K-Medoids for K-Means Seeding

James Newling Francois Fleuret
Idiap Research Institue and Idiap Research Institue and
Ecole polytechnique fédérale de Lausanne Ecole polytechnique fédérale de Lausanne
james.newling@idiap.ch francois.fleuret@idiap.ch
Abstract

We show experimentally that the algorithm clarans of Ng and Han (1994) finds
better K -medoids solutions than the Voronoi iteration algorithm of Hastie et al.
(2001). This finding, along with the similarity between the Voronoi iteration algo-
rithm and Lloyd’s K -means algorithm, motivates us to use clarans as a K -means
initializer. We show that clarans outperforms other algorithms on 23/23 datasets
with a mean decrease over k-means—++ (Arthur and Vassilvitskii, 2007) of 30%
for initialization mean squared error (MSE) and 3% for final MSE. We introduce
algorithmic improvements to clarans which improve its complexity and runtime,
making it a viable initialization scheme for large datasets.

1 Introduction

1.1 K-means and K-medoids

The K-means problem is to find a partitioning of points, so as to minimize the sum of the squares
of the distances from points to their assigned partition’s mean. In general this problem is NP-hard,
and in practice approximation algorithms are used. The most popular of these is Lloyd’s algorithm,
henceforth 11oyd, which alternates between freezing centers and assignments, while updating the
other. Specifically, in the assignment step, for each point the nearest (frozen) center is determined.
Then during the update step, each center is set to the mean of points assigned to it. 1loyd has
applications in data compression, data classification, density estimation and many other areas, and
was recognised in Wu et al. (2008) as one of the top-10 algorithms in data mining.

The closely related K-medoids problem differs in that the center of a cluster is its medoid, not its
mean, where the medoid is the cluster member which minimizes the sum of dissimilarities between
itself and other cluster members. In this paper, as our application is K -means initialization, we focus
on the case where dissimilarity is squared distance, although K -medoids generalizes to non-metric
spaces and arbitrary dissimilarity measures, as discussed in §SM-A.

By modifying the update step in 11oyd to compute medoids instead of means, a viable K -medoids
algorithm is obtained. This algorithm has been proposed at least twice (Hastie et al., 2001; Park and
Jun, 2009) and is often referred to as the Voronoi iteration algorithm. We refer to it as med1loyd.

Another K-medoids algorithm is clarans of Ng and Han (1994, 2002), for which there is no direct
K-means equivalent. It works by randomly proposing swaps between medoids and non-medoids,
accepting only those which decrease MSE. We will discuss how clarans works, what advantages
it has over med11loyd, and our motivation for using it for K -means initialization in §2 and §SM-A.

1.2 K -means initialization

1loyd is a local algorithm, in that far removed centers and points do not directly influence each
other. This property contributes to 11oyd’s tendency to terminate in poor minima if not well initial-

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

initial: ® initial: * ®
final: ® final: * O *

Figure 1: N = 3 points, to be partitioned into K = 2 clusters with 1loyd, with two possible
initializations (top) and their solutions (bottom). Colors denote clusters, stars denote samples, rings
denote means. Initialization with clarans enables jumping between the initializations on the left
and right, ensuring that when 11oyd eventually runs it avoids the local minimum on the left.

ized. Good initialization is key to guaranteeing that the refinement performed by 11oyd is done in
the vicinity of a good solution, an example showing this is given in Figure 1.

In the comparative study of K-means initialization methods of Celebi et al. (2013), 8 schemes
are tested across a wide range of datasets. Comparison is done in terms of speed (time to run
initialization+11oyd) and energy (final MSE). They find that 3/8 schemes should be avoided, due to
poor performance. One of these schemes is uniform initialization, henceforth uni, where K samples
are randomly selected to initialize centers. Of the remaining 5/8 schemes, there is no clear best, with
results varying across datasets, but the authors suggest that the algorithm of Bradley and Fayyad
(1998), henceforth bf, is a good choice.

The bf scheme of Bradley and Fayyad (1998) works as follows. Samples are separated into J
(= 10) partitions. 11oyd with uni initialization is performed on each of the partitions, providing J
centroid sets of size K. A superset of JK elements is created by concatenating the .J center sets.
1lloyd is then run J times on the superset, initialized at each run with a distinct center set. The
center set which obtains the lowest MSE on the superset is taken as the final initializer for the final
run of 11oyd on all N samples.

