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ABSTRACT

Gradient-based learning algorithms have an implicit simplicity bias which in effect
can limit the diversity of predictors being sampled by the learning procedure. This
behavior can hinder the transferability of trained models by (i) favoring the learning
of simpler but spurious features — present in the training data but absent from the
test data — and (ii) by only leveraging a small subset of predictive features. Such
an effect is especially magnified when the test distribution does not exactly match
the train distribution—referred to as the Out of Distribution (OOD) generalization
problem. However, given only the training data, it is not always possible to apriori
assess if a given feature is spurious or transferable. Instead, we advocate for
learning an ensemble of models which capture a diverse set of predictive features.
Towards this, we propose a new algorithm D-BAT (Diversity-By-disAgreement
Training), which enforces agreement among the models on the training data, but
disagreement on the OOD data. We show how D-BAT naturally emerges from the
notion of generalized discrepancy, as well as demonstrate in multiple experiments
how the proposed method can mitigate shortcut-learning, enhance uncertainty and
OOD detection, as well as improve transferability.

1 INTRODUCTION

While gradient-based learning algorithms such as Stochastic Gradient Descent (SGD), are nowadays
ubiquitous in the training of Deep Neural Networks (DNNs), it is well known that the resulting
models are (i) brittle when exposed to small distribution shifts (Beery et al., 2018; Sun et al., 2016;
Amodei et al., 2016), (ii) can easily be fooled by small adversarial perturbations (Szegedy et al.,
2014), (iii) tend to pick up spurious correlations (McCoy et al., 2019; Oakden-Rayner et al., 2020;
Geirhos et al., 2020) — present in the training data but absent from the downstream task — , as well
as (iv) fail to provide adequate uncertainty estimates (Kim et al., 2016; van Amersfoort et al., 2020;
Liu et al., 2021b). Recently those learning algorithms have been investigated for their implicit bias
toward simplicity — known as Simplicity Bias (SB), seen as one of the reasons behind their superior
generalization properties (Arpit et al., 2017; Dziugaite & Roy, 2017). While for deep neural networks,
simpler decision boundaries are often seen as less likely to overfit, Shah et al. (2020), Pezeshki et al.
(2021) demonstrated that the SB can still cause the aforementioned issues. In particular, they show
how the SB can be extreme, compelling predictors to rely only on the simplest feature available,
despite the presence of equally or even more predictive complex features.

Its effect is greatly increased when we consider the more realistic out of distribution (OOD) setting
(Ben-Tal et al., 2009), in which the source and target distributions are different, known to be a
challenging problem (Sagawa et al., 2020; Krueger et al., 2021). The difference between the two
domains can be categorized into either a distribution shift — e.g. a lack of samples in certain parts of
the data manifold due to limitations of the data collection pipeline —, or as simply having completely
different distributions. In the first case, the SB in its extreme form would increase the chances of
learning to rely on spurious features — shortcuts not generalizing to the target distribution. Classic
manifestations of this in vision applications are when models learn to rely mostly on textures or
backgrounds instead of more complex and likely more generalizable semantic features such as using
shapes (Beery et al., 2018; Ilyas et al., 2019; Geirhos et al., 2020). In the second instance, by
relying only on the simplest feature, and being invariant to more complex ones, the SB would cause
confident predictions (low uncertainty) on completely OOD samples. This even if complex features
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(a) training data D̂ (b) model 1 (c) model 2 (d) ensemble

Figure 1: Example of applying D-BAT on a simple 2D toy example similar to the LMS-5 dataset
introduced by Shah et al. (2020). The two classes, red and blue, can easily be separated by a vertical
boundary decision. Other ways to separate the two classes — with horizontal lines for instance —
are more complex., i.e. they require more hyperplanes. The simplicity bias will push models to
systematically learn the simpler feature, as in the second column (b). Using D-BAT, we are able to
learn the model in column (c), relying on a more complex boundary decision, effectively overcoming
the simplicity bias. The ensemble hens(x) = h1(x)+h2(x), in column (d), outputs a flat distribution
at points where the two models disagree, effectively maximizing the uncertainty at those points. In
this experiments the samples from Dood were obtained through computing adversarial perturbations,
see App. D.2 for more details.

are contradicting simpler ones. Which brings us to our goal of deriving a method which can (i) learn
more transferable features, better suited to generalize despite distribution shifts, and (ii) provides
accurate uncertainty estimates also for OOD samples.

We aim to achieve those two objectives through learning an ensemble of diverse predictors
(h1, . . . , hK), with h : X → Y , and K being the ensemble size. Suppose that our training data is
drawn from the distribution D, and Dood is the distribution of OOD data on which we will be tested.
Importantly, D and Dood may have non-overlapping support, and Dood is not known during training.
Our proposed method, D-BAT (Diversity-By-disAgreement Training), relies on the following idea:

Diverse hypotheses should agree on the source distribution D while disagreeing on
the OOD distribution Dood.

Intuitively, a set of hypotheses should agree on what is known i.e. on D, while formulating different
interpretations of what is not known, i.e. onDood. Even if each individual predictor might be wrongly
confident on OOD samples, while predicting different outcomes — the resulting uncertainty of the
ensemble on those samples will be increased. Disagreement on Dood can itself be enough to promote
learning diverse representations of instances of D. In the context of object detection, if one model
h1 is relying on textures only, this model will generate predictions on Dood based on textures, when
enforcing disagreement on Dood, a second model h2 would be discouraged to use textures in order to
disagree with h1 — and consequently look for a different hypothesis to classify instances of D e.g.
using shapes. This process is illustrated in Fig. 2. A 2D direct application of our algorithm can be
seen in Fig. 1. Once trained, the ensemble can either be used by forming a weighted average of the
probability distribution from each hypothesis, or—if given some labeled data from the downstream
task—by selecting one particular hypothesis.

Contributions. Our results can be summarized as:

• We introduce D-BAT, a simple yet efficient novel diversity-inducing regularizer which
enables training ensembles of diverse predictors.

• We provide a proof, in a simplified setting, that D-BAT promotes diversity, encouraging the
models to utilize different predictive features.

• We show on several datasets of varying complexity how the induced diversity can help to (i)
tackle shortcut learning, and (ii) improve uncertainty estimation and transferability.
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2 RELATED WORK

Diversity in ensembles. It is intuitive that in order to gain from ensembling several predictors
h1, ..., hK , those should be diverse. The bias-variance-covariance decomposition (Ueda & Nakano,
1996), which generalizes the bias variance decomposition to ensembles, shows how the error decreases
with the covariance of the members of the ensemble. Despite its importance, there is still no well
accepted definition and understanding of diversity, and it is often derived from prediction errors of
members of the ensemble (Zhou, 2012). This creates a conflict between trying to increase accuracy
of individual predictors h, and trying to increase diversity. In this view, creating a good ensemble is
seen as striking a good balance between individual performance and diversity. To promote diversity
in ensembles, a classic approach is to add stochasticity into the training by using different subsets of
the training data for each predictor (Breiman, 1996), or using different data augmentation methods
(Stickland & Murray, 2020). Another approach is to add orthogonality constrains on the predictor’s
gradient (Ross et al., 2020; Kariyappa & Qureshi, 2019). Recently, the information bottleneck (Tishby
et al., 2000) has been used to promote ensemble diversity (Ramé & Cord, 2021; Sinha et al., 2021).
Unlike the aforementioned methods, D-BAT can be trained on the full dataset, it importantly does not
set constrains on the output of in-distribution samples, but on a separate OOD distribution. Moreover,
as opposed to Sinha et al. (2021), our individual predictors do not share the same encoder.

