun-
ing, optimizer F is likely to pro-
vide better performance under
a constrained HPO budget.

Procedure 1 Benchmark with ‘expected quality at budget’

Input: Optimizer O, cross-task hyperparameter prior
ΘO, task T , tuning budget B
Initialization: Pre-compute a library of size�B with
validation losses achieved on task T with optimizer O
using hyper-parameters sampled from ΘO.
Initialize list← [ ].
for R repetitions do

Simulate hyperparameter search with budget B:
– S ← sample B elements from library.
– list← [BEST(S), . . . list].

end for
return MEAN(list), or other statistics

to redefine what constitutes an optimizer in such a way that
prior knowledge over reasonable hyperparameter values is
included.

Definition. An optimizer is a pairM = (UΘ, pΘ), which
applies its update rule U(St; Θ) at each step t depending
on its current state St. It is parameterized through N hyper-
parameters Θ = (θ1, . . . , θN ) with respective permissible
values θi ∈ Hi ∀i, and pΘ : (Θ→ R) defines a probability
distribution over the hyperparameters.

In the example above, we could describe the intuition that
β1, β2 should be close to 1 by the random variables β̂1 =
1− 10c1 , β̂2 = 1− 10c2 , where c1, c2 ∼ U(−10,−1).

Let L(Θ1) refer to the performance (say, test loss) ofM
with the specific hyperparameter choice Θ1.

Let us assume that there are two optimizers E & F, both
with a single hyperparameter θ, but no prior knowledge of
particularly good values, i.e., the prior is a uniform distribu-
tion over the permissible range. Let their loss surface be LE
and LF , respectively. As Figure 2.b shows, the minimum
of LE is lower than that of LF (denoted by θ?E and θ?F )
i.e. LE(θ?E) < LF (θ?F ). However, the minimum of LE
is much sharper than that of LF , and in most regions of

the parameter space F performs much better than E. This
makes it easier to find configurations that perform well. This
makes optimizer-F an attractive option when we have no
prior knowledge of the good parameter settings. Previous
benchmarking strategies compare only θ?E and θ?F . It is
obvious that in practice, optimizer-F may be an attractive
option, as it gives ‘good-enough’ performance without the
need for a larger tuning budget.

We incorporate the relevant characteristics of the hyperpa-
rameter optimization surface described above into bench-
marking through Procedure 1. In the proposed protocol, we
use Random Search (Bergstra & Bengio, 2012) with the
optimizers’ prior distribution to search the hyperparameter
space. The quality of the optimizers can then be assessed
by inspecting the maximum performance attained after k
trials of random search. However, due to the stochasticity
involved in random search, we would usually have to repeat
the process many times to obtain a reliable estimate of the
distribution of performances after budget k. We instead use
the bootstrap method (Tibshirani & Efron, 1993) that re-
samples from the empirical distribution (termed library in
Procedure 1). When we need the mean and variance of the
best attained performance after budget k, we use the method
proposed by Dodge et al. (2019) to compute them exactly
in closed form. We provide the details of the computation
in Appendix D.

Our evaluation protocol has distinct advantages over previ-
ous benchmarking methods that tried to incorporate auto-
matic hyperparameter optimization methods. First, our eval-
uation protocol is entirely free of arbitrary human choices
that bias benchmarking: The only free parameters of ran-
dom search itself are the search space priors, which we view
as part of the optimizer. Secondly, since we measure and
report the performance of Random Search with low budgets,
we implicitly characterize the loss surface of the hyperpa-
rameters: In terms of Figure 2.b, optimizer-F with its wide
minimum will show good performance with low budgets,
whereas optimizer-E can be expected to show better perfor-
mance with high budgets. Such characterizations would not
be possible if one only considered the performance after
exhausting the full budget. Finally, our evaluation protocol
allows practitioners to choose the right optimizer for their
budget scenarios.

Discussion of alternative choices In theory, our general
methodology could also be applied with a different hyper-
parameter optimization technique that makes use of prior
distributions, e.g., drawing the set of initial observations in
Bayesian methods. However, those usually have additional
hyperparameters, which can act as potential sources of bias.
Moreover, the bootstrap method is not applicable when the
hyperparameter trials are drawn dependently, and repeating
the hyperparameter optimization many times is practically
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infeasible.

In our protocol we consider the number of random search
trials as the unit of budget, and not computation time. This
is done so as to not violate the independence assumption
in the method by Dodge et al. (2019) in Appendix D. We,
empirically, show in Appendix F that the conclusions of this
paper are still valid when time is used as the unit of budget
as well.