Probably the most widely implemented initialization scheme other than uni is k-means++ (Arthur
and Vassilvitskii, 2007), henceforth km++. Its popularity stems from its simplicity, low computa-
tional complexity, theoretical guarantees, and strong experimental support. The algorithm works by
sequentially selecting K seeding samples. At each iteration, a sample is selected with probability
proportional to the square of its distance to the nearest previously selected sample.

The work of Bachem et al. (2016) focused on developing sampling schemes to accelerate km++,
while maintaining its theoretical guarantees. Their algorithm afk-mc? results in as good initializa-
tions as km++, while using only a small fraction of the K IV distance calculations required by km++.
This reduction is important for massive datasets.

In none of the 4 schemes discussed is a center ever replaced once selected. Such refinement is only
performed during the running of 11loyd. In this paper we show that performing refinement during
initialization with clarans, before the final 110yd refinement, significantly lowers K -means MSEs.

1.3 Our contribution and paper summary

We compare the K-medoids algorithms clarans and med1lloyd, finding that clarans finds better
local minima, in §3 and §SM-A. We offer an explanation for this, which motivates the use of
clarans for initializing 11loyd (Figure 2). We discuss the complexity of clarans, and briefly
show how it can be optimised in §4, with a full presentation of acceleration techniques in §SM-D.

Most significantly, we compare clarans with methods uni, bf, km++ and afk-mc? for K-means
initialization, and show that it provides significant reductions in initialization and final MSEs in
§5. We thus provide a conceptually simple initialization scheme which is demonstrably better than
km++, which has been the de facto initialization method for one decade now.

Our source code at https://github.com/idiap/zentas is available under an open source li-
cense. It consists of a C++ library with Python interface, with several examples for diverse data types
(sequence data, sparse and dense vectors), metrics (Levenshtein, 1, etc.) and potentials (quadratic
as in K -means, logarithmic, etc.).

1.4 Other Related Works

Alternatives to 11oyd have been considered which resemble the swapping approach of clarans.
One is by Hartigan (1975), where points are randomly selected and reassigned. Telgarsky and

Vattani (2010) show how this heuristic can result in better clustering when there are few points per
cluster.

The work most similar to clarans in the K-means setting is that of Kanungo et al. (2002), where
it is indirectly shown that clarans finds a solution within a factor 25 of the optimal K -medoids
clustering. The local search approximation algorithm they propose is a hybrid of clarans and
lloyd, alternating between the two, with sampling from a kd-tree during the clarans-like step.
Their source code includes an implementation of an algorithm they call ‘Swap’, which is exactly the
clarans algorithm of Ng and Han (1994).

2 Two K-medoids algorithms

Like km++ and afk-mc?, K -medoids generalizes beyond the standard K -means setting of Euclidean
metric with quadratic potential, but we consider only the standard setting in the main body of this
paper, referring the reader to SM-A for a more general presentation. In Algorithm 1, med1lloyd is
presented. It is essentially 11oyd with the update step modified for K -medoids.

Algorithm 1 two-step iterative med1lloyd algo- Algorithm 2 swap-based clarans algorithm (in
rithm (in vector space with quadratic potential). a vector space and with quadratic potential).

1: Initialize center indices ¢(k), as distinct el- 1 1 <= 0

ements of {1,...,N}, where index k € 2: Initialize center indices C C {1,..., N}

{L,..., K}. 3 Y e 3L mingee [l2() — ()]
2: do 4: while n,, < N,. do
33 fori=1:Ndo 5 samplei_ € Cand iy € {1,...,N}\C
4: a(i) + argmin |lz(i)—z(c(k))[]* . v, N

ke{l,..,.K}) + =1 . 12
5. end for 7 mingeeygiopuginy 1206 — (@)
6: fork=1:Kdo 8: iy, <y_then
7: (k) 181 €« CO\ {L—} U {12+}
. . . : ny < U, B
8: ars min Z lz@ =@ 11 ese !
ca(i)=k i:a(i')=k 12:
: Ny < n, +1