Simplicity bias. While the simplicity bias, by promoting simpler decision boundary, can act as an
implicit regularizer and improves generalization (Arpit et al., 2017; Gunasekar et al., 2018), it is also
contributing to the brittleness of gradient-based machine-leaning (Shah et al., 2020). Recently Teney
et al. (2021) proposed to evade the simplicity bias by adding gradient orthogonality constrains, not
at the output level, but at an intermediary hidden representation obtained after a shared and fixed
encoder. While their results are promising, the reliance on a pre-trained encoder limits the type of
features that can be used to the set of features extracted by the encoder, especially, if a feature was
already discarded by the encoder due to SB, it is effectively lost. In contrast, our method is not
relying on a pre-trained encoder, also comparatively require a very small ensemble size to counter the
simplicity bias. A more detailed comparison with D-BAT is provided in App F.1.

Shortcut learning. The failures of DNNs across application domains due to shortcut learning have
been documented extensively in (Geirhos et al., 2020). They introduce a taxonomy of predictors
distinguishing between (i) predictors which can be learnt from the training algorithms (ii) predictors
performing well on in-distribution training data, (iii) predictors performing well on in-distribution
test data, and finally (iv) predictors performing well on in-distribution and OOD test data. The last
category being the intended solutions. In our experiments, by learning diverse predictors, D-BAT
increases the chance of finding one solution generalizing to both in and out of distribution test data,
see § 4.1 for more details.

OOD generalization. Generalizing to distributions not seen during training is accomplished by two
approaches: robust training, and invariant learning. In the former, the test distribution is assumed
to be within a set of known plausible distributions (say U). Then, robust training minimizes the
loss over the worst possible distribution in U (Ben-Tal et al., 2009). Numerous approaches exist
to defining the set U - see survey by (Rahimian & Mehrotra, 2019). Most recently, Sagawa et al.
(2020) model the set of plausible domains as the convex hull over predefined subgroups of datapoints
and Krueger et al. (2021) extend this by taking affine combinations beyond the convex hull. Our
approach also borrows from this philosophy - when we do not know the labels of the OOD data, we
assume the worst case and try predict as diverse labels as possible. This is similar to the notion of
discrepancy introduced in domain adaptation theory (Mansour et al., 2009; Cortes & Mohri, 2011;
Cortes et al., 2019). A different line of work defines a set of environments and asks that our outputs
be ‘invariant’ (i.e. indistinguishable) among the different environments (Bengio et al., 2013; Arjovsky
et al., 2019; Koyama & Yamaguchi, 2020). When only a single training environment is present,
like in our setting, this is akin to adversarial domain adaptation. Here, the data of one domain is
modified to be indistinguishable to the other (Ganin et al., 2016; Long et al., 2017). However, this
approach is fundamentally limited. E.g. in Fig. 2 a model which classifies both the crane and the
porcupine as a crane is invariant, but incorrect. Furthermore, it is worth noting that prior work in OOD
generalization are often considering datasets where the spurious feature is not fully predictive in the
training distribution (Zhang et al., 2021; Saito et al., 2017; 2018; Nam et al., 2020; Liu et al., 2021a),
and fail in our challenging settings of § 4.1 (see App. F for more in-depth comparisons). Lastly,
parallel to our work, Lee et al. (2022) adopt a similar approach and improve OOD generalization by
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Figure 2: Illustration of how D-BAT can promote learning diverse
features. Consider the task of classifying bird pictures among several
classes. The red color represents the attention of a first model h1. This
model learnt to use some simple yet discriminative feature to recognise
an African Crowned Crane on the left. Now suppose we use the top
image Dood on which the models must disagree. h2 cannot again use
the same feature as h1 since then it will not disagree on Dood. Instead,
h2 would look for other distinctive features of the crane which are not
present on the right e.g. using its beak and red throat pouch.

minimizing the mutual information on unlabeled target data between pairs of predictors. However,
their work does not investigate uncertainty estimation and is not motivated by domain adaptation
theory as ours is (Mansour et al., 2009), see App. F.7 for a more in-depth comparison.

Uncertainty estimation. DNNs are notoriously unable to provide reliable confidence estimates,
which is impeding the progress of the field in safety critical domains (Begoli et al., 2019), as well as
hurting models interpretability (Kim et al., 2016). To improve the confidence estimates of DNNs,
Gal & Ghahramani (2016) propose to use dropout at inference time, a method referred to as MC-
Dropout. Other popular methods used for uncertainty estimation are Bayesian Neural Networks
(BNNs) (Hernández-Lobato & Adams, 2015) and Gaussian Processes (Rasmussen & Williams, 2005).
All those methods but gaussian processes, were recently shown to fail to adequately provide high
uncertainty estimates on OOD samples away from the boundary decision (van Amersfoort et al., 2020;
Liu et al., 2021b). We show in our experiments how D-BAT can help to associate high uncertainty to
those samples by maximizing the disagreement outside of D (see § 4.2, as well as Fig.1).

3 DIVERSITY THROUGH DISAGREEMENT

3.1 MOTIVATING D-BAT

Figure 3: If h1 is computed by minimizing the training loss on D, its loss on the OOD task Dood
may be very large i.e. h1 may be very far from the optimal OOD model hood as measured by
LDood(h1, hood) (left). To mitigate this, we propose to learn a diverse ensemble {h1, . . . , h4} which
is maximally ‘spread-out’ (with distance measured using LDood(·, ·)) and cover the entire space of
possible solutions H⋆

t . This minimizes the distance between the unknown hood and our learned
ensemble, ensuring we learn transferable features with good performance on Dood.

We will first define some notation and explain why standard training fails for OOD generalization.
Then, we introduce the concept of discrepancy which will motivate our D-BAT algorithm.

Setup. Let us formally define the OOD problem. X is the input space, Y the output space, we define
a domain as a pair of a distribution over X and a labeling function h : X → Y . Given any distribution
D over X , given two labeling functions h1 and h2, given a loss function L : Y ×Y → R+, we define
the expected loss as the expectation: LD(h1, h2) = Ex∼D[L(h1(x), h2(x))].

Now, suppose that the training data is drawn from the distribution (Dt, ht), but we will be tested on a
different distribution (Dood, hood). While the labelling function hood is unknown, we assume that we
have access to unlabelled samples from Dood.

Finally, letH be the set of all labelling functions i.e. the set of all possible prediction models. And
further defineH⋆

t andH⋆
ood to be the optimal labelling functions on the train and the OOD domains:

H⋆
t := argmin

h∈H
LDt(h, ht),H⋆

ood := argmin
h∈H

LDood(h, hood).
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We assume that there exists an ideal transferable function h⋆ ∈ H⋆
t ∩H⋆

ood. This assumption captures
the reality that the training task and the OOD testing task are closely related to each other. Otherwise,
we would not expect any OOD generalization.

Beyond standard training. Just using the training data, standard training would train a model
hERM ∈ H⋆

t . However, as we discussed in the introduction, if we use gradient descent to find the ERM
solution, then hERM will likely be the simplest model i.e. it will likely pick up spurious correlations
in Dt which are not present in Dood. Thus, the error on OOD data might be very high

LDood(hERM, hood) ≤ max
h∈H⋆

t

LDood(h, hood) .