3. Related Work
Benchmarking of optimizers is a relatively unstudied sub-
ject in literature. Schneider et al. (2019) recently released
a benchmark suite for optimizers that evaluates their peak
performance and speed, and the performance measure is as-
sessed as the sensitivity of the performance to changes of the
learning rate. Our work primarily takes its genesis from the
study by Wilson et al. (2017) that finds SGD-based methods
as easy to tune as adaptive gradient methods. They perform
grid earch on manually chosen grids for various problems
and conclude that both SGD and Adam require similar grid
search effort. However, their study lacks a clear definition
of what it means to be tunable (easy-to-use) and tunes the
algorithms on manually selected, dataset dependent grid
values. The study by Shah et al. (2018) applies a similar
methodology and comes to similar conclusions regarding
performance. Since both studies only consider the best pa-
rameter configuration, their approaches cannot quantify the
efforts expended to find the hyperparameter configuration
that gives the best setting; they would be unable to identify
the difference between optimizer among B and D in Fig-
ure 2.a. In contrast, the methodology in our study is able to
distinguish all the cases depicted in Figure 2.a.

There exist few works that have tried to quantify the impact
of hyperparameter setting in ML algorithms. For decision
tree models, Mantovani et al. (2018) count the number of
times the tuned hyperparameter values are (statistically sig-
nificantly) better than the default values. Probst et al. (2019)
define tunability of an ML algorithm as the performance dif-
ference between a reference configuration (e.g., the default
hyperparameters of the algorithm) and the best possible
configuration on each dataset. This metric is comparable
across ML algorithms, but it disregards entirely the absolute
performance of ML algorithms; thereby being unable to
differentiate between optimizers B and D in Figure 2.a.

In a concurrent study, Choi et al. (2019) show that there
exists a hierarchy among optimizers such that some can
be viewed as specific cases of others and thus, the general
optimizer should never under-perform the special case (with
appropriate hyperparameter settings). Like in our study, they
suggest that the performance comparison of optimizers is
strongly predicated on the hyperparameter tuning protocol.

However, their focus is on the best possible performance
achievable by an optimizer and does not take into account
the tuning process. Also, the presence of a hierarchy of
optimizers does not indicate how easy it is to arrive at the
hyperparameter settings that help improve the performance
of the more general optimizer. Moreover, while the authors
claim their search protocol to be relevant for practitioners,
the search spaces are manually chosen per dataset, constitut-
ing a significant departure from a realistic AutoML scenario
considered in our paper. Since, the focus is only on the best
attainable performance, it construed as being benchmarking
theoretically infinite budget scenarios.

In a recent work, Dodge et al. (2019) propose to use the
performance on the validation set along with the test set
performance. They note that the performance conclusions
reached by previously established NLP models differ widely
from the published works when additional hyperparameter
tuning budget is considered. They recommend a checklist
to report for scientific publications that includes details of
compute infrastructure, runtime, and more importantly the
hyperparameter settings used to arrive at those results like
bounds for each hyperparameter, HPO budget and tuning
protocols. They recommend using expected validation per-
formance at a given HPO budget as a metric, along with the
test performance.

There has been recent interest in optimizers that are prov-
ably robust to hyperparameter choices, termed the APROX
family (Asi & Duchi, 2019a;b). Asi & Duchi experimen-
tally find that, training a Residual network (He et al., 2016)
on CIFAR-10, SGD converges only for a small range of
initial learning rate choices, whereas Adam exhibits better
robustness to learning rate choices; their findings are in line
with our experiments that it is indeed easier to find good
hyperparameter configurations for Adam.

Metz et al. (2020) propose a large range of tasks, and pro-
pose to collate hyperparameter configurations over those.
They show that the optimizer settings thus collated, that are
problem agnostic like us, generalize well to unseen tasks
too.

4. Optimizers and Their Hyperparameters
In Section 2, we argued that an optimizer is a combina-
tion of update equation, and the probabilistic prior on the
search space of the hyperparameter values. Since we are
considering a setup akin to AutoML with as little human
intervention as possible, these priors have to be independent
of the dataset. As we view the hyperparameter priors as a
part of the optimizer itself, we argue that they should be
prescribed by algorithm designers themselves in the future.
However, in the absence of such prescriptions for optimiz-
ers like Adam and SGD, we provide a simple method to
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estimate suitable priors in Section 4.2.