9: end for 13: end if
10: while c¢(k) changed for at least one k 14: end while

In Algorithm 2, clarans is presented. Following a random initialization of the K centers (line
2), it proceeds by repeatedly proposing a random swap (line 5) between a center (i_) and a non-
center (i4). If a swap results in a reduction in energy (line 8), it is implemented (line 9). clarans
terminates when N,. consecutive proposals have been rejected. Alternative stopping criteria could
be number of accepted swaps, rate of energy decrease or time. We use N, = K2 throughout, as this
makes proposals between all pairs of clusters probable, assuming balanced cluster sizes.

clarans was not the first swap-based K-medoids algorithm, being preceded by pam and clara of
Kaufman and Rousseeuw (1990). It can however provide better complexity than other swap-based
algorithms if certain optimisations are used, as discussed in §4.

When updating centers in 11oyd and medlloyd, assignments are frozen. In contrast, with swap-
based algorithms such as clarans, assignments change along with the medoid index being changed
(i— to 74). As a consequence, swap-based algorithms look one step further ahead when computing
MSE:s, which helps them escape from the minima of med1loyd. This is described in Figure 2.

3 A Simple Simulation Study for Illustration

We generate simple 2-D data, and compare medlloyd, clarans, and baseline K -means initializers
km++ and uni, in terms of MSEs. The data is described in Figure 3, where sample initializations
are also presented. Results in Figure 4 show that clarans provides significantly lower MSEs than
medlloyd, an observation which generalizes across data types (sequence, sparse, etc), metrics (Lev-
enshtein, [, etc), and potentials (exponential, logarithmic, etc), as shown in Appendix SM-A.

® 2(3) o 2(5)
e (1 e (4 o (7
(1) 2(2) (4) . 2(6) (7)

Figure 2: Example with N = 7 samples, of which K = 2 are medoids. Current medoid indices
are 1 and 4. Using medlloyd, this is a local minimum, with final clusters {z(1)}, and the rest.
clarans may consider swap (i—,i+) = (4,7) and so escape to a lower MSE. The key to swap-
based algorithms is that cluster assignments are never frozen. Specifically, when considering the

swap of £(4) and z(7), clarans assigns z(2), 2(3) and 2(4) to the cluster of (1) before computing
the new MSE.

Figure 3: (Column 1) Simu-
lated data in R2. For each
cluster center g € {0,...,19}2,
100 points are drawn from
N(g,02I), illustrated here for
o € {279,274 272}, (Columns
2,3,4,5) Sample initializations.
We observe ‘holes’ for meth-
ods uni, medlloyd and km++.
clarans successfully fills holes
by removing distant, under-
utilised centers. The spatial
correlation of medlloyd’s holes
are due to its locality of updating.

uni medlloyd ++ clarans

4 Complexity and Accelerations

1lloyd requires K N distance calculations to update K centers, assuming no acceleration technique
such as that of Elkan (2003) is used. The cost of several iterations of 11oyd outweighs initialization
with any of uni, km++ and afk-mcZ. We ask if the same is true with clarans initialization, and
find that the answer depends on how clarans is implemented. clarans as presented in Ng and
Han (1994) is O(N?) in computation and memory, making it unusable for large datasets. To make
clarans scalable, we have investigated ways of implementing it in O(/N) memory, and devised
optimisations which make its complexity equivalent to that of 11oyd.

clarans consists of two main steps. The first is swap evaluation (line 6) and the second is swap
implementation (scope of if-statement at line 8). Proposing a good swap becomes less probable as
MSE decreases, thus as the number of swap implementations increases the number of consecutive
rejected proposals (n,.) is likely to grow large, illustrated in Figure 5. This results in a larger fraction
of time being spent in the evaluation step.

T T T T T T T T

Q Q 210 *medlloyd 7]

3| KR 212 uni 4

2 98 C

2 E o4 [* clarans

= ® 90f

g —4 I I I I I I I I] Lé 2—4 [I I I I I I I I
2—102—9 2—8 2—7 2—6 2—5 2—4 2—3 2—2 2—1 2—102—9 2—8 2—7 2—6 2—5 2—4 2—3 2—2 2—1

g ag

Figure 4: Results on simulated data. For 400 values of o € [2719, 271], initialization (left) and final
(right) MSEs relative to true cluster variances. For o € [275,272] km++ never results in minimal
MSE (MSE/ 0? = 1), while clarans does for all o. Initialization MSE with med11loyd is on
average 4 times lower than with uni, but most of this improvement is regained when 1loyd is
subsequently run (final M SE/o?).