Instead, we would ideally like to minimize the right hand side in order to find h⋆. The main difficulty
is that we do not have access to the OOD labels hood. So we can instead use the following proxy:

LDood(h1, hood) = max
h2∈H⋆

t∩H⋆
ood

LDood(h1, h2) ≤ max
h2∈H⋆

t

LDood(h1, h2)

In the above we used the two following facts, (i) that ∀h2 ∈ H⋆
ood,LDood(h1, hood) = LDood(h1, h2),

as well as (ii) thatH⋆
t ∩H⋆

ood is non-empty. Recall thatH⋆
t = argminh∈H LDt

(h, ht). So this means
— in order to minimize the upper bound — we want to pick h2 to minimize risk on our training
data (i.e. belong to H⋆

t ), but otherwise maximally disagree with h1 on the OOD data. That way
we minimize the worst case expected loss: minh∈{h1,h2} maxh′∈H⋆

t
LDood(h, h

′) — this process is
illustrated in Fig. 3. The latter is closely related to the concept of discrepancy in domain-adaption
(Mansour et al., 2009; Cortes et al., 2019). However, the main difference between the definitions
is that we restrict the maximum to the set of H⋆

t , whereas the standard notions use an unrestricted
maximum. Thus, our version is tighter when the train and OOD tasks are closely related.

Deriving D-BAT. We make two final changes to the discrepancy term above to derive D-BAT.
First, if LD(h1, h2) is a loss function which quantifies dis-agreement, then suppose we have another
loss function AD(h1, h2) which quantifies agreement. Then, we can minimize agreement instead of
maximizing dis-agreement

argmin
h2∈H⋆

t

AD(h1, h2) = argmax
h2∈H⋆

t

LD(h1, h2) .

Secondly, we relax the constrained formulation h2 ∈ H⋆
t by adding a penalty term with weight α as

hD-BAT ∈ min
h2∈H

LDt
(h2, ht)︸ ︷︷ ︸

fit train data

+αADood(h1, h2)︸ ︷︷ ︸
disagree on OOD

.

The above is the core of our D-BAT procedure - given a first model h1, we train a second model h2 to
fit the training data D while disagreeing with h1 on Dood. Thus, we have

LDood(h1, hood) ≤ max
h2∈H⋆

t

LDood(h1, h2) ≈ LDood(h1, hD-BAT),

implying that D-BAT gives us a good proxy for the unknown OOD loss, and can be used for uncertainty
estimation. Following a similar argument for h1, we arrive the following training procedure:

min
h1,h2

1
2 (LDt

(h1, ht) + LDt
(h2, ht)) + αADood(h1, h2) .

However, we found the training dynamics for simultaneously learning h1 and h2 to be unstable.
Hence, we propose a sequential variant which we describe next.

3.2 ALGORITHM DESCRIPTION

Binary classification formulation. Concretely given a binary classification task, with Y = {0, 1},
we train two models sequentially. The training of the first model h1 is done in a classical way,
minimizing its empirical classification loss L(h1(x), y) over samples (x, y) from D̂. Once h1

trained, we train the second model h2 adding a term Ax̃(h1, h2) representing the agreement on
samples x̃ of D̂ood, with some weight α ≥ 0:

h⋆
2 ∈ argmin

h2∈H

1
N

( ∑
(x,y)∈D̂

L(h2(x), y) + α
∑

x̃∈D̂ood

Ax̃(h1, h2)
)
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Given p
(y)
h,x the probability of class y predicted by h given x, the agreement Ax̃(h1, h2) is defined as:

Ax̃(h1, h2) = − log
(
p
(0)
h1,x̃
· p(1)h2,x̃

+ p
(1)
h1,x̃
· p(0)h2,x̃

)
(AG)

In the above formula, the term inside the log can be derived from the expected loss when L is the
01-loss and h1, h2 independent. See App. B for more details.

Multi-class classification formulation. The previous formulation requires a distribution over two
labels in order to compute the agreement term (AG). We extend the agreement term A(h1, h2, x̃)
to the multi-class setting by binarizing the softmax distributions h1(x̃) and h2(x̃). A simple way
to do this is to take as positive class the predicted class of h1: ỹ = argmax(h1(x̃)) with associated
probability p

(ỹ)
h1,x̃

, while grouping the remaining complementary class probabilities in a negative

class ¬ỹ. We would then have p
(¬ỹ)
h1,x̃

= 1 − p
(ỹ)
h1,x̃

. We can then use the same bins to binarize the
softmax distribution of the second model h2(x̃). Another similarly sound approach would be to do
the opposite and use the predicted class of h2 instead of h1. In our experiments both approaches
performed well. In Alg.2 we show the second approach, which is a bit more computationally efficient
in the case of ensembles of more than 2 predictors, as the binarization bins are built only once, instead
of building them for each pair (hi, hm) for 0 ≤ i < m.

3.3 LEARNING DIVERSE FEATURES

It is possible, under some simplifying assumptions to rigorously prove that minimizing LD-BAT results
in learning predictors which use diverse features. We introduce the following theorem:
Theorem 3.1 (D-BAT favors diversity). Given a joint source distribution D of triplets of random
variables (C, S, Y ) taking values in {0, 1}3. Assuming D has the following PMF: PD(C = c, S =
s, Y = y) = 1/2 if c = s = y, and 0 otherwise, which intuitively corresponds to experiments § 4.1
in which two features (e.g. color and shape) are equally predictive of the label y. Assuming a first
model learnt the posterior distribution P1(Y = 1 | C = c, S = s) = c, meaning that it is invariant
to feature s. Given a distribution Dood uniform over {0, 1}3 outside of the support of D, the posterior
solving the D-BAT objective will be P2(Y = 1 | C = c, S = s) = s, invariant to feature c.

The proof is provided in App. C. It crucially relies on the fact that Dood has positive weight on data
points which only contain the alternative feature s, or only contain the feature c. Thus, as long asDood
is supported on a diverse enough dataset with features present in different combinations , we can
expect D-BAT to learn models which utilize a variety of such features.

4 EXPERIMENTS

We conduct two main types of experiments, (i) we evaluate how D-BAT can mitigate shortcut learning,
bypassing simplicity bias, and generalize to OOD distributions, and (ii) we test the uncertainty
estimation and OOD detection capabilities of D-BAT models.

4.1 OOD GENERALIZATION AND AVOIDING SHORTCUTS

We estimate our method’s ability to avoid spurious correlation and learn more transferable features
on 6 different datasets. In this setup, we use a labelled training data D which might have a lot
of highly correlated spurious features, and an unlabelled perturbation dataset Dood. We then test
the performance on the learnt model on a test dataset. This test dataset may be drawn from the
same distribution as Dood (which tests how well D-BAT avoids spurious features), as well as from a
completely different distribution from Dood (which tests if D-BAT generalizes to new domains). We
compare D-BAT against ERM, both when used to obtain a single model or an ensemble.

Our results are summarized in Tab. 1. For each dataset, we report both the best-model accuracy and —
when applicable — the best-ensemble accuracy. All experiments in Tab. 1 are with an ensemble of
size 2. Among the two models of the ensemble, the best model is selected according to its validation
accuracy. We show results for a larger ensemble size of 5 in Fig. 4. Finally in Fig. 4 C (right) we
compare the performance of D-BAT against numerous other baseline methods. See Appendix D for
additional details on the setup as well as numerous other results.
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Table 1: Test accuracies on the six datasets described in § 4.1. For each dataset, we compare single
model and ensemble test accuracies for D-BAT and ERM. In the left column we consider the scenario
where Dood is also our test distribution (we can imagine we have access to unlabeled data from the
test distribution). In the right column we consider Dood and our test distribution to be different, e.g.
belonging to different domains. see § 4.1 for more details and a summary of our findings. In bold are
the best scores along with any score within standard deviation reach. For datasets with completely
spurious correlations, as we know ERM models would fail to learn anything generalizable, we are
not interested in using them in a ensemble, hence the missing values for those datasets.

