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Abstract

This paper proposes a simple yet efficient high-altitude wind

nowcasting pipeline. It processes efficiently a vast amount of

live data recorded by airplanes over the whole airspace and

reconstructs the wind field with good accuracy. It creates a

unique context for each point in the dataset and then extrap-

olates from it. As creating such context is computationally

intensive, this paper proposes a novel algorithm that reduces

the time and memory cost by efficiently fetching nearest

neighbors in a data set whose elements are organized along

smooth trajectories that can be approximated with piece-

wise linear structures. We introduce an efficient and ex-

act strategy implemented through algebraic tensorial opera-

tions, which is well-suited to modern GPU-based computing

infrastructure. This method employs a scalable Euclidean

metric and allows masking data points along one dimension.

When applied, this method is more efficient than plain Eu-

clidean k-NN and other well-known data selection methods

such as KDTrees and provides a several-fold speedup. We

provide a PyTorch implementation and a novel data set to

replicate empirical results.
Keywords— Wind Speed Nowcasting, k-Nearest

Neighbors, Airplanes Trajectories, Tensorial Operations

1 Introduction

High-Altitude Wind speed nowcasting is crucial for air
traffic management, as it directly impacts the behavior
of airplanes. Even if the accuracy of numerical weather
prediction still increases at an incredible pace [3], and
that traditional methods are well-suited for mid-long
term forecasting (between 6h and 14 days), it remains
less accurate than extrapolating the last measurements
in the first few hours [16]. Major actors are developing
new weather nowcasting pipelines [18] where the over-
all strategy for all nowcasting persists in getting good
quality measurements and extrapolate. These measure-
ments are available in the case of high-altitude wind
speed nowcasting, as airplanes record the wind speed
along their trajectory. To predict the wind at a given
time and space, one needs to extrapolate from contexts
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made of the last measurements recorded in the vicinity
of the desired point. Simple machine learning methods
such as k-Nearest Neighbors (k-NN) can be employed
to build such contexts. However, the required linear
search for such approaches is demanding both in terms
of computation and memory footprint, to the point that
it may make them prohibitively expensive. A standard
strategy used to reduce this cost consists of partitioning
the space while relying on exact or approximate criteria
to reject groups of samples, cutting the temporal and
memory cost to a sub-linear function of their number.
This is used for example in Locality Sensitive Hashing
(LSH) [9], or other tree-based methods [4, 21].

Besides the computational aspect, an essential char-
acteristic of k-NN is the soundness of the distance func-
tion. Considering both the units and dynamic ranges of
distinct features differ, their combination may be mean-
ingless. A sound and straightforward strategy to ad-
dress this issue is to scale features individually. The
scaling factors can come from prior knowledge (e.g.
sampling rates, instrument calibration, physical laws)
or can be optimized from the data to maximize the per-
formance. When training a model with temporal data,
another problem arises: to make a forecast at any time,
we have to exclude data points in the future, or accord-
ing to a similar criterion, that may, for instance, inte-
grate additional constraints related to processing time.
This implies that some processing must be done before
using k-NN and possibly for each data set point.

With this in mind, we propose a novel algorithm
called Trajectory Nearest Neighbors (TNN) that tackles
these two problems while being particularly adapted to
point data sets that can be covered with cylinders, such
as smooth trajectories. Each of these cylinders can be
represented by a segment and an error distance term. In
priority, our method explores points that belong to the
nearby cylinders. It stops when all the nearest neighbors
are guaranteed to be retrieved. Our approach is exact
and uses basic linear algebra subprograms (BLAS) [11]
that can be computed efficiently on GPU using standard
frameworks [1, 14]. This algorithm’s strength comes
from its simplicity while still offering a substantial
increase in performance when used in the correct setup.
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This paper also presents a high-altitude wind now-
casting pipeline while comparing it with baselines and a
particle model developed to reconstruct wind fields us-
ing a similar data set [19]. Using TNN, we trained our
model over a data set of 35 days and over 33 million
points. Furthermore, our model managed to beat the
other methods evaluated. We analyzed the speed up of
our approach, and it shows that in the context of GPU
computing, our method seems to give the best speed
up compared to linear search and traditional methods
while avoiding using any other libraries or language. We
also demonstrate that when a data set cannot be well
separated into trajectories, our approach does not offer
a substantial increase in performance. With this ap-
proach, we could speed up our pipeline’s training by
two orders of magnitude, making it achievable in a rea-
sonable time. The main contributions of this paper are
the following:

• The introduction of a novel algorithm called Tra-
jectory Nearest Neighbors (TNN) based on simple
linear algebra and its theoretical analysis.