4.1. Parameters of the Optimizers

To compare the tunability of adaptive gradient methods to
non-adaptive methods, we chose the most commonly used
optimizers from both the strata; SGD and SGD with momen-
tum for non-adaptive methods, and Adagrad and Adam for
adaptive gradient methods. Since adaptive gradient meth-
ods are said to work well with their default hyperparameter
values already, we additionally employ a default version of
Adam where we only tune the initial learning rate and set
the other hyperparameters to the values recommended in the
original paper (Kingma & Ba, 2015) (termed Adam-LR).
Such a scheme has been used by Schneider et al. too. A
similar argument can be made for SGD with momentum
(termed SGD-M): thus we experiment with a fixed momen-
tum value of 0.9 (termed SGD-MC), which we found to be
the most common momentum value to lead to good perfor-
mance during the calibration phase.

In addition to standard parameters in all optimizers, we con-
sider weight decay with SGD too. SGD with weight decay
can be considered as an optimizer with two steps where the
first step is to scale current weights with the decay value,
followed by a normal descent step (Loshchilov & Hutter,
2019). Therefore, we conduct two additional experiments
for SGD with weight-decay: one where we tune weight-
decay along with momentum (termed SGD-MW), and one
where we fix it to 10−5 (termed SGD-MCWC) along with
the momentum being fixed to 0.9, which again is the value
for weight decay we found to be the best during calibra-
tion. We incorporate a “Poly” learning rate decay scheduler
(γt = γ0 × (1 − t

T )p) (Liu et al., 2015) for SGD-MCWC

(termed SGD-MCD). This adds only one tunable hyperpa-
rameter (exponent p). We also experimented with Adam
with learning rate decay scheduler (termed Adam-WCD),
but reserve this discussion for the Appendix B, as it did not
yield sizeable improvements over Adam-LR or Adam in
the problems tested. The full list of optimizers we consider
is provided in Table 4, out of which we discuss Adam-LR,
Adam, SGD-MCWC , SGD-MW, and SGD-MCD in the
main paper. The rest of them are presented in Appendix B.

Manually defining a specific number of epochs can be biased
towards one optimizer, as one optimizer may reach good
performance in the early epochs of a single run, another may
reach higher peaks more slowly. In order to alleviate this,
it would be possible to add the number of training epochs
as an additional hyperparameter to be searched. Since this
would incur even higher computational cost, we instead use
validation set performance as stopping criterion. Thus we
stop training when the validation loss plateaus for more
than 2 epochs or if the number of epochs exceeds the prede-
termined maximum number as set in DEEPOBS.

4.2. Calibration of Hyperparameter Prior
Distributions

As mentioned previously, we use random search for opti-
mizing the hyperparameters, which requires distributions of
random variables to sample from. Choosing poor distribu-
tions to sample from impacts the performance, resulting in
unfair comparisions, and may break requisite properties (e.g.
learning rate is non-negative). For some of the parameters
listed in Table 2, obvious bounds exist due their mathemat-
ical properties, or have been prescribed by the optimizer
designers themselves. For example, Kingma & Ba (2015)
bound β1, β2 to [0, 1) and specify that they are close to 1.
In the absence of such prior knowledge, we devise a simple
method to determine the priors.

We use Random Search on a large range of admissible val-
ues on each task specified in DEEPOBS to obtain an initial
set of results. We then retain the hyperparameters which
resulted in performance within 20% of the best result ob-
tained. For each of the hyperparameters in this set, we fit
the distributions in the third column of Table 2 using maxi-
mum likelihood estimation. Several recent works argue that
there exists a complex interplay between the hyperparame-
ters (Smith et al., 2018; Shallue et al., 2019), but we did not
find modelling these to be helpful (Appendix H). Instead,
we make a simplifying assumption that all the hyperparam-
eters can be sampled independent of each other. We argue
that these distributions are appropriate; the only condition
on learning rate is non-negativity that is inherent to the log-
normal distribution, momentum is non-negative with a usual
upper bound of 1, βs in Adam have been prescribed to be
less than 1 but close to it, ε is used to avoid division by zero
and thus is a small positive value close to 0. We did not
include p of the learning rate decay schedule in the calibra-
tion step due to computational constraints, and chose a fixed
plausible range such that the value used by (Liu et al., 2015)
is included. We report the parameters of the distributions
obtained after the fitting in Table 2. The calibration step is
not included in computing the final performance scores, as
the calibrated priors are re-usable across tasks and datasets.

5. Experiments and Results
To assess the performance of optimizers for the training of
deep neural networks, we benchmark using the open-source
suite DEEPOBS (Schneider et al., 2019). The architectures
and datasets we experiment with are given in Table 3. We re-
fer the reader to Schneider et al. (2019) for specific details of
the architectures. To obtain a better balance between vision
and NLP applications, we added an LSTM network with the
task of sentiment classification in the IMDB dataset (Maas
et al., 2011), details of which are provided in Appendix A.