Dood = test data (unlabelled) Dood ̸= test data

Single Model Ensemble Single Model Ensemble
Dataset D ERM D-BAT ERM D-BAT ERM D-BAT ERM D-BAT

C-MNIST 12.3 ± 0.7 90.2 ± 3.7 - - 27.1 ± 2.8 90.1 ± 1.9 - -
M/F-D 52.9 ± 0.1 94.8 ± 0.3 - - 52.9 ± 0.1 89.0 ± 0.6 - -
M/C-D 50.0 ± 0.0 73.3 ± 1.2 - - 50.0 ± 0.0 58.0 ± 0.6 - -

Waterbirds 86.0 ± 0.5 88.7 ± 0.2 85.8 ± 0.4 87.5 ± 0.0 - - - -
Office-Home 50.4 ± 1.0 51.1 ± 0.7 52.0 ± 0.5 52.7 ± 0.2 51.7 ± 0.6 51.7 ± 0.3 53.9 ± 0.4 54.5 ± 0.5
Camelyon17 80.3 ± 0.4 93.1 ± 0.3 80.9 ± 1.5 91.9 ± 0.4 80.3 ± 0.4 88.8 ± 1.4 80.9 ± 1.5 85.9 ± 0.9

Training data (D). We consider two kinds of training data: synthetic datasets with completely
spurious correlation, and more real world datasets where do not have any control and naturally may
have some spurious features. We use the former to have a controlled setup, and the latter to judge our
performance in the real world.

Datasets with completely spurious correlation: To know whether we learn a shortcut, and estimate
our method’s ability to overcome the SB, we design three datasets of varying complexity with known
shortcut in a similar fashion as Teney et al. (2021). The Colored-MNIST, or C-MNIST for short,
consists of MNIST (Lecun & Cortes, 1998) images for which the color and the shape of the digits are
equally predictive, i.e. all the 1 are pink, all the 5 are orange, etc. The color being simpler to learn
than the shape, the simplicity bias will result in models trained on this dataset to rely solely on the
color information while being invariant to the shape information. This dataset is a multiclass dataset
with 10 classes. The test distribution consists of images where the label is carried by the shape of the
digit and the color is random. Following a similar idea, we build the M/F-Dominoes (M/F-D) dataset
by concatenating MNIST images of 0s and 1s with Fashion-MNIST (Xiao et al., 2017) images of
coats and dresses. The source distribution consists in images where the MNIST and F-MNIST parts
are equally predicitve of the label. In the test distribution, the label is carried by the F-MNIST part
and the MNIST part is a 0 or 1 MNIST image picked at random. The M/C-Dominoes (M/C-D)
dataset is built in the same way concatenating MNIST digits 0s and 1s with CIFAR-10 (Krizhevsky,
2009) images of cars and trucks. See App. E to see samples from those datasets.

Natural datasets: To test our method in this more general case we run further experiments on three
well-known domain adaptation datasets. We use the Waterbirds (Sagawa et al., 2020) and Camelyon17
(Bandi et al., 2018) datasets from the WILDS collection (Koh et al., 2021). Camelyon17 is an image
dataset for cancer detection, where different hospital each provide a unique data part. For those two
binary classification datasets, the test distributions are taken to be the pre-defined test splits. We also
use the Office-Home dataset from Venkateswara et al. (2017), which consists of images of 65 item
categories across 4 domains: Art, Product, Clipart, and Real-World. In our experiments we merge the
Product and Clipart domains to use as training, and test on the Real-World domain.

Perturbation data (Dood). As mentioned previously, we consider two scenarios in which the
test distribution is (i) drawn from the same distribution as Dood, or (ii) drawn from a completely
different distribution. In practice, in the later case, we keep the test distribution unchanged and
modify Dood. For the C-MNIST, we remove digits 5 to 9 from the training and test distributions and
build Dood based on those digits associated with random colors. For M/F-D and M/C-D datasets, we
build Dood by concatenating MNIST images of 0 and 1 with F-MNNIST, — respectively CIFAR-10
— categories which are not used in the training distribution (i.e. anything but coats and dresses,
resp. trucks and cars), samples from those distributions are in App. E. For the Camelyon17 medical
imaging dataset, we use unlabeled validation data instead of unlabeled test data, both coming from
different hospitals. For the Office-Home dataset, we use the left-out Art domain as Dood.
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Figure 4: All results are in the "Dood = test data" setting. (a) and (b): Test accuracies as a function of
the ensemble size for both D-BAT and Deep Ensembles (ERM ensembles). We observe a significant
advantage of D-BAT on both the Waterbirds and the Office-Home datasets. The difference is
especially visible on the Waterbirds dataset, which has a stronger spurious correlation. Results have
been obtained averaging over 3 seeds for the Waterbirds dataset and 6 seeds for the Office-Home
dataset. (c): Comparison of D-BAT with several other methods on the Camelyon17, results except
D-BAT are taken from Sagawa et al. (2022).

Results and discussion.
• D-BAT can tackle extreme spurious correlations. This is unlike prior methods from domain

adaptation (Zhang et al., 2021; Saito et al., 2017; 2018; Nam et al., 2020; Liu et al., 2021a) which
all fail when the spurious feature is completely correlated with the label, see App. F for an extended
discussion and comparison in which we show those methods cannot improve upon ERM in that
scenario. First we look at results without D-BAT for the C-MNIST, M/F-D and M/C-D datasets in
Tab. 1. Looking at the ERM column, we observe how the test accuracies are near random guessing.
This is a verification that without D-BAT, due to the simplicity bias, only the simplest feature is
leveraged to predict the label and the models fail to generalize to domains for which the simple
feature is spurious. D-BAT however, is effectively promoting models to use diverse features. This
is demonstrated by the test accuracies of the best D-BAT model being much higher than of ERM.

• D-BAT improves generalization to new domains. In Tab. 1, in the case Dood ̸= test data, we
observe that despite differences between Dood and the test distribution (e.g. the target distribution
for M/C-D is using CIFAR-10 images of cars and trucks whereas Dood uses images of frogs, cats,
etc. but no cars or trucks), D-BAT is still able to increase the generalization to the test domain.

• Improved generalization on natural datasets. We observe a significant improvement in test
accuracy for all our natural datasets. While the improvement is limited for the Office home dataset
when considering a single model, we observe D-BAT ensembles nonetheless outperform ERM
ensembles. The improvement is especially evident on the Camelyon17 dataset where D-BAT
outperforms many known methods as seen in Fig. 4.c.

• Ensembles built using D-BAT generalize better. In Fig. 4 we observe how D-BAT ensembles
trained on the Waterbirds and Office-Home datasets generalize better.

4.2 BETTER UNCERTAINTY & OOD DETECTION

MNIST setup. We run two experiments to investigate D-BAT’s ability to provide good uncertainty
estimates. The first one is similar to the MNIST experiment in Liu et al. (2021b), it consists in learning
to differentiate MNIST digits 0s from 1s. The uncertainty of the model — computed as the entropy —
is then estimated for fake interpolated images of the form t · 1+ (1− t) · 0 for t ∈ [−1, 2]. An ideal
model would assign (i) low uncertainty values for t near 0 and 1, corresponding to in-distribution
samples, while (ii) high uncertainty values elsewhere. (Liu et al., 2021b) showed how only Gaussian
Processes are able to fulfill those two conditions, most models failing in attributing high uncertainty
away from the boundary decision (as it can also be seen in Fig. 1 when looking at individual models).
We train ensembles of size 2 and average over 20 seeds. For D-BAT, we use as Dood the remaning
(OOD) digits 2 to 9, along with some random cropping. We use a LeNet.