• An extensive comparison with traditional ap-
proaches (linear search, KDTrees.)

• A concrete application in the context of high-
altitude wind nowcasting.

• An implementation of this algorithm using PyTorch
[14].

• The publication of a data set containing 33 million
points measured along plane trajectories over the
course of 35 days. 1

2 Related Works

Our works differ from other nowcasting pipelines that
often remain oriented towards the forecasting of radar
products such as rainfall [6, 17, 18] as it can leverage
the grid structure of the data and use standard com-
puter vision strategies. Other works were done on simi-
lar datasets [10, 19], we compared our models to the first
one that reconstructs the wind field by using a particle
model. The second one uses these measurements to se-
lect the best subset of an ensemble of weather forecasts.
There were recent works designed to fetch nearest neigh-
bors using CUDA [12] [5, 8]. However, they require a
Euclidean metric and no temporal coordinates, making
them hard to compare to our case.

1Code and datasets are available at github.com/idiap/tnn
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Figure 1: All the plane trajectories recorded on Day
#1 are plotted. Most of them are clustered along some
main routes. A few trajectories are highlighted, which
show the density of the tracking points.

3 Methods and Technical Solutions

3.1 General Description of Wind Nowcasting
Pipeline We have at our disposal Mode-S data record-
ings for 35 different days over European airspace [Fig.1].
Mode-S data is exchanged between Secondary Surveil-
lance Radars (SSR) and the aircraft radar transpon-
ders [20], and contains, among others, the position of
the plane and measurements of the wind. SSRs rotate
with a period of 4 seconds, setting the sampling time for
these variables. The pipeline for training the model is
the following: batches of random samples are sampled
iteratively. For each of these samples, a context of past
measurements is retrieved, where each context contains
only points that were measured at least tw minutes in
the past (tw is typically 30 minutes) and from which
the forecasts are then extrapolated. We use Root Mean
Square Error (RMSE) to measure models’ performance.

3.2 High-Altitude Wind Nowcasting We extrap-
olate the wind speed measurements using Gaussian Ker-
nel Averaging (GKA) [7] to give the forecast ŝ at point
(x, y, z, t):

(3.1)

~̂s(x, y, z, t) =

∑
k∈C

eσxy[(x−xk)
2+(y−yk)2]+σz(z−zk)2+σt(t−tk)2 ~sk∑

k∈C
eσxy[(x−xk)

2+(y−yk)2]+σz(z−zk)2+σt(t−tk)2
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Figure 2: Illustration of the projection and the
clamping process used to find the distance between one
point P and a segment s. 1. If the projection of P falls
between the point starting point A and endpoint B, no
clamping is needed, and we can retrieve the points using
a simple geometric formula. 2-3. If the projection falls
outside the segment, the closest point in s would be A
or B.

Where ~sk is the wind speed measured at (xk, yk, zk, tk),
(σxy, σz, σt) are parameters of the model and C is the
context of the point.

The parameters ~σ can be physical constants found
either through optimization or through careful geosta-
tistical analysis. ~σ can also be modelled as a function
of the space ~σ: (x, y, z) 7→ (σxy, σz, σt), using a Multi-
Layer Perceptron (MLP) which enables the model to
resize the weights anywhere on the space. For exam-
ple, in a region with numerous measurements, it could
be wise to reduce the scaling factor to put more weight
on only a few closer neighbors. Conversely, increasing
the scaling might be better to average more points in a
region where the measurements are sparse.

The context C can contain a priori all the previ-
ous measurements, which makes the computation pro-
hibitively expensive. To make the training feasible, we
decided to reduce the number of points by only tak-
ing the few contributing the most to the sum. This
approach is reasonable as most points will only have a
negligible contribution to the final weighted average.