=

\v]
=
o

T

[N}
o
=N

evaluations

500 1000 1500 2000]
accepted swaps (implementations)

Figure 5: The number of consecutive swap proposal rejections (evaluations) before one is accepted
(implementations), for simulated data (§3) with o = 274,

We will now discuss optimisations in order of increasing algorithmic complexity, presenting their
computational complexities in terms of evaluation and implementation steps. The explanations here
are high level, with algorithmic details and pseudocode deferred to §SM-D.

Level -2 To evaluate swaps (line 6), simply compute all K N distances.

Level -1 Keep track of nearest centers. Now to evaluate a swap, samples whose nearest center is
2 (i) need distances to all K samples indexed by C \ {i_} U {i1 } computed in order to determine
the new nearest. Samples whose nearest is not 2(¢_) only need the distance to z (i) computed to
determine their nearest, as either, (1) their nearest is unchanged, or (2) it is (i).

Level 0 Also keep track of second nearest centers, as in the implementation of Ng and Han (1994),
which recall is O(NN?) in memory and computes all distances upfront. Doing so, nearest centers
can be determined for all samples by computing distances to x(i4). If swap (i_,iy) is accepted,
samples whose new nearest is (i) require K distance calculations to recompute second nearests.
Thus from level -1 to 0, computation is transferred from evaluation to implementation, which is
good, as implementation is less frequently performed, as illustrated in Figure 5.

Level 1 Also keep track, for each cluster center, of the distance to the furthest cluster member
as well as the maximum, over all cluster members, of the minimum distance to another center.
Using the triangle inequality, one can then frequently eliminate computation for clusters which are
unchanged by proposed swaps with just a single center-to-center distance calculation. Note that
using the triangle inequality requires that the K -medoids dissimilarity is metric based, as is the case
in the K-means initialization setting.

Level 2 Also keep track of center-to-center distances. This allows whole clusters to be tagged as
unchanged by a swap, without computing any distances in the evaluation step.

We have also considered optimisations which, unlike levels -2 to 2, do not result in the exact same
clustering as clarans, but provide additional acceleration. One such optimisation uses random sub-
sampling to evaluate proposals, which helps significantly when N/ K is large. Another optimisation
which is effective during initial rounds is to not implement the first MSE reducing swap found, but
to rather continue searching for approximately as long as swap implementation takes, thus balancing
time between searching (evaluation) and implementing swaps. Details can be found in §SM-D.3.

The computational complexities of these optimisations are in Table 1. Proofs of these complexities
rely on there being O(N/K) samples changing their nearest or second nearest center during a swap.
In other words, for any two clusters of sizes 71 and ng, we assume n; = (n2). Using level 2
complexities, we see that if a fraction p(C) of proposals reduce MSE, then the expected complexity
isO(N(1+1/(p(C)K))). One cannot marginalise C out of the expectation, as C may have no MSE
reducing swaps, that is p(C) = 0. If p(C) is O(K), we obtain complexity O(N) per swap, which
is equivalent to the O(K N) for K center updates of 11oyd. In Table 2, we consider run times and
distance calculation counts on simulated data at the various levels of optimisation.

5 Results

We first compare clarans with uni, km++, afk-mc? and bf on the first 23 publicly available
datasets in Table 3 (datasets 1-23). As noted in Celebi et al. (2013), it is common practice to
run initialization+11oyd several time and retain the solution with the lowest MSE. In Bachem et al.
(2016) methods are run a fixed number of times, and mean MSEs are compared. However, when
comparing minimum MSEs over several runs, one should take into account that methods vary in
their time requirements.

-2 -1 0 1 2
1 evaluation NK N N T+K X
1 implementation 1 1 N N N
K? evaluations, K implementations KN K?N K?N NK + K3 KN
memory N N N N N + K?

Table 1: The complexities at different levels of optimisation of evaluation and implementation, in
terms of required distance calculations, and overall memory. We see at level 2 that to perform K2
evaluations and K implementations is O(K N), equivalent to 11oyd.