MNIST results. Results in Fig. 5 suggest that D-BAT is able to give reliable uncertainty estimates
for OOD datapoints, even when those samples are away from the boundary decision. This is in sharp
contrast with deep-ensemble which only models uncertainty near the boundary decision.
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CIFAR-10 setup. We train ensembles of 4 models and benchmark three different methods in their
ability to identify what they do not know. For this we look at the histograms of the probability of their
predicted classes on OOD samples. As training set we use the CIFAR-10 classes {0, 1, 2, 3, 4}. We
use the CIFAR-100 (Krizhevsky, 2009) test set as OOD samples to compute the histograms. For D-
BAT we use the remaining CIFAR-10 classes, {5, 6, 7, 8, 9}, asDood, and set α to 0.2. Histograms are
averaged over 5 seeds. The three methods considered are simple deep-ensembles (Lakshminarayanan
et al., 2017), MC-Dropout models (Gal & Ghahramani, 2016), and D-BAT ensembles. For the
three methods we use a modified ResNet-18 (He et al., 2016) with added dropout to accommodate
MC-Dropout, we use a dropout probability of 0.2 for the three methods. For MC-Dropout, we
compute uncertainty estimates sampling 20 distributions.

CIFAR-10 results. In Fig. 6, we observe for both deep ensembles and MC-Dropout a large amount
of predicted probabilities larger than 0.9, which indicate those methods are overly confident on OOD
data. In contrast, most of the predicted probabilities of D-BAT ensembles are smaller than 0.7. The
average ensemble accuracies for all those methods are 92% for deep ensembles, 91.2% for D-BAT
ensembles, and 90.4% for MC-Dropout.

5 LIMITATIONS
Is the simplicity bias gone? While we showed in § 4.1 that our approach can clearly mitigate shortcut
learning, a bad choice of Dood distribution can introduce an additional shortcut. In essence, our
approach fails to promote diverse representations when differentiating D from Dood is easier than
learning to utilize diverse features. Furthermore, we want to stress that learning complex features is
not necessarily unilaterally better than learning simple features, and is not our goal. Complex features
are better only so far as they can better explain both the train distribution and OOD data. With our
approach, we aim to get a diverse yet simple set of hypotheses. Intuitively, D-BAT tries to find the
best hypothesis which may be somewhere within the top-k simplest hypotheses, and not necessarily
the simplest one which the simplicity bias is pushing us towards.

6 CONCLUSION
Training deep neural networks often results in the models learning to rely on shortcuts present in the
training data but absent from the test data. In this work we introduced D-BAT, a novel training method
to promote diversity in ensembles of predictors. By encouraging disagreement on OOD data, while
agreeing on the training data, we effectively (i) give strong incentives to our predictors to rely on
diverse features, (ii) which enhance the transferability of the ensemble and (iii) improve uncertainty
estimation and OOD detection. Future directions include improving the selection of samples of the
OOD distribution and develop stronger theory. D-BAT could also find applications beyond OOD
generalization–e.g. (Ţifrea et al., 2021) recently used disagreement for anomaly/novelty detection or
to test for biases in our trained models (Stanczak & Augenstein, 2021).
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A SOURCE CODE

Link to the source code to reproduce our experiments: https://github.com/mpagli/
Agree-to-Disagree

B ALGORITHMS

The D-BAT training algorithm can be applied to both binary and multi-class classification problems.
For our experiments on binary classification — as for the Camelyon17, Waterbirds, M/F-D, M/C-D
(see § 4.1), and for our MNIST experiments in Fig. 5 — we used Alg. 1. This algorithm assumes a
first model h1 has already been trained with e.g. empirical risk minimization, and trains a second
model following the algorithm described in § 3.2. For our multi-class experiments — as for the
C-MNIST, Office-Home (see § 4.1, and CIFAR-10 uncertainty experiments (see § 4.2), we used
Alg. 2. This algorithm is training a full ensemble of size M using D-BAT as described in § 3.2.

Algorithm 1 D-BAT for binary classification
Input: train data D, OOD data Dood, stopping time T , D-BAT coefficient α, learning rate η,
pre-trained model h1, randomly initialized model h2 with weights ω0, and its loss L.
for t ∈ 0, . . . , T − 1 do

Sample (x, y) ∼ D
Sample x̃ ∼ Dood
ωt+1 = ωt − η∇ω

(
L(h2,x, y) + αA(h1, h2, x̃)

)
end for

Algorithm 2 D-BAT for multi-class classification
Input: ensemble size M , train data D, OOD data Dood, stopping time T , D-BAT coeffi-
cient α, learning rate η, randomly initialized models (h0, . . . , hM−1) with resp. weights
(ω

(0)
0 , . . . ,ω

(M−1)
0 ), and a classification loss L.

for m ∈ 0, . . . ,M − 1 do
for t ∈ 0, . . . , T − 1 do

Sample (x, y) ∼ D
Sample x̃ ∼ Dood
A ← 0
ỹ ← argmaxhm(x̃)
for i ∈ 0, . . . ,m− 1 do
A = A− 1

m−1 log
(
p
(ỹ)
hi,x̃
· p(¬ỹ)

hm,x̃ + p
(¬ỹ)
hi,x̃
· p(ỹ)hm,x̃

)
end for
ω

(m)
t+1 = ω

(m)
t − η∇ω(m)

(
L(hm,x, y) + αA

)
end for

end for

Sequential vs. simultaneous training. Nothing prevents the use of the D-BAT objective while
training all the predictors of the ensemble simultaneously. While we had some successes in doing so,
we advocate against it as this can discard the ERM solution. We found that the training dynamics of
simultaneous training have a tendency to generate more complex solutions than sequential training.
In our experiments on the 2D toy setting, sequential training gives two models which are both simple
and diverse (see Fig. 1), whereas simultaneous training generates two relatively simple predictors
but of higher complexity (see Fig. 7), especially it would deprive us from the simplest solution
(Fig.1.b). In general as we do not know the spuriousness of the features, the simplest predictor is still
of importance.
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Figure 7: Simultaneous D-BAT training: two models trained simultaneously using D-BAT on our 2D
toy task (see Fig. 1). We observe how we do not recover the ERM solution. The two obtained models
are diverse but seemingly more complex (e.g. in terms of their boundary decision) than models
trained sequentially as in Fig. 1.

C PROOF OF THM.3.1

We redefine here the setup for clarity:

• Given a joint source distribution D of triplets of random variables (C, S, Y ) taking values
in {0, 1}3.

• Assuming D has the following pmf: PD(C = c, S = s, Y = y) = 1/2 if c = s = y, and 0
otherwise.

• Assuming a first model learnt the posterior distribution P̂1(Y = 1 | C = c, S = s) = c.

• Given a distribution Dood uniform over {0, 1}3 outside of the support of D.

From there, training a second model h2 following the D-BAT objective would mean minimizing the
agreement on Dood:

min E
(c,s)∼Dood

[
− log(P̂1(Y = 1|c, s)P̂2(Y = 0|c, s) + P̂1(Y = 0|c, s)P̂2(Y = 1|c, s))

]
(1)

While at the same time agreeing on the source distribution D:

P
(c,s)∼D

(
P̂1(Y |c, s) = P̂2(Y |c, s))

)
= 1

The expectation in eq.1 becomes:

(1) =
1

2

(
− log(P̂2(Y = 0|C = 1, S = 0))− log(P̂2(Y = 1|C = 0, S = 1))

)
Which is minimized for P̂2(Y = 1|C = 0, S = 1) = P̂2(Y = 0|C = 1, S = 0) = 1.