We aim at answering two main questions with our exper-
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Table 2: Optimizers evaluated. For each hyperparameter,
we calibrated a ‘prior distribution’ to give good results
across tasks (Section 4.2). U [a, b] is the continuous uniform
distribution on [a, b]. Log-uniform(a, b) is a distribution
whose logarithm is U [a, b]. Log-normal(µ,σ) is a distribu-
tion whose logarithm is N (µ, σ2)

Optimizer Tunable parameters Cross-task prior

SGD Learning rate Log-normal(-2.09, 1.312)
Momentum U [0, 1]
Weight decay Log-uniform(-5, -1)
Poly decay (p) U [0.5, 5]

Adagrad Learning rate Log-normal(-2.004, 1.20)

Adam Learning rate Log-normal(-2.69, 1.42)
β1, β2 1 - Log-uniform(-5, -1)
ε Log-uniform(-8, 0)

Table 3: Models and datasets used. We use the DeepOBS
benchmark set (Schneider et al., 2019). Details are provided
in Appendix A.

Architecture Datasets

Convolutional net FMNIST, CIFAR10/100
Variational autoencoder FMNIST, MNIST
Wide residual network SVHN
Character RNN Tolstoi’s War and Peace
Quadratic function Artificial datatset
LSTM IMDB

iments: First, we look at the performance of various op-
timizers examined. Related to this, we investigate what
effect the number of hyperparameters being tuned has on
the performance at various budgets (Section 5.1). Second,
we consider a problem typically faced in an AutoML sce-
nario: If no knowledge is available a priori of the problem
at hand, but only the tuning budget, which optimizer should
we use (Section 5.2)?

Table 4: Optimizers and tunable parameters. SGD(γ, µ, λ)
is SGD with γ learning rate, µ momentum, λ weight decay
coefficient. Adagrad(γ) is Adagrad with γ learning rate,
Adam(γ, β1, β2, ε) is Adam with learning rate γ,

Optimizer label Tunable parameters

SGD-LR SGD(γ, µ=0, λ=0)
SGD-M SGD(γ, µ, λ=0)
SGD-MC SGD(γ, µ=0.9, λ=0)
SGD-MCWC SGD(γ, µ=0.9, λ=10−5)
SGD-MCD SGD(γ, µ=0.9, λ=10−5) + Poly Decay(p)
SGD-MW SGD(γ, µ, λ)

Adagrad Adagrad(γ)
Adam-LR Adam(γ, β1=0.9, β2=0.999, ε=10−8)
Adam Adam(γ, β1, β2, ε)
Adam-WCD Adam-LR + Poly Decay(p)

5.1. When to Tune More Hyperparameters

To answer the question at which budgets tuning more hyper-
parameters is preferable, we compare Adam-LR to Adam,
and SGD-MW to SGD-MCWC (Table 4). To this end, we
show performance for increasing budgets K in Figure 4.
Plots for the other optimizers and budgets are given in Fig-
ure 5.

On all classification tasks, Adam-LR and SGD-MCWC

obtain higher performances on average than Adam and SGD-
MW, respectively, till the budget of 16. Moreover, the first
quartile is often substantially lower for the optimizers with
many hyperparameters. For higher budgets, both outperform
their counterparts on CIFAR-100 and FMNIST on average
and in the second quartile, and Adam outperforms Adam-
LR on IMDB as well. However, even for the largest budgets,
Adam’s first quartile is far lower than Adam-LR’s.

On the regression tasks, tuning more hyperparameters only
helps for SGD-MW on MNIST-VAE. In all other cases, tun-
ing additional hyperparameters degrades the performance
for small budgets, and achieves similar performance at high
budgets.

5.2. Summarizing across datasets
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Figure 3: Aggregated relative performance of various opti-
mizers across datasets

We, now, turn to the question of how our choice of optimizer
would change in a setting where nothing is known about
the problem, à la AutoML. To this end, we summarize
performances across all datasets. First, for a given budget,
we compute the probability that an optimizer outperforms
the others on a randomly chosen task. In Figure 1, we
compare Adam, Adam-LR, SGD-MCWC , and SGD-MCD,
because we found them to yield the overall best results. First,
the results reflect the findings from Section 5.1 in that tuning
more hyperparameters (Adam) becomes a better relative
option the more budget is available. However, throughout
all tuning budget scenarios, Adam-LR remains by far the
most probable to yield the best results.