3.3 Partitionning Measurements in Segments
Retrieving a context of points involves finding their
nearest neighbors in the dataset recorded before a spe-

cific time. The traditional nearest neighbors algorithm
typically partitions the space and explores only a tiny
number of partitions. Given that our measurements are
clustered along some routes [Fig. 1] and that we have
to filter if according to a temporal criterion, the tra-
ditional approaches such as Locality Sensitive Hashing
(LSH) [9], KDTrees [4], Ball Trees [13], and Vantage
Trees [21] are not well suited. Moreover, because mask-
ing is complex to implement for these structures, the
algorithm explores many partitions containing only non-
valid measurements. When working with data recorded
along trajectories, the natural way of splitting the space
is to split these trajectories into segments. Masking can
then be done efficiently by only looking at the timestep
of the first point associated with the segment. Once
the measurements are split into segments, one can filter
the valid segments and retrieve the nearest neighbors by
only exploring nearby segments.

3.4 Theoretical Analysis We have a data set of
N measurements from wind speed at location ~xi =
(xi, yi, zi, ti) ∈ R4, i ∈ {1, . . . N} and planes only record
the x, y components of the wind speed ~si = (sxi , s

y
i ) ∈

R2, i ∈ {1, . . . N}. For the sake of simplicity, we split the
measurements location ~xi into a point Pi = (xi, yi, zi) ∈
R3 and a time-step ti. We will use the following scalable
metric :

(3.2) ‖ ~x1 − ~x2‖2~σ = σxy[(x1 − x2)2 + (y1 − y2)2]

+ σz(z1 − z2)2 + σt(t1 − t2)2

This is split into a spatial and a temporal part:

‖P1 − P2‖2σxyz
= σxy[(x1 − x2)2 + (y1 − y2)2] + σz(z1 − z2)2

(3.3)

‖t1 − t2‖2σt
= σt(t1 − t2)2

(3.4)

Where ~σ = (σxy, σz, σt) is a scaling factor that
allows a correct comparison between dimensions. All
the points in the data set belong to trajectories that
we split into sets Tj = {~xj,1, ..., ~xj,K}, j ∈ {1, . . . , NK }
of exactly K elements and where the points are sorted
along the time dimension. We pad the last set with
copies of the first and last elements if the cardinality of
the sets is not K. Each set Tj can be approximated by
a segment sj between the first point (A) and the last
point (B) of the set, where A and B correspond to the
spatial part of the measure ~xj,1 and ~xj,K .

The minimum distance d between a point P
recorded at time t and a segment s is given by:

(3.5) d = dist((P, t), s) = ‖P − Ps‖2σxyz
+ ‖t− ts‖2σt
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where Ps is the projection of P on the segment AB,
and tws is the projection of t on [tA, tB ] [Fig. 2]:

Ps = A+ max

(
0,min

(
〈
−→
AP,
−→
AB〉

‖
−→
AB‖22

, 1

))
−→
AB(3.6)

ts = max(tA,min(t, tB))(3.7)

When approximating a subtrajectory T =
{~x1, ..., ~xK} by a segment s, we are making an approx-
imation error for each point i ∈ {1, . . . ,K} which can
be upper bounded :

Eapp = max
i∈1,...,K

dist(~xi, s)(3.8)

= max
i
‖Pi − Psi‖2σxyz

+ ‖ti − tsi‖2σt︸ ︷︷ ︸
0

≤ σmax max
i
‖Pi − Psi‖22

with σmax = max(σxy, σz) and where the temporal part
of the distance vanishes as tA < ti < tB by construction.
This upper bound can be computed efficiently, as only
the maximum Euclidean distance of the points to the
segments is required.

By slightly modifiying equation 3.7, one can mask
all the segments that contains points only measured
after a certain time window tw (typically 30 minutes)
before t :

(3.9) tws =

{
∞ if tA > t− tw

min(t, tB) otherwise

The masked distance is then given by:

(3.10) dw = ‖P − Ps‖2σxyz
+ ‖t− tws ‖2σt

If we take into account the error that we are making
when approximating a set of points by a segment s, we
can know that all these points are at least at a distance
(dw−Eapp) from a point P . Thus, this criterion can be
used to exclude segments in search of neighbors if one
already has a candidate for the k-th neighbors that are
closer than dw − Eapp.