Which means the posterior of the second model, according to our disagreement constrain, will be:

P̂2(Y = 1 | C = c, S = s) = s

D OMITTED DETAILS ON EXPERIMENTS

D.1 IMPLEMENTATION DETAILS FOR THE C-MNIST, M/M-D, M/F-D AND M/C-D
EXPERIMENTS

In the experiments on C-MNIST, M/F-D and M/C-D, we used different versions of LeNet (Lecun
et al., 1998):

• For the C-MNIST dataset, we used a standard LeNet, with 3 input channels instead of 1.
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• For the MF-Dominoes datasets, we increase the input dimension of the first fully-connected
layer to 960.

• For the MC-Dominoes dataset, we use 3 input channels, increase the number of output
channels of the first convolution to 32, and of the second one to 56. We modify the fully-
connected layers to be 2016→ 512→ 256→ c with c the number of classes.

In those experiments — for both cases Dood = Dtest and Dood ̸= Dtest — the test and validation
distributions are distributions in which the spurious feature is random, e.g. random color for C-MNIST
and random 0 or 1 on the top part for MF-Dominoes and MC-Dominoes.

We use the AdamW optimizer Loshchilov & Hutter (2019) for all our experiments. For all the datasets
in this section, we only train ensembles of 2 models, which we denoteM1 andM2. When building
the OOD datasets, we make sure the images used are not shared with the images used to build the
training, test and validation sets. Our results are obtained by averaging over 5 seeds. For further
details on the implementation, we invite the reader to check the source code, see § A.

D.2 IMPLEMENTATION DETAILS FOR FIG.1

Instead of relying on an external OOD distribution set, it is also possible to find, given some datapoint
x, a perturbation δ⋆ through directly minimizing the agreement in some neighborhood of x (i.e. for
∥δ⋆∥ ≤ ϵ):

δ⋆ ∈ argmin
δ s.t. ∥δ∥<ϵ

− log
(
p
(0)
h1,(x+δ) · p

(1)
h2,(x+δ) + p

(1)
h1,(x+δ) · p

(0)
h2,(x+δ)

)
Which can be solved using several projected gradient descent steps as it done typically in the
adversarial training literature. While this approach is working for the 2D example, it is not working
however for complex high-dimensional input spaces combined with deep networks as those are
notorious for their sensitivity to very small lp-bounded perturbations, and it would most of the time
be easy to find a bounded perturbation maximizing the disagreement.

D.3 STANDARD DEVIATIONS FOR MNIST UNCERTAINTY EXPERIMENTS

For clarity we omitted the standard deviations in Fig. 5. In Fig. 8 we show each individual curve with
its associated standard deviation.
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(b) D-BAT with α = 5
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(c) D-BAT with α = 10

Figure 8: Entropy of ensembles of two models trained with ((b) and (c)) and without D-BAT (deep-
ensemble, (a)), for inputs x taken from along line t ·1+(1−t) ·0 for t ∈ [−1, 2]. For deep-ensembles
in (a), we notice how the standard deviation is near 0 for OOD regions t ∈]− 1, 0] ∪ [1, 2[, which
indicates a lack of diversity between members of the ensemble. This is in sharp contrast with D-BAT
ensembles in (b) and (c) which clearly show some variability in those regions. The high variability
is explained by the fact that we are not optimizing specifically to be able to detect OOD samples in
those regions, but instead we are gaining this ability as a by-product of diversity, and diversity can be
reached in many different configurations.

D.4 IMPLEMENTATION DETAILS FOR THE CAMELYON17 EXPERIMENTS

The CameLyon17 cancer detection dataset Bandi et al. (2018) is taken from the WILDS collection
Koh et al. (2021). The dataset consists of a training, validation, and test sets of images coming from
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Figure 9: Test accuracy given α. We compare the best ERM model with the second model trained
using D-BAT, for varying α hyperparameters.

different hospitals, each hospital being uniquely associated to a given split. The goal is to generalize
to hospitals not necessarily present in the training set.

In the case where Dood = Dtest, we use the unlabeled test data provided by WILDS as Dood. In our
experiments with Dood ̸= Dtest, we use the unlabeled validation data provided by WILDS as Dood. In
both cases we use the accuracy on the WILDS labeled validation set for model selection.

We use a ResNet-50 (He et al., 2016) as model. We train for 60 epochs with a fixed learning rate
of 0.001 with and SGD as optimizer. We use an l2 penalty term of 0.0001 and a momentum term
β = 0.9. For D-BAT, we tune α ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and found α = 10−6 to
be best. For each set of hyperparameters, we train a deep-ensemble and a D-BAT ensemble of size
2, and select the parameters associated with the highest averaged validation accuracy over the two
predictors of the ensemble. Our results are obtained by averaging over 3 seeds.

In Fig. 9, we plot the evolution of the test accuracy as a function of α for both setups discussed in
§ 4.1. In the first "ideal" setup we have access to unlabeled target data to use as D̂ood. In the second
setup we do not, instead we use samples from different hospitals. In the case of the Camelyon dataset,
we use the available unlabeled validation data. Despite this data belonging to a different domain, we
still get a significant improvement in test accuracy.

D.5 IMPLEMENTATION DETAILS FOR THE WATERBIRDS EXPERIMENTS

The Waterbirds dataset is built by combining images of birds with either a water or land background.
It contains four categories:

• Waterbirds on water
• Waterbirds on land
• Land-birds on water
• Land-birds on land

In the official version released in the WILDS suite, the background is predictive of the label in
95% of cases i.e. 95% of Waterbirds, resp. land-birds, are seen on water, resp. land. Due to the
simplicity bias, this means that ERM models tend to overuse the background information. The test
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Figure 10: Comparing test accuracy for D-BAT and ERM (Deep-ensemble) for different ensemble
sizes. For D-BAT, Dood is the "Art" domain, quite different from the "Real-world" domain. Despite
the distribution shift we still see a noticeable improvement using D-BAT over plain ERM.

and validation sets are made more evenly, with 50% of Waterbirds, resp. land-birds, being seen on
water, resp. land. We use the train/ validation/test splits provided by the WILDS library.

We use a ResNet-50 (He et al., 2016) as model. We train for 300 epochs with a fixed learning rate of
0.001 with and SGD as optimizer. We an l2 penalty term of 0.0001 and a momentum term β = 0.9.
For D-BAT, we tune α ∈ {100, 10−1, 10−2, 10−3, 10−4, 10−5} and found α = 10−4 to be best. For
each set of hyperparameters, we train a deep-ensemble and a D-BAT ensemble of size 2, and select
the parameters associated with the highest averaged validation accuracy over the two predictors of
the ensemble. Our results are obtained by averaging over 3 seeds.

For our D-BAT experiments we only consider the case where we have access to unlabeled target data.
We use the validation split as it is from the same distribution as the target data.

D.6 IMPLEMENTATION DETAILS FOR THE OFFICE-HOME EXPERIMENTS

The Office-Home dataset is made of four domains: Art, Clipart, Product, and Real-world. We train on
the grouped Product and Clipart domains, and measure the generalization to the Real-world domain.
This dataset has 65 classes.