Figure 1 shows that Adam-LR is the most likely to get



Optimizer Benchmarking Needs to Account for Hyperparameter Tuning

the best results. However, it does not show the margin
by which the SGD variants underperform. To address this
issue, we compute summary statistics for an optimizer o’s
performance after k iterations in the following way:

S(o, k) =
1

|P|
∑
p∈P

o(k, p)

max
o′∈O

o′(k, p)
,

where o(k, p) denotes the expected performance of opti-
mizer o ∈ O on test problem p ∈ P after k iterations of
hyperparameter search. In other words, we compute the
average relative performance of an optimizer to the best
performance of any optimizer on the respective task, at
budget k.

The results are in Figure 3 which show that Adam-LR per-
forms very close to the best optimizer for all budgets. In
early stages of HPO, the SGD variants perform 20% worse
than Adam-LR. This gap narrows to 10% as tuning budgets
increase, but the flatness of the curves for high budgets sug-
gest that they are unlikely to improve further with higher
budgets. Adam on the other hand steadily improves relative
to Adam-LR, and only leaves a 2-3% gap at high budgets.

6. Discussion
The key results of our experiments are two-fold. First, they
support the hypothesis that adaptive gradient methods are
easier to tune than non-adaptive methods: In a setting with
low budget for hyperparameter tuning, tuning only Adam’s
learning rate is likely to be a very good choice; it doesn’t
guarantee the best possible performance, but it is evidently
the easiest to find well-performing hyperparameter config-
urations for. While SGD (variants) yields the best perfor-
mance in some cases, its best configuration is tedious to
find, and Adam often performs very close to it. Hence, in
terms of Figure 2.b, SGD seems to be a hyperparameter
surface with narrow minima, akin to optimizer E, whereas
the minima of Adam are relatively wide, akin to optimizer F.
We investigate the empirical hyperparameter surfaces in Ap-
pendix G to confirm our hypothesis. We, thus, state that the
substantial value of the adaptive gradient methods, specif-
ically Adam, is its amenability to hyperparameter search.
This is in contrast to the findings of Wilson et al. (2017)
who observe no advantage in tunabilty for adaptive gradient
methods, and thus deem them to be of ‘marginal value’.
This discrepancy is explained by the fact that our evaluation
protocol is almost entirely free of possible human bias: In
contrast to them, we do not only avoid manually tuning the
hyperparameters through the use of automatic hyperparame-
ter optimization, we also automatically determine the HPO’s
own hyperparameters by estimating the distributions over
search spaces.

Secondly, we find that tuning optimizers’ hyperparameters
apart from the learning rate becomes more useful as the

available tuning budget goes up. In particular, we find that
Adam approaches the performance of Adam-LR for large
budgets. This is, of course, an expected result, and in line
with recent work by Choi et al. (2019), who argue that,
with sufficient hyperparameter tuning, a more general op-
timizer (Adam) should never under-perform any particular
instantiation thereof (Adam-LR). Choi et al. (2019) claim
that this point is already reached in ‘realistic’ experiments.
However, in their experiments, Choi et al. (2019) tune the
search spaces for each problem they consider, thereby as-
suming apriori knowledge of what constitutes meaningful
hyperparameter settings for that specific problem. Our re-
sults, which are obtained with a protocol that is arguably
less driven by human bias, tell a different story: Even with
relatively large tuning budget, tuning only the learning rate
of Adam is arguably the safer choice, as it achieves good
results with high probability, whereas tuning all hyperpa-
rameters can also result in a better performance albeit with
high variance. These observations suggest that optimizers
with many tunable hyperparameters have a hyperparame-
ter surface that is less smooth, and that is the reason why
fixing e.g. the momentum and weight decay parameters
to prescribed ’recipe’ values is beneficial in low-resource
scenarios.

Our study is certainly not exhaustive: We do not study the
effect of a different HPO like a Bayesian HPO on the re-
sults, due to prohibitively high computational cost it incurs.
By choosing uni-variate distribution families for the hyper-
parameters to estimate the priors, we do not account for
complex relationships between parameters that might exist.
We explore this in Appendix H where we use the notion of
‘effective learning rate’ (Shallue et al., 2019), and we find
that it helps improve the performance in the lower budgets
of hyperparameter optimization. We attribute this to the fact
that SGDElrW is effective at exploiting historically success-
ful (γ, µ) pairs. However, the literature does not provide
methods to incorporate these into a probabilistic model that
incorporates the causal relationships between them.

In the future, we suggest that optimizer designers not only
study the efficacy and convergence properties, but also pro-
vide priors to sample hyperparameters from. Our study
demonstrates this to be a key component in determining an
optimizer’s practical value.