3.5 Trajectory Nearest Neighbors Algorithm
(TNN) The algorithm takes as an input a batch of
M points and for each retrieves its k nearest neighbors.
It is written in a tensorial way, making extensive use
of broadcasting, which is efficiently implemented in
standard libraries such as PyTorch [14] and TensorFlow
[1]. The first task, described in Algorithm 1, is to
compute the distance from all the batch points to all the
segments, using the formula [Eq. 3.10] while taking the
approximation error into account. If the approximation
error is larger than the estimated distance from the

T

K

AT

3

BT

3

ET

1

UT

3

Figure 3: Each trajectory is split into sub-trajectories
(here in red) that are approximated by a segment (gray)
and an error term (yellow). A T ×K matrice holds the
indices of all points belonging to each segments. To be
able to compute the distance efficiently, we group the
segments’ information in matrices A,B,E,U.

point to the segment, this distance is set to zero.
The information required to compute the distance to
a segment are its starting point A measured at time
tA, ending point B measured at time tb and the error

term E. As the unitary vector ~u =
−→
AB

‖
−→
AB‖22

needs to

be known for all queries, one can precompute as well
and store its value [Eq. 3.6]. All these quantities are
arranged in matrices A, tA,B, tB,U,E to allow efficient
broadcasting [Fig. 3]. A pseudocode version showing
how this formulas can be broadcasted can be found in
the supplementary, or in the actual version of the code.

Once the first task is completed, the algorithm
searches for the neighbors in the closest F segments
[Alg. 2], which consists of fetching all the points
contained in a few of them at a time, then computing
the actual point-to-point distance between the points in
the batch and all the points contained in the segments.
At that stage, points that are recorded after a time
windows tw before t are masked. The algorithm then
sorts the point by distance and keeps only the first k
ones. At this point, it has k candidates for the nearest
neighbors and has to decide if it is necessary to continue
the search. If the distance from the furthest candidate
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Algorithm 1: Distance from point P to a
segment, details about the notation can be
found in section 3.5
Data: P , t,~σ, A, tA, B,tB ,U , E, tw
Result: Distance from P to segment with

error
if tA > t− tw then return ∞ ;
δ = clamp((P −A) · U, 0, 1);
Ps = A+ δ ∗ (B −A) ;
D = ‖Ps − P‖2σxyz

+ σtmax(tB − t, 0)2 ;

D = D − Emax(σxy, σz);
return clamp(D, 0)

Algorithm 2: Trajectory Nearest Neighbors

Data: A batch of point, informations about
the segments

Result: k-Nearest Neighbors
Distances = compute distances to segments (1);
Distances = sort distances;
Furthest neighbors =∞;
Next distance = Distances[:, 0];
i = 1;
d = 0;
while Furthest neighbors ≥ Next distance or
d = M do

Fetch F segments of K points for the
remaining (M − d) points in the batch;

Compute distance from batch points to
segments points;

Current nearest neighbors = sort previous
(k) and new points (FK);

Furthest neighbor = Current nearest
neighbors[:, k];
d = nb of completed lines;
Put completed lines (d) at the end of the
batch ;

Next distances = Distances[:, i ∗ F ];
i += 1;

end
return k-Nearest Neighbors

is smaller than the distance to the next segment while
taking the error term into account, it is guaranteed
that no other points can be closer, which means that
the neighbors are found. If the algorithm is already
completed for some points in the batch, it puts them
at the end of the batch and continues to process only
the remaining points. For that, it fetches points in the
next closest segments until the following segments are
too far to include any valid candidates. This continues
until the neighbors for all the points in the batch are

found.

3.6 Performance and Memory analysis By split-
ting the data set into segments, TNN reduces the num-
ber of comparisons needed to find the nearest neighbors.
The following table describes the number of operations
and the memory required by the linear search and the
TNN algorithm [Tab. 1]. To compute the linear search,
we used the well-known distance matrix tricks [2]. In
both cases, the bottleneck is the top-k algorithm and the
sorting subroutine needed to find the nearest neighbors.
The distance to segment subroutine [Alg. 1] requires
computing the distance matrix from all points to the
segments, using [Eq.3.10]. As the number of segments
is roughly N

K , this offers a substantial improvement over
the linear search. Let us define the mean number of seg-
ments nf that we have to consider for one point in the
nearest neighbors’ search. Hence the algorithm has to
fetch a nf × F × K points for all N points. This fac-
tor depends heavily on the data set. For example, it
is lower when the segments are a good approximation
of the trajectories and when they are well separated.
In the following section, we illustrate how this factor’s
variability applies in an experiment with synthetic data
through consideration of both a usual and a pathologi-
cal case One can see that our method offers a substan-
tial decrease in storage footprint as well. This is crucial
when working with GPU as the memory is often limited.
We computed the theoretical cost for a single batch as
most of the memory can be freed directly after usage.