We use a ResNet-18, we train for 600 epochs with a fixed learning rate of 0.001 with and SGD
as optimizer. We an l2 penalty term of 0.0001 and a momentum term β = 0.9. For D-BAT, we
tune α ∈ {100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and found α = 10−5 to be best. For each
set of hyperparameters, we train a deep-ensemble and a D-BAT ensemble of size 2, and select the
parameters associated with the highest averaged validation accuracy over the two predictors of the
ensemble. Our results are obtained by averaging over 6 seeds.

We experiment with both the "ideal" case in which some unlabeled target data is available to use as
Dood (Dood = Dtest; see Fig. 4.b) as well as the case in which we use a different domain (Art) as Dood
(Dood ̸= Dtest). For this later setup, the evolution of the test accuracy given the ensemble size is in
Fig. 10. In both cases, the validation split, just as the test split, comes from the Real-World domain.
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D.7 NOTE ON SELECTING α

Depending on the experiment the value of α used ranged from 1 to 10−6. We explain the variability
in those values by (i) the capacity of the model used and (ii) the OOD distribution selected. If the
model used has a large capacity, it can more easily overfit the OOD distribution and find shortcuts to
disagree on Dood without relying on different features to classify the training samples, as discussed in
§ 5. For this reason we observed that larger models such as ResNet-18 or ResNet-50 used respectively
on CIFAR10 and the Camelyon17 datasets are requiring a smaller α in comparison to smaller LeNet
architectures. Furthermore, when the OOD distribution is close to the training distribution, smaller α
values are preferred, as in our Camelyon17 experiments. In this case, disagreeing too strongly on
the OOD data might force a second modelM2 to give erroneous predictions to disagree withM1,
assuming that this first model is generalizing well to the OOD set.

D.8 COMPUTATIONAL RESOURCES

All of our experiments were run on single GPU machines. Most of our experiments require little
computational resources and can be entirely reproduced on e.g. google colab (see App. A). For
the Camelyon17, Waterbirds and Office-Home datasets, which use a ResNet-50 or ResNet-18
architectures, we used a V100 Nvidia GPU and the hyperparameter search and training took about
two weeks.

E TRAINING AND OOD DISTRIBUTION SAMPLES C-MNIST, M/F-D AND
M/C-D

In Fig. 11, we show some samples from some of the training distribution used in § 4.1. We also
introduce the MM-Dominoes dataset, similar in spirit to the other dominoes dataset but concatenating
MNIST digits of 0s and 1s with MNSIT digits 7 and 9. In Figs. 12,13,14, we show samples for the
OOD distributions used in § 4.1.

(a) C-MNIST (b) MM-Dominoes (c) MF-Dominoes (d) MC-Dominoes

Figure 11: Samples from the training data distribution D for C-MNIST, MM-Dominoes, MF-
Dominoes, and MC-Dominoes. Those datasets are used to evaluate D-BAT’s aptitude to evade the
simplicity bias. For C-MNIST, the simple feature is the color and the complex one is the shape. For
all the Dominoes datasets, the simple feature is the top row, while the complex feature is the bottom
one. One could indeed separate 0s from 1s by simply looking at the value of the middle pixels (if
low value then 0 else 1).

(a) D(1)
ood (b) D(2)

ood

Figure 12: OOD distributions used for the C-MNIST experiments. D(1)
ood is the distribution used to

train D-BAT when we assumed we have access to unlabeled target data. D(2)
ood is the distribution we

used to show how D-BAT could work despite not having unlabeled target data. When experimenting
on D(2)

ood we remove the shapes 5 to 9 from the training dataset, that way D(2)
ood is really OOD.
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(a) D(1)
ood (b) D(2)

ood

Figure 13: OOD distributions used for the MF-Dominoes experiments. D(1)
ood corresponds to our

experiments when we have access to unlabeled target data. D(2)
ood is very different from the target

distribution as the second row is made only of images from categories not present in the training and
test distributions.

(a) D(1)
ood (b) D(2)

ood

Figure 14: OOD distributions used for the MC-Dominoes experiments. D(1)
ood corresponds to our

experiments when we have access to unlabeled target data. D(2)
ood is very different from the target

distribution as the second row is made only of images from categories not present in the training and
test distributions.

F ADDITIONAL DISCUSSIONS AND EXPERIMENTS

When two features are equally predictive but have different complexities, the more complex feature
will be discarded due to the extreme simplicity bias. This happens despite the uncertainty over the
potential spuriousness of the simpler feature. For this reason it is important to be able to learn both
features if we hope to improve our chances at OOD generalization. Recent methods such as Saito
et al. (2017), Saito et al. (2018), Zhang et al. (2021), Nam et al. (2020) and Liu et al. (2021a) all fail
in this challenging scenario, we explain why in the following subsections F.1 to F.6. In F.7, we add a
comparison between D-BAT and the concurrent work of Lee et al. (2022).

F.1 COMPARISON WITH TENEY ET AL. (2021)

In their work, Teney et al. (2021) add a regularisation term δgφ1
,gφ2

which, given an input x, is
promoting orthogonality of hidden representations h = fθ(x) given by an encoder fθ with parameters
θ, and pairs of classifiers gφ1

and gφ2
of parameters φ1 and φ2 respectively:

δgφ1
,gφ2

= ∇hg
⋆
φ1

(x) · ∇hg
⋆
φ2

(x) (T)

With∇g⋆ the gradient of its top predicted score.

We implemented the objective of Teney et al. (2021) with two different encoders: fθ(x) = x
(identity) and a two-layers CNN. We tested it on our MM-Dominoes dataset (See App E). The
classification heads are trained simultaneously. Considering two classifications heads, we find two
sets of hyperparameters, one that is giving the best compromise between accuracy and randomized-
accuracy, and one that is keeping the accuracy close to 1. In the first setup in Fig. 15, we observe that
none of the pairs of models trained with equation T as regularizer are particularly good at capturing
any of the two features in the data. In contrast with D-BAT (with D(1)

ood) which is able to learn a
second model having both high accuracy and high randomized-accuracy, hence capturing with the
first model the two data modalities. For the second set of hyperparameters in Fig. 16, we observe that
the improvement in randomized accuracy is only marginal if we do not want to sacrifice accuracy. We
believe those results are explained by the many ways gradients of a neural network can be orthogonal
while still encoding identical information. Better results might require training more classification
heads (up to 96 heads are used in Teney et al. (2021).
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Figure 15: Comparison between D-BAT and Teney et al. (2021) with hyperparameters favoring the
compromise between accuracy (test-acc) and randomized-accuracy (r-acc). We run 5 different seeds
for Teney et al. (2021), each run consisting in two classification heads and a shared encoder chosen
to be the identity (a) or a CNN encoder (b). The acc and r-acc are displayed for the 10 resulting
classification heads. We compared with two models obtained using D-BAT, the first model learning
the simplest feature is in the bottom right corner, and the second model trained with diversity is in
the top right corner. We observe that the method of Teney et al. (2021) is failing to reach a good
r-acc, and is sacrificing accuracy. D-BAT is able to retrieve both data modalities without sacrificing
accuracy.
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Figure 16: Comparison between D-BAT and Teney et al. (2021) with hyperparameters yielding an
accuracy (test-acc) close to 1 while maximizing the randomized-accuracy (r-acc). We run 5 different
seeds for Teney et al. (2021), each run consisting in two classification heads and a shared encoder
chosen to be the identity (a) or a CNN encoder (b). The acc and r-acc are displayed for the 10
resulting classification heads. We compared with two models obtained using D-BAT, the first model
learning the simplest feature is in the bottom right corner, and the second model trained with diversity
is in the top right corner. We observe that the method of Teney et al. (2021) is only marginally
improving the randomized-acc.
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F.2 COMPARISON WITH ZHANG ET AL. (2021)

In their work, Zhang et al. (2021) argue that while a model can be biased, there exist unbiased func-
tional subnetworks. They introduced Modular Risk Minimization (MRM) to find those subnetworks.
We implemented the MRM method (Alg.1 from their paper) and tested it on our MM-Dominoes
dataset (§ 4.1). We observed that their approach cannot handle the extreme case we consider where
the spurious feature is fully predictive in the train distribution (but not in OOD). They need it to be,
say, only 90% predictive. On our dataset, in the first phase of Alg.1, the model trained on the source
task learns to completely ignore the bottom row due to the extreme simplicity bias, ensuring there is
no useful sub-network. We found the randomized-accuracy of subnetworks obtained with MRM to
be no better than random. This is because, in extreme cases, the network which the simplicity bias
pushes us to learn may completely ignore the actual feature and instead only focuses on the spurious
feature. In such a case, there is no un-biased subnetwork.