7. Conclusion
We propose to include the process of hyperparameter opti-
mization in optimizer benchmarking. In addition to showing
peak performance, this showcases the optimizer’s ease-of-
use in practical scenarios. We hope that this paper encour-
ages other researchers to conduct future studies on the per-
formance of optimizers from a more holistic perspective,
where the cost of the hyperparameter search is included.
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Figure 4: Performance of Adam-LR, Adam, SGD-MCWC , SGD-MW, SGD-MCD at various hyperparameter search
budgets. Image is best viewed in color. Some of the plots have been truncated to increase readability.
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A. Architectures of the Models Used in Experiments
Along with the architectures examined by (Schneider et al., 2019), we experiment with an additional network and dataset.
We included an additional network into our experimental setup, as DEEPOBS does not contain a word level LSTM model.
Our model uses a 32-dimensional word embedding table and a single layer LSTM with memory cell size 128, the exact
architecture is given in Table 5. We experiment with the IMDB sentiment classification dataset (Maas et al., 2011). The
dataset contains 50, 000 movie reviews collected from movie rating website IMDB. The training set has 25, 000 reviews,
each labeled as positive or negative. The rest 25, 000 form the test set. We split 20% of the training set to use as the
development set. We refer the readers to DEEPOBS (Schneider et al., 2019) for the exact details of the other architectures
used in this work.

Table 5: Architecture of the LSTM network used for IMDb experiments

Layer name Description

Emb

 Embedding Layer
Vocabulary of 10000

Embedding dimension: 32



LSTM_1

 LSTM
Input size: 32

Hidden dimension: 128


FC Layer Linear(128 −→ 2)

Classifier Softmax(2)

B. Performance Analysis
We show the full performance plots of all variants of SGD, Adam, and Adagrad we experimented with in Figure 5.

C. How Likely Are We to Find Good Configurations?
In Figure 1 we showed the chance of finding the optimal hyperparameter setting for some of the optimizers considered, in a
problem agnostic setting. Here we delve into the case where we present similar plots for each of the problems considered in
Section 5.

A natural question that arises is: Given a budget K, what is the best optimizer one can pick? In other words, for a given
budget what is the probability of each optimizer finding the best configuration? We answer this with a simple procedure.
We repeat the runs of HPO for a budget K, and collect the optimizer that gave the best result in each of those runs. Using
the classical definition of probability, we compute the required quantity. We plot the computed probability in Figure 6. It
is very evident for nearly all budgets, Adam-LR is always the best option for 4 of the problems. SGD variants emerge to
be better options for CIFAR-100 and Char-RNN at later stages of HPO. For some of the problems like VAEs, LSTM, it is
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very obvious that Adam-LR is nearly always the best choice. This further strengthens our hypothesis that adaptive gradient
methods are more tunable, especially in constrained HPO budget scenarios.

D. Computing the Expected Maximum of Random Samples
The following is a constructive proof of how to compute the expected value that the bootstrap method converges to in the
limit of infinite re-sampling. It is a paraphrase of Dodge et al. (2019, Section 3.1), but due to inaccuracies in Equation (1) in
their paper, we repeat it here for clarity.

Let x1, x2 . . . xN ∼ X be N independently sampled values. Let the random variable Y be the maximum of a random
subset of size S from x1, x2 . . . xN where S ≤ N . For representational convenience, let them be the first S samples. So,
Y = max{x1, . . . , xS}. We are interested in computing E[Y]. This can be computed as

E[Y] =
∑
y

y · P (Y = y)

for discrete Y, with P (Y = y) be the probability mass function of Y. We can write

P (Y = y) = P (Y ≤ y)− P (Y < y)

As xi ∀i are iid sampled,

P (Y ≤ y) = P ( max
i=1...S

xi ≤ y)

=

S∏
i=1

P (xi ≤ y)

= P (X ≤ y)S

P (X ≤ y) can be empirically estimated from data as the sum of normalized impulses.

P (X ≤ y) =
1

N

N∑
i=1

Ixi≤y (1)

Thus,
E[Y] =

∑
y

y(P (X ≤ y)S − P (X < y)S) (2)

A very similar equation can be derived to compute the variance too. Variance is defined as V ar(Y) = E[Y 2]− E[Y ]2. The
second operand is given by Equation (2). The first operand (for discrete distributions) can be computed as

E[Y2] =
∑
y

y2(P (X ≤ y)S − P (X < y)S) (3)

Given the iterates (not incumbents) of Random Search, the expected performance at a given budget can be estimated by
Equation (2) and the variance can be computed by Equation (3).