) 1 0 1 o) Table 2: Total number of distance calculations
log,(#dcs) 44.1 36.5 355 29.4 26.7 (#dcs) and time required by clarans on sim-
time [s] ; - 407 192 15.6 ulation data of §3 with o = 27 at different opti-

misation levels.

dataset # N dim K TL]g]

dataset N dim K TL |s
N 7% T 19[4] housec8 12 34112 3 400 18.71
KDD* 13 145751 74 200 998.83
a2 2550 2 70 137 ,
mnist 14 10000 784 300 233.48
a3 37500 2 100 1.69 :
. Mopsi 15 13467 2 100 2.14
birchl 4 100000 2 200 21.13 &
! ma* 16 20000 8 200 6.84
birch2 5 100000 2 200 15.29
: sl 17 5000 2 30 120
birch3 6 100000 2 200 16.38
s2 18 5000 2 30 150
ConfLong 7 164860 3 22 30.74
! 3 19 5000 2 30 139
dim032 8 1024 32 32 113
! s4 20 5000 2 30 144
dim064 9 1024 64 32 1.19 \
: song® 21 20000 90 200 71.10
dim1024 10 1024 1024 32 768 O S SO0 T S0 5%
europe 11 169308 2 1000 166.08 Y ‘

yeast 23 1484 8 40 1.23

Table 3: The 23 datasets. Column ‘TL’ is time allocated to run with each initialization scheme, so
that no new runs start after TL elapsed seconds. The starred datasets are those used in Bachem et al.
(2016), the remainder are available at https://cs. joensuu.fi/sipu/datasets.

Rather than run each method a fixed number of times, we therefore run each method as many times
as possible in a given time limit, ‘TL’. This dataset dependent time limit, given by columns TL in
Table 3, is taken as 80x the time of a single run of km+++11oyd. The numbers of runs completed
in time TL by each method are in columns 1-5 of Table 4. Recall that our stopping criterion for
clarans is K? consecutively rejected swap proposals. We have also experimented with stopping
criterion based on run time and number of swaps implemented, but find that stopping based on num-
ber of rejected swaps best guarantees convergence. We use K2 rejections for simplicity, although
have found that fewer than K2 are in general needed to obtain minimal MSEs.

We use the fast 11oyd implementation accompanying Newling and Fleuret (2016) with the ‘auto’
flag set to select the best exact accelerated algorithm, and run until complete convergence. For
initializations, we use our own C++/Cython implementation of level 2 optimised clarans, the im-
plementation of afk-mc? of Bachem et al. (2016), and km++ and bf of Newling and Fleuret (2016).

The objective of Bachem et al. (2016) was to prove and experimentally validate that afk-mc? pro-
duces initialization MSEs equivalent to those of km++, and as such 11oyd was not run during ex-
periments. We consider both initialization MSE, as in Bachem et al. (2016), and final MSE after
1loyd has run. The latter is particularly important, as it is the objective we wish to minimize in the
K-means problem.

In addition to considering initialization and final MSEs, we also distinguish between mean and
minimum MSEs. We believe the latter is important as it captures the varying time requirements,
and as mentioned it is common to run 11oyd several times and retain the lowest MSE clustering. In
Table 4 we consider two MSEs, namely mean initialization MSE and minimum final MSE.

runs completed mean initial mse minimum final mse

MO Us! MAN Es (Ug M s (dg
Er 5 B 3 p %8 5 <f|sr 88 8 5 <F
135 65 138 8 097 2 0.63]059 058 059 061 0.57
81 24 8 5 099 196 0.62| 0.6 059 061 0.63 0.58
82 21 87 6 099 207 0.63| 0.6 061 062 063 0.59
79 27 95 28 099 154 0.69|0.66 066 066 0.66 0.66
8 22 137 27 1 38 0.62| 062 062 064 063 0.59
68 22 77 23 098 235 0.67|0.64 0.64 0.68 0.68 0.63
84 66 75 38 1 1.17 073 | 0.64 0.64 0.64 0.64 0.64
84 29 88 5 098 43.1 0.65|0.65 0.65 0.66 0.66 0.63
81 29 90 5 1.01 >10* 0.66 | 0.66 0.66 0.66 0.69 0.63