4 Empirical evaluation

The wind-speed nowcasting pipeline and the trajectory
nearest neighbors algorithm (TNN) are evaluated in
different settings. Some baselines are used to compare
the performance of our model, while TNN is tested
against some other nearest neighbors algorithms.

4.1 High-Altitude Wind Nowcasting In table 2,
some simple baselines, a particle model [19] and our
GKA models are evaluated. We use Root Mean Square
Error (RMSE ) to assess the accuracy of our forecasts.
We start with simple and understandable models as
baselines: The average wind of the whole day and the
last hour before the prediction point. Then we evaluate
k-NN, where k is optimized to give the best accuracy on
a validation set. When k = 1, this model is equivalent
to the persistence model. For the day average model,
we used a non-causal approach and predicted for each
point in the test set the mean wind speed value for the
day. The first causal baseline we considered is the hour
average model. This model outputs the mean of all the
points measured in the interval [t− 1h30; t− 30min] for
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Table 1: Time-complexity and Space-Complexity estimation for computing the nearest neighbors of all points
in the data set. N is the size of the data set. nf is the mean number of times we have to fetch all K points in
F segments in the nearest neighbors’ search. The storage is described for a batch of M points as most space can
be directly freed after the operation. The total considers only the sorted matrix and the top-k neighbors as it is
what the memory contains at peak use.

Method Steps Time Complexity Space Complexity

Linear search
Distance Matrix O(N2D) M(2N + 1)
Top-k O(N2) 2Mk

TNN

Distance Segments O(N
2

K D) M N
KD

Sort O(N
2

K log(NK )) 2M N
K

Distance to points O(NnfFKD) M(k + FK)D
Top-k O(Nnf (k + FK)) 2M(k + FK)

Total O(N
2

K log(NK ) +NnfFKD) M N
KD +M(k + FK)D

Table 2: Results of the different models for three days in the data set, where the mean wind speed is specified
for each day. The baselines are in italic and the total duration for one epoch is mentioned for a single day dataset
(around 1mio measurements) and for a five-week dataset (around 33mio measurements). The k-NN and GKA
baselines’ optimizations are done with SciKit-Opt using Random Forest method. Our methods are optimized
with Adam using the whole training set, but the averaging set for each point is restricted by TNN, which reduces
the training time by about two orders of magnitude.

RMSE [kn] Epoch duration
Model Day #1 Day #2 Day #3 1 day dataset 5 weeks dataset
Mean wind 95 [kn] 49 [kn] 39 [kn] hh:mm:ss hh:mm:ss

Day Average 27,87 20,19 13,86 0:03 2:05
Hour Average 26,19 17,51 12,67 0:34 20:00
Particle Model [19] 9,98 10,07 7,84 6:57:15 1121:54:30
GKA 9,07 9,64 7,66 2:39:18 481:47:20
k-NN — Persistence 9,02 9,86 7,57 4:31:47 558:37:05
GKA - TNN 8,71 9,19 7,55 4:13 1:35:30
GKA - MLP - TNN 8,01 8,51 6,87 4:21 1:37:39

the prediction of a given point a time t. As expected,
those baselines are far from optimal, but they give an
informative way of comparing our model. Training
the naive k-NN and GKA baselines was feasible on a
single data day, but it becomes intractable to train
on the whole dataset without using a local context.
The particle model [19] is giving results similar to
our baseline, but it probably could be improved by
optimizing the hyperparameters of this model. TNN
allowed us to retrieve a small number of neighbors
based on a scaled and masked metric. This procedure
made the training over the whole data set possible while
beating the existing baselines’ performance. The time
taken to evaluate all the points in the dataset is also
mentioned in [Tab. 2]. It shows that using TNN to
build a proper context is mandatory to train our models
by offering a speedup of 320 times compared to the

fastest baseline. Training models on the whole dataset is
mandatory to test more advanced strategies. And when
letting the parameters of GKA vary through space, we
managed to increase the precision of our model.