E. Aggregating the Performance of Incumbents
In Procedure 1, we propose returning all the incumbents of the HPO algorithm. Here we propose the use of an aggregation
function that helps create a comparable scalar that can used in a benchmarking software like DEEPOBS to rank the
performance of optimizers that takes into cognizance the ease-of-use aspect too.
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E.1. Aggregating Function

For the aggregation function discussed, we propose a simple convex combination of the incumbent performances and term it
ω-tunability. If Lt be the incumbent performance at budget t, we define ω-tunability as

ω-tunability =

T∑
t=1

ωtLt

where wt > 0 ∀ t and
∑
t wt = 1

By appropriately choosing the weights {ωt}, we can interpolate between our two notions of tunability in Section 2. In the
extreme case where we are only interested in the peak performance of the optimizer, we can set ωT = 1 and set the other
weights to zero. In the opposite extreme case where we are interested in the "one-shot tunability" of the optimizer, we can
set ω1 = 1. In general, we can answer the question of "How well does the optimizer perform with a budget of K runs?" by
setting ωi = 1i=K. Figure 4 and Figure 5 can also be computed as ωi = 1i=K.

While the above weighting scheme is intuitive, merely computing the performance after expending HPO budget of K does
not consider the performance obtained after the previous K − 1 iterations i.e. we would like to differentiate the cases where
a requisite performance is attained by tuning an optimizer for K iterations and another for K1 iterations, where K1 � K.
Therefore, we employ a weighting scheme as follows: By setting ωi ∝ (T − i), our first one puts more emphasis on the
earlier stages of the hyperparameter tuning process. We term this weighting scheme Cumulative Performance-Early(CPE).
The results of the various optimzers’ CPE is shown in Table 6. It is very evident that Adam-LR fares the best across
tasks. Even when it is not the best performing one, it is quite competitive. Thus, our observation that Adam-LR is the
easiest-to-tune i.e. it doesn’t guarantee the best performance, but it gives very competitive performances early in the HPO
search phase, holds true.

For a benchmarking software package like DEEPOBS, we suggest the use of CPE to rank optimziers, as it places focus on
ease-of-tuning. This supplements the existing peak performance metric reported previously.

Optimizer FMNIST(%)↑ CIFAR 10(%)↑ CIFAR 100(%)↑ IMDb(%)↑ WRN 16(4)(%)↑ Char-RNN(%)↑ MNIST-VAE↓ FMNIST-VAE↓ Quadratic Deep↓
Adam-LR 91.6 78.8 42.0 85.9 95.3 56.9 28.9 24.3 89.9
Adam 91.3 77.3 38.1 83.4 94.5 54.2 33.1 25.7 95.4
SGD-MCWC 90.8 81.0 38.8 78.7 95.3 53.9 54.0 27.9 87.4
SGD-MW 90.5 79.6 33.2 75.2 95.0 44.4 35.2 26.5 87.5
SGD-MCD 91.1 82.1 39.2 80.5 95.2 49.6 54.3 29.8 87.5

Adagrad 91.3 76.6 29.8 84.4 95.0 55.6 30.7 25.9 90.6
Adam-WCD 91.6 79.4 35.1 86.0 95.1 57.4 28.6 24.3 92.8
SGD-LR 90.4 76.9 30.6 68.1 94.7 39.9 53.4 26.2 89.3
SGD-M 90.5 77.8 39.8 73.8 94.9 50.7 37.1 26.3 88.2
SGD-MC 90.7 78.8 42.0 79.0 95.0 55.5 54.1 28.5 88.1

Table 6: CPE for the various optimizers experimented. It is evident that Adam-LR is the most competitive across tasks.

F. Results for Computation Time Budgets
Using number of hyperparameter configuration trials as budget unit does not account for the possibility that optimizers may
require different amounts of computation time to finish a trial. While the cost for one update step is approximately the same
for all optimizers, some require more update steps than others before reaching convergence.

To verify that our results and conclusions are not affected by our choice of budget unit, we simulate the results we would
have obtained with a computation time budget in the following way. For a given test problem (e.g., CIFAR-10), we compute
the minimum number of update steps any optimizer has required to finish 100 trials, and consider this number to be the
maximum computation budget. We split this budget into 100 intervals of equal size. Using the bootstrap (Tibshirani & Efron,
1993), we then simulate 1,000 HPO runs, and save the best performance achieved at each interval. Note that sometimes an
optimizer can complete multiple hyperparameter trials in one interval, and sometimes a single trial may take longer than
one interval. Finally, we average the results from all 1,000 HPO runs and compute the same summary across datasets as in
Section 5.2.