F.3 COMPARISON WITH SAITO ET AL. (2017)

Contrary to Saito et al. (2017), we aim to train an ensemble of predictors able to generalize to
unknown target tasks and do not assume access to the target data. In particular, the unlabelled OOD
data we need can be different from the downstream transfer target data. We make this distinction
clear in § 4.1 where D(3)

ood for the dominoes datasets are built using combinations of 1s and 0s with
images from classes not present in the target and source tasks. Despite the lack of target data, the
r-acc improves by resp. 28% and 38% for the MM-Dominoes and MF-Dominoes datasets. Further,
we focus on mitigating extreme simplicity bias as described by Shah et al. (2020), where a spurious
feature can have the same predictive power as a non-spurious one on the source task (but not on
the unknown target task). While (Saito et al., 2017) uses the concept of diversity, their formulation
measures diversity in temrs of the inner-product between the weights. However, since neural networks
are highly non-convex, it is possible for two networks to effectively learn the exact same function
which relies on spurious features, while still having different parameterization. Thus, our method
can be viewed as “functional” extension of the method in (Shah et al., 2020). Further, the encoder F
itself can learn a representation such that F1 and F2 rely on the same information while minimizing
the regularizer.

To see this, we trained the method of Alg.1 from (Saito et al., 2017) on our MM-Dominoes dataset.
Tuning λ ∈ {0.1, 1, 10, 100}, we were unable to learn a model Ft which transfers to the target task.

F.4 COMPARISON WITH SAITO ET AL. (2018)

Contrary to Saito et al. (2018), we do not aim at training a domain agnostic representation, but
instead on overcoming simplicity bias to generalize to OOD settings. E.g. in colored MNIST, a
classifier which throws out the shape and simply uses color (or vice-versa) is domain agnostic. But
for overcoming spurious features, models in our ensemble would need to use both color and digit.
Thus a domain agnostic representation is insufficient for OOD generalization.

Furthermore, the training procedure of (Saito et al., 2018) consists in first training a shared feature
extractor G and two classification heads F1 and F2 to minimize the cross-entropy on the source
task. In a second step the classification heads F1 and F2 are trained to increase the discrepancy on
samples from the target distribution while fixing the feature extractor G. However, in the case where
a spurious feature is as predictive as the non-spurious one — as in our experiments of § 4.1 — the
extreme simplicity bias would force the feature extractor to become invariant to the complex feature.
The second and third steps of the algorithm would fail from there.

F.5 COMPARISON WITH NAM ET AL. (2020)

In this work, two models are trained simultaneously, one being the biased model while the other
is the debiased model. During training, the first model gives higher weights to training samples
agreeing with the current bias of the model. On the other hand, the second model learns by giving
higher weights to training samples conflicting with the biased model. In order to work, the algorithm
considers that the ratio of bias-aligned samples is smaller than 100%, which is not the case for our
datasets in § 4.1). In these challenging datasets, where the biased feature is as predictive as the not
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biased feature, the second model fails to find bias-conflicting samples, hence would fail to de-biased
itself. For this reason, the work of Nam et al. (2020) fails to counter extreme simplicity bias.

F.6 COMPARISON WITH LIU ET AL. (2021A)

The work of Liu et al. (2021a) is similar to the work of Nam et al. (2020) and shares the same
limitation. A first model is trained through ERM before a second model trained by upweighting the
samples misclassified in by the first model. This method, as for Nam et al. (2020), is failing to induce
diversity when all the samples are correctly classify by the first model, as this is the case for our
datasets in § 4.1.

We implemented the JTT method from Liu et al. (2021a) and report test accuracies on the Waterbird,
Camelyon17, and Office-Home datasets in Table 2. We tuned T , the number of epochs for the first
model, in {1, 2, 5, 10, 20, 60}. We tune the upsampling weight λ in {6, 50, 100}. We pick the model
with best validation accuracy.

Table 2: Comparison between ERM, D-BAT, and JTT. For JTT, results are reported for a single
seed. While JTT is efficient when small sub-groups are present in the data —as it is the case in the
Waterbirds dataset— the method fails to significantly improve upon ERM when the distribution shift
is more severe as in the Office-Home and Camelyon17 datasets.

Method Waterbirds Office-Home Camelyon17

ERM 86.0 50.4 80.3
JTT 91.6 49.3 81.0
D-BAT (ours) 88.7 51.1 93.1

F.7 COMPARISON WITH LEE ET AL. (2022)

The concurrent work of Lee et al. (2022) proposes to measure diversity between two models using the
mutual information (MI) between their predictions on the entire OOD distribution, whereas our loss
is defined on the per datapoint difference in the predictions. This means that our loss decomposes
as a sum over the data-points and is well defined on small mini-batches. Computing the mutual
information (MI) needs processing the entirety(or at least a very large part) of the data. Besides
such practical advantages, our notion of diversity naturally arises out of discrepancy based domain
adaptation theory, whereas the choice of using MI is ad-hoc and in fact may not give the expected
results. Consider the toy-problem in Fig.3 of Lee et al. (2022) - the predictions of the two models
actually have maximum mutual information since they predict the exact opposite on all the unlabelled
perturbation data. Thus, MI would say that the two models actually have zero diversity, whereas
discrepancy would say they have very high diversity. Hence, MI is theoretically the wrong measure to
use. We confirmed this intuition by running experiments on the same setup as in Lee et al. (2022), we
compared for the two notions of diversity (MI and discrepancy) which pairs of predictor are optimal.
Results can be seen in Fig. 17.
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(a) Experimental setup
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Figure 17: Disagreement and mutual information of potential second models h2. In (a) we summarize
the experimental setup which is similar to Fig.3 of Lee et al. (2022). The training data consists of
the diagonal regions of [0, 1]× [−1, 0] as class 1 (positive), and [−1, 0]× [0, 1] as class 2 (negative).
OOD datapoints X̃ are sampled randomly in the off-diagonal [−1, 0]2 and [0, 1]2 regions. The set of
hyperplanes hθ with θ ∈ [0, π/2] all achieve a perfect train accuracy. We fix the first classifier to be
the horizontal h1 = hθ=0 classifier. Then, we measure the disagreement between h1 and different
choices of h2 = hθ (in b), as well as their mutual information (in c) using the code provided in (Lee
et al., 2022). Maximizing the disagreement yields the correct vertical classifier h2 = h

θ=
π
2

, whereas
minimizing mutual information would yield the wrong diagonal classifier. The disagreement scores
match intuitive definitions of diversity, whereas mutual information does not.
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