4.2 Comparison with Linear Search A compar-
ison between TNN and Linear Search is made on two
synthetic data sets and a real one. The first one con-
sists of smooth random walks. The second represents a
pathological case where all points are taken randomly
and are considered to be measured simultaneously. The
final one uses actual wind speed measurements. Our
method substantially increases the performance by dras-
tically restricting the search space [Fig. 4][Tab. 3].
The average number of comparisons on CPU is approxi-
mately thirty times lower than the linear search. Chang-
ing the number of segments F that are fetched simul-
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taneously in Algorithm 2 impacts the speed up time,
as when bringing many segments at a time, more com-
parisons can be made simultaneously, but it may per-
form some unnecessary ones, explaining why there is a
sweet spot for the average speed up in figure 4. The
same sweet spot effect can be observed by increasing
the number of measurements per segment K.

Our method substantially increases the efficiency on
CPU by dividing the search time by almost one order
of magnitude. We see that running the linear search
on GPU instead of CPU already offers a substantial
decrease in query time due to the massive parallelization
properties of GPUs. TNN exploits this property well,
making it run sixteen times faster than linear search
on GPU. We tested the algorithm on the smoothed
random walk and the original data set [Tab. 3]. The
trajectories are well separated in both data sets, and
TNN increases the efficiency similarly. We evaluate a
pathological case where points are randomly distributed
over the space and randomly grouped in segments,
leading to a significant approximation error Eapp. In
that setting, while querying for nearest neighbors, the
algorithm cannot filter far away segments and thus,
resorts to checking all the points. In that case, TNN
uses the same number of comparisons as the linear
search and does not offer any speed up as expected.
Indeed, the approximation error is significant in such a
case, as the algorithm will have to consider almost all
segments in the data set. One solution to this problem
could be reorganizing the data points so segments can
approximate the resulting sets more appropriately.

4.3 Comparison with KDTrees We compared our
method to a KDTree implementation that extends the
one proposed by Scikit Learn [15]. The goal here
is to compare the two methods on concrete examples
and see which one is better suited for finding nearest
neighbors in a Machine Learning context. We evaluated
a version in pure python (Scaled Masked KDTree) and
an optimized one in Cython (Scaled Masked cKDTree)
[Tab. 4]. We changed the metric in KDTrees to have a
scalable query and retrieve only the point after a given
time window. One can see that, on the original data
set, the scaled and masked KDTree implementation in
pure python is on par with the linear search, which
highlights that KDTrees are not designed to work with
masked data. This was not their intended use, as
KDTrees explore in priority cells close to the query
point. However, if one dimension is masked, many of
these cells contain no valid candidates resulting in a
substantial decrease in performance as more cells need
to be explored [Fig. 5]. An extensive ablation study
is made in the supplementary material showcasing this
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Figure 4: A comparison between linear search and
TNN is made on GPU for different parameters K
(number of points per segment) and F (number of
segments fetched at the same time) as explained in
section 3.5. The first grid refers to the average speedup
reached by TNN compared to linear search (higher is
better). The second grid shows the average percentage
of comparisons that TNN needed to find the nearest
neighbors (lower is better).

Figure 5: The KDTree algorithm explores in priority
cells that are close to the query point. Setting a
hard limit on a given axis complicates the procedure
as the cells close to the goal might not contain any
valid candidate. The black lines represent the KDTree
structure. The query point is depicted in red, and the
nearest neighbor that respects the mask (in orange) is
blue. The cells that should not be considered are colored
in grey.
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Table 3: Mean number of comparisons and time needed for querying 1000 nearest neighbors on the original wind
and smoothed random walk (SRW) data sets. As TNN is an exact method, the query results are the same for
both methods. It shows as well the total duration (hh:mm:ss) needed to retrieve the neighbors for the whole data
set. All these comparisons are made on a data set of a million points.

Data set Device Algorithm Comparisons Query [ms] Total duration

Original Data set
CPU

Lin. Search 811’372 9.03 2:30:32
TNN 28’579 1.03 17:08

GPU
Lin. Search 811’372 2.55 42:28
TNN 81’611 0.16 2:43

SRW Data set
CPU

Lin. Search 1’000’000 11.95 3:19:09
TNN 58’408 1.60 26:35

GPU
Lin. Search 1’000’000 2.51 41:48
TNN 93’555 0.39 6:28

Random points
CPU

Linear Search 1’000’000 7.43 2:03:51
TNN 999’940 15.51 4:18:34

GPU
Linear Search 1’000’000 1.72 28:42
TNN 998’588 1.36 22:40

Table 4: Comparison with KDTrees and linear search on GPU and CPU for the original data set. The creation
of the different structures has to be performed once at the beginning of the program. The comparison details are
given in section 4.3. It shows the average time for querying 1000 nearest neighbors on the different data sets and
the total duration (hh:mm:ss) needed to retrieve the neighbors for the whole data set. All these comparisons are
made on a data set of a million points.