0.99 >102 0.72|0.62 061 0.62 0.62 0.59
1 202 0.72 | 0.67 0.67 225 24 0.64
099 209 077 0.7 0.7 0.73 0.74 0.69
1 4 0771069 0.69 0.75 0.75 0.69
1 1 087| 06 06 06 061 0.6
1 25 0.6 | 057 057 371 3.62 051
099 245 0.62|062 061 218 242 0.56
1.0o1 279 0.7 | 066 0.65 0.67 0.69 0.65
099 224 0.69 | 0.65 0.65 0.66 0.66 0.64
1.05 155 0.71|0.65 0.65 0.66 0.67 0.65
1.01 1.65 0.71] 0.65 0.64 0.64 0.65 0.64
1 1.14 0.8 | 0.67 0.66 0.71 0.7 0.65
1 1.04 0.81|0.69 0.69 0.69 0.69 0.69
1 1.18 0.74 | 0.65 0.65 0.65 0.67 0.64
1 471 0.7 |064 064 079 0.8 0.62

144 52 311 24
70 25 28 15
80 27 81 21
102 74 65 56
88 43 276 83
91 23 52 7
107 28 86 28
84 31 8 5
100 39 100 7
88 36 83 6
88 36 87 6
9% 52 98 67
116 48 134 67
82 31 81 5
90 34 93 14

[N T N I N T N R N e N)
DN O O0RXAON NP D= ORI R W=

NN W N —_ = N | cla
~ W)]
N B~ Ou].[;.h.[; ";‘I;OOO\\DO‘\";O\ .b\]\o s
] e e e e e e e e e e e e e e e e e e | Em

)
8

Table 4: Summary of results on the 23 datasets (rows). Columns 1 to 5 contain the number of initial-
ization+11oyd runs completed in time limit TL. Columns 6 to 14 contain MSEs relative to the mean
initialization MSE of km++. Columns 6 to 9 are mean MSEs after initialization but before 11oyd,
and columns 10 to 14 are minimum MSEs after 11oyd. The final row (gm) contains geometric
means of all columns. clarans consistently obtains the lowest across all MSE measurements, and
has a 30% lower initialization MSE than km++ and afk-mc2, and a 3% lower final minimum MSE.

giég;llL I iii:ij_llilttj_:
g% e == DD H - m " o= B
el H :
ERTIVITIVLL LRI T e
5 0l — Hlens |
20 o I
ool T?TTTffggTFTTT:?TTTTTTT

10 11 12 13 14 15 16 17 18 19 20 21 22 23
dataset

Figure 6: Initialization (above) and final (below) MSEs for km++ (left bars) and clarans (right
bars), with minumum (1), mean (2) and mean + standard deviation (3) of MSE across all runs. For
all initialization MSEs and most final MSEs, the lowest km++ MSE is several standard deviations
higher than the mean clarans MSE.

5.1 Baseline performance

We briefly discuss findings related to algorithms uni, bf, afk-mc? and km++. Results in Table 4
corroborate the previously established finding that uni is vastly outperformed by km++, both in
initialization and final MSEs. Table 4 results also agree with the finding of Bachem et al. (2016)
that initialization MSEs with afk-mc? are indistinguishable from those of km++, and moreover that
final MSEs are indistinguishable. We observe in our experiments that runs with km++ are faster than
those with afk-mc? (columns 1 and 2 of Table 4). We attribute this to the fast blas-based km++
implementation of Newling and Fleuret (2016).

Our final baseline finding is that MSEs obtained with bf are in general no better than those with uni.
This is not in strict agreement with the findings of Celebi et al. (2013). We attribute this discrepancy
to the fact that experiments in Celebi et al. (2013) are in the low K regime (K < 50, N/K > 100).
Note that Table 4 does not contain initialization MSEs for bf, as bf does not initialize with data
points but with means of sub-samples, and it would thus not make sense to compare bf initialization
with the 4 seeding methods.

5.2 clarans performance

Having established that the best baselines are km++ and afk-mc?, and that they provide clusterings
of indistinguishable quality, we now focus on the central comparison of this paper, that between
km++ with clarans. In Figure 6 we present bar plots summarising all runs on all 23 datasets. We
observe a very low variance in the initialization MSEs of clarans. We speculatively hypothesize
that clarans often finds a globally minimal initialization. Figure 6 shows that clarans provides
significantly lower initialization MSEs than km++.