Figure 7 shows that the conclusions do not change when using computation time as budget unit. In fact, the graphs show
almost the exact same pattern as in Figure 3, where number of hyperparameter trials is the budget unit.
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G. Plotting Hyperparameter Surfaces
In Section 2, we hypothesize that the performance as a function of the hyperparameter, e.g., learning rate, of an optimizer
that performs well with few trials has a wider extremum compared to an optimizer that only performs well with more trials.

In Figure 8, we show a scatter plot of the loss/accuracy surfaces of SGD-MCWC and Adam-LR as a function of the learning
rate, which is their only tunable hyperparameter. The plots confirm the expected behavior. On MNIST VAE, FMNIST
VAE, and Tolstoi-Char-RNN, Adam-LR reaches performances close to the optimum on a wider range of learning rates
than SGD-MCWC does, resulting in substantially better expected performances at small budgets (k = 1, 4) as opposed to
SGD-MCWC , even though their extrema are relatively close to each other. On CIFAR10, the width of the maximum is
similar, leading to comparable performances at low budgets. However, the maximum for SGD-MCWC is slightly higher,
leading to better performance than Adam-LR at high budgets.

H. Interplay between momentum and learning rate
We ran an additional experiment using ‘effective learning rate’ (Shallue et al., 2019) that combines learning rate γ, and
momentum µ of SGD to compute the effective learning rate γeff. Intuitively, γeffquantifies the contribution of a given
minibatch to the overall training. This is defined as

γeff =
γ

1− µ

We designed a variant of SGD-MW, called SGD-LReff, where we sampled γ and γeffindependently from lognormal priors
calibrated as usual, and compute the momentum(µ) as µ = max(0, (1 − γ

γeff )), hence accounting for interplay between
learning rate and momentum. We plot the performance comparisons between SGD-MW and SGD-LReff in Figure 9, and
provide a plot of the aggregated relative performance in Figure 10. The results show that indeed SGD-LReff improves over
SGD-MW in the low-budget regime, particularly on classification tasks. We attribute this to the fact that SGD-LReff is
effective at exploiting historically successful (γ, µ) pairs. For large budgets, however, SGD-LReff performs increasingly
worse than SGD-MW, which can be explained by the fact that SGD-MW has a higher chance of exploring new configurations
due to the independence assumption. Despite the improvement in low-budget regimes, SGD variants, including the new
SGD-LReff variant, remain substantially below Adam-LR in all budget scenarios. Hence, our conclusion remains the same.



Optimizer Benchmarking Needs to Account for Hyperparameter Tuning

Budget 1
40

50

60

70

80

90

T
e
st

A
c
c
u
ra
c
y

Budget 2 Budget 4 Budget 16 Budget 32 Budget 64Budget 100

CIFAR 10

Budget 1

10

20

30

40

50

T
e
st

A
c
c
u
ra
c
y

Budget 2 Budget 4 Budget 16 Budget 32 Budget 64Budget 100

CIFAR 100

Figure 5: Adagrad, Adam-LR, Adam, Adam-WCD, SGD-LR, SGD-M, SGD-MC , SGD-MW, SGD-MCWC , and
SGD-MCD
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Figure 5: We show the performance of Adagrad, Adam-LR, Adam, Adam-WCD, SGD-LR, SGD-M, SGD-MC , SGD-
MW, SGD-MCWC , and SGD-MCD over all the experiments. We plot the on the x-axis the number of the hyperparameter
configuration searches, on the y-axis the appropriate performance.
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Figure 6: Which optimizer for which budget? Given a tuning budget K (x-axis), the stacked area plots above show how
likely each optimizer (colored bands) is to yield the best result after K steps of hyperparameter optimization. For example,
for the IMDB LSTM problem, for a small budget, Adam-LR is the best choice (with ∼ 0.8 probability), whereas for a larger
search budget > 50, tuning the other parameters of ‘Adam’ is likely to pay off.
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Figure 7: Aggregated relative performance of each optimizer across datasets.
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Figure 8: Scatter plot of performance of Adam-LR and SGD-MCWC by learning rate value. For better visibility, we shift
the learning rate values of SGD-MCWC in such a way that the minima of both optimizers are at the same position on the
x-axis.
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Figure 9: Performance of SGD-MW, SGD-LReff, at various hyperparameter search budgets. Image is best viewed in color.
Some of the plots have been truncated to increase readability.
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Figure 10: Aggregated relative performance of SGD-LReff compared to other optimizers.