Method Creation [s] Query [ms] Total duration

Linear search CPU - 9.03 2:30:32
TNN CPU 1.00 1.03 17:08
Scaled masked KDTree 0.11 9.25 2:35:06
Scaled masked cKDTree 0.03 0.70 11:35

TNN GPU 7.00 0.16 2:43
Linear search GPU - 2.55 42:28

phenomenon. This bad performance can be mitigated
by using an optimized implementation in Cython, and
we see that on CPU, the cKDTree is the fastest method.
However, our approach still offers a substantial increase
even when used on CPU where it cannot benefit as much
from the GPU parallelization capabilities. Furthermore,
the KDTree algorithm is not appropriate for running on
GPU as it requires many non-parallelizable operations.
The real advantage of our method is that it runs
efficiently on GPU, which allows it to take advantage of
the parallelization speedup. Comparing the optimized
version of cKDtree on CPU to TNN on GPU, one can
see that TNN seems to offer the best running time.
Furthermore, a GPU implementation is particularly well
suited for Machine Learning applications where most of
the data is processed on the GPU, so it should benefit
additionally from the spared communication time.

4.4 Conclusion High altitude wind nowcasting dif-
fers from weather forecasting. In the first few hours,
extrapolation of high-quality measurements is still the
most efficient approach because of the persistence of
weather phenomena and because weather forecasts use
numerical grids whose resolution is too large. Working
on unstructured data measured along the trajectories of
airplanes offers another challenge, as creating contexts
for a prediction is not an easy task: Restricting the
context to a small set of neighbors is mandatory to re-
duce the different models’ costs in time and space. This
alone reduces by almost two orders of magnitude the
duration of the models’ training epochs. Nevertheless,
finding a good context is not straightforward as data
recorded in the future has to be masked while depend-
ing on the scaling of the different dimensions. More-
over, traditional methods are not well suited to work
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with masked data and encompass many non-tensorial
operations, making it difficult to adapt to GPU. On the
contrary, TNN splits the dataset in a natural way and
runs efficiently on GPU.

We proposed a novel algorithm for searching the k-
Nearest Neighbors (k-NN) for the specific case of points
organized along piece-wise linear trajectories in a Eu-
clidean space, which allows masking points along a given
dimension. The general required property is that the
data sets admit a coverage with cylinders. This algo-
rithm is formulated with parallelizable tensorial oper-
ations and works well on GPU. A Pytorch implemen-
tation is provided [14], making its integration easy for
most Machine Learning pipelines. It allowed us to reach
a substantial increase in efficiency in the case of this
study. By using this algorithm as a stepping stone, ad-
ditional trials of the method using more complex models
will be performed to increase the precision of the extrap-
olation scheme while remaining efficient.
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Supplementary: Efficient Wind Speed Nowcasting with GPU-Accelerated
Nearest Neighbors Algorithm

Arnaud Pannatier ∗ Ricardo Picatoste † François Fleuret ‡

1 More details on the KDTree implementation
We made extensive benchmarks with KDTrees using algo-
rithm based the Scikit-Learn library [1]. We made an abla-
tion studies by deleting the masking and the scaling of the
metric to see its impact on the runtime. We tried to vary the
different leaf-size parameters. The idea is that it might be
more efficient to use the linear search in a small number of
bigger cells than to have plenty of small cells to check. Our
benchmark shows that for the standard dataset, the sweet
spot is around a leaf size of 100 elements. Table 1 list all
results for the different KDTrees.