The final MSEs are also significantly better when initialization is done with clarans, although the
gap in MSE between clarans and km++ is reduced when 11oyd has run. Note, as seen in Table 4,
that all 5 initializations for dataset 7 result in equally good clusterings.

As a supplementary experiment, we considered initialising with km++ and clarans in series, thus
using the three stage clustering km+++clarans+11loyd. We find that this can be slightly faster than
just clarans+1loyd with identical MSEs. Results of this experiment are presented in §SM-1. We
perform a final experiment measure the dependence of improvement on K in §SM-I, where we see
the improvement is most significant for large K.

6 Conclusion and Future Works

In this paper, we have demonstrated the effectiveness of the algorithm clarans at solving the k-
medoids problem. We have described techniques for accelerating clarans, and most importantly
shown that clarans works very effectively as an initializer for 11oyd, outperforming other initial-
ization schemes, such as km++, on 23 datasets.

An interesting direction for future work might be to develop further optimisations for clarans. One
idea could be to use importance sampling to rapidly obtain good estimates of post-swap energies.
Another might be to propose two swaps simultaneously, as considered in Kanungo et al. (2002),
which could potentially lead to even better solutions, although we have hypothesized that clarans
is already finding globally optimal initializations.

All source code is made available under a public license. It consists of generic C++ code which
can be extended to various data types and metrics, compiling to a shared library with extensions in
Cython for a Python interface. It can currently be found in the git repository https://github.
com/idiap/zentas.

Acknowledgments

James Newling was funded by the Hasler Foundation under the grant 13018 MASH?2.

References

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. In Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA *07, pages
1027-1035, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

Bachem, O., Lucic, M., Hassani, S. H., and Krause, A. (2016). Fast and provably good seedings for
k-means. In Neural Information Processing Systems (NIPS).

Bradley, P. S. and Fayyad, U. M. (1998). Refining initial points for k-means clustering. In Proceed-
ings of the Fifteenth International Conference on Machine Learning, ICML 98, pages 91-99,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Celebi, M. E., Kingravi, H. A., and Vela, P. A. (2013). A comparative study of efficient initialization
methods for the k-means clustering algorithm. Expert Syst. Appl., 40(1):200-210.

Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In Machine Learning, Pro-
ceedings of the Twentieth International Conference (ICML 2003), August 21-24, 2003, Washing-
ton, DC, USA, pages 147-153.

Hartigan, J. A. (1975). Clustering Algorithms. John Wiley & Sons, Inc., New York, NY, USA, 99th
edition.

Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2001). The elements of statistical learning : data
mining, inference, and prediction. Springer series in statistics. Springer, New York.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and Wu, A. Y. (2002).
A local search approximation algorithm for k-means clustering. In Proceedings of the Eighteenth
Annual Symposium on Computational Geometry, SCG *02, pages 10-18, New York, NY, USA.
ACM.

Kaufman, L. and Rousseeuw, P. J. (1990). Finding groups in data : an introduction to cluster
analysis. Wiley series in probability and mathematical statistics. Wiley, New York. A Wiley-
Interscience publication.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). Rcv1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5:361-397.

Newling, J. and Fleuret, F. (2016). Fast k-means with accurate bounds. In Proceedings of the
International Conference on Machine Learning (ICML), pages 936-944.

Ng, R. T. and Han, J. (1994). Efficient and effective clustering methods for spatial data mining. In
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB 94, pages
144-155, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Ng, R. T. and Han, J. (2002). Clarans: A method for clustering objects for spatial data mining. /EEE
Transactions on Knowledge and Data Engineering, pages 1003—-1017.

Park, H.-S. and Jun, C.-H. (2009). A simple and fast algorithm for k-medoids clustering. Expert
Syst. Appl., 36(2):3336-3341.

Telgarsky, M. and Vattani, A. (2010). Hartigan’s method: k-means clustering without voronoi. In
AISTATS, volume 9 of JMLR Proceedings, pages 820-827. JMLR.org.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu,
B., Yu, P, Zhou, Z.-H., Steinbach, M., Hand, D., and Steinberg, D. (2008). Top 10 algorithms in
data mining. Knowledge and Information Systems, 14(1):1-37.

Yujian, L. and Bo, L. (2007). A normalized levenshtein distance metric. IEEE Trans. Pattern Anal.
Mach. Intell., 29(6):1091-1095.