2 Broadcasting distance to segment algorithm
The algorithm’s crux is to have a good representation
of the segments to compute the distance efficiently. For
example, when considering the formula for the distance in
the publication [Eq. 6 - 8], we see that we need to know
A, tA, B, tB for each point. We can precompute these
quantities and group them in two T × 3 matrix A,B, two
T ×1 matrix tA and tB. We can precompute the unit vector

~u =
−→
AB

‖
−→
AB‖22

and store it in a T×3 matrix U. We can compute

the error efficiently by storing the maximal Euclidean error
by segment in a T × 1 matrix E. During the search, all the
batch points P can have a different scaling ~σ. We group these
scaling factors in a P × 3 matrix. We define two matrices
σxyz and σt to make the notation easier. The first one is
a M × 3 matrix, where the first two columns are repeated
because the scaling on x and y are assumed to be the same.
The second one is a M × 1 matrix σt that corresponds to
the temporal part’s scaling.
def distance_to_segments(batch, t, t_w, A, t_A, B,

t_b,sigma_xyz, sigma_t U, E):
# Shape: [P, T, 3]
AP = -(A.unsqueeze(0)-batch.unsqueeze(1)
# Shape: [P, T]
delta = clamp(AP * U).sum(2), 0, 1)
# Shape: [P, T, 3]
P_AB = delta.unsqueeze(2)*(B-A) + A
# Shape: [P, T, 3]
D = ((P_AB-batch)**2) * sigma_xyz.unsqueeze(1)
# Shape: [P, T]
D = D.sum(2)

∗Idiap Research Institute, arnaud.pannatier@idiap.ch
†SkySoft-ATM
‡Université de Genève

# Shape: [P, 1]
tw = (t-time_window).unsqueeze(1)
# Shape: [P, T] += [P, 1]
D += clamp((t_B-tw), 0)**2*sigma_t.unsqueeze(1)
# Shape: [P, T]
D[t_A > t] = float("inf")

# Shape [T]
error = sigma_xyz.max(1).unsqueeze(1).matmul(E)
# Shape [P, T]
return clamp(D - error, 0)
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Table 1: Comparison with KDTrees in different setup and different datasets.
Dataset Leaf-size Method Creation [ms] Query [ms] Total

Original Dataset

10

KDTree 3546 6.97 1:56:06
cKDTree 30 0.12 2:00
scaled KDTree 3822 6.98 1:56:26
scaled masked KDTree 3822 97.76 27:07:14

100

KDTree 492 3.13 52:08
cKDTree 30 0.11 1:53
scaled KDTree 500 3.61 1:00:12
scaled masked KDTree 500 13.34 3:43:32

1000

KDTree 167 3.26 54:22
cKDTree 30 0.13 2:18
scaled KDTree 168 3.98 1:06:19
scaled masked KDTree 168 4.89 1:21:34
TNN CPU 1000 1.03 17:08
TNN GPU 9000 0.16 2:43
Linear search CPU - 9.03 2:30:32
Linear search GPU - 2.55 42:28

Smoothed Random Walk

10

KDTree 9057 16.60 4:36:37
cKDTree 37 0.19 03:09
scaled KDTree 9456 18.13 5:02:07
scaled masked KDTree 9456 - -

100

KDTree 785 6.02 1:40:23
cKDTree 37 0.17 2:53
scaled KDTree 762 14.95 4:09:14
scaled masked KDTree 762 13.79 3:49:50

1000

KDTree 225 6.07 1:41:06
cKDTree 36 0.25 4:11
scaled KDTree 230 7.18 1:59:36
scaled masked KDTree 230 6.61 1:50:07
TNN CPU 1000 1.60 26:35
TNN GPU 5000 0.39 6:28
Linear search CPU - 11.95 3:19:09
Linear search GPU - 2.51 41:48

Random Points

10

KDTree 3853 15.39 4:16:26
cKDTree 36 0.25 4:05
scaled KDTree 4070 17.27 4:47:49
scaled masked KDTree 4070 17.07 4:44:35

100

KDTree 742 6.61 1:50:12
cKDTree 36 0.26 4:17
scaled KDTree 908 9.14 2:32:19
scaled masked KDTree 908 8.25 2:17:33

1000

KDTree 367 7.03 1:57:09
cKDTree 36 0.50 8:18
scaled KDTree 373 9.14 2:32:25
scaled masked KDTree 373 4.89 1:21:34
TNN CPU 1000 15.51 4:18:34
TNN GPU 5000 1:36 22:40
Linear search CPU - 7.43 2:03:51
Linear search GPU - 1.72 28:42
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