
Nested Mini-Batch K-Means

James Newling
Idiap Research Institue & EPFL
james.newling@idiap.ch

François Fleuret
Idiap Research Institue & EPFL

francois.fleuret@idiap.ch

Abstract

A new algorithm is proposed which accelerates the mini-batch k-means algorithm
of Sculley (2010) by using the distance bounding approach of Elkan (2003). We
argue that, when incorporating distance bounds into a mini-batch algorithm, al-
ready used data should preferentially be reused. To this end we propose using
nested mini-batches, whereby data in a mini-batch at iteration t is automatically
reused at iteration t+ 1.
Using nested mini-batches presents two difficulties. The first is that unbalanced
use of data can bias estimates, which we resolve by ensuring that each data sample
contributes exactly once to centroids. The second is in choosing mini-batch sizes,
which we address by balancing premature fine-tuning of centroids with redun-
dancy induced slow-down. Experiments show that the resulting nmbatch algo-
rithm is very effective, often arriving within 1% of the empirical minimum 100×
earlier than the standard mini-batch algorithm.

1 Introduction

The k-means problem is to find k centroids to minimise the mean distance between samples and
their nearest centroids. Specifically, given N training samples X = {x(1), . . . , x(N)} in vector
space V , one must find C = {c(1), . . . , c(k)} in V to minimise energy E defined by,

E(C) = 1

N

N∑
i=1

‖x(i)− c(a(i))‖2, (1)

where a(i) = argminj∈{1,...,k} ‖x(i) − c(j)‖. In general the k-means problem is NP-hard, and so
a trade off must be made between low energy and low run time. The k-means problem arises in data
compression, classification, density estimation, and many other areas.

A popular algorithm for k-means is Lloyd’s algorithm, henceforth lloyd. It relies on a two-step
iterative refinement technique. In the assignment step, each sample is assigned to the cluster whose
centroid is nearest. In the update step, cluster centroids are updated in accordance with assigned
samples. lloyd is also referred to as the exact algorithm, which can lead to confusion as it does
not solve the k-means problem exactly. Similarly, approximate k-means algorithms often refer to
algorithms which perform an approximation in either the assignment or the update step of lloyd.

1.1 Previous works on accelerating the exact algorithm

Several approaches for accelerating lloyd have been proposed, where the required computation is
reduced without changing the final clustering. Hamerly (2010) shows that approaches relying on
triangle inequality based distance bounds (Phillips, 2002; Elkan, 2003; Hamerly, 2010) always pro-
vide greater speed-ups than those based on spatial data structures (Pelleg and Moore, 1999; Kanungo
et al., 2002). Improving bounding based methods remains an active area of research (Drake, 2013;
Ding et al., 2015). We discuss the bounding based approach in § 2.1.

1

1.2 Previous approximate k-means algorithms

The assignment step of lloyd requires more computation than the update step. The majority of
approximate algorithms thus focus on relaxing the assignment step, in one of two ways. The first is
to assign all data approximately, so that centroids are updated using all data, but some samples may
be incorrectly assigned. This is the approach used in Wang et al. (2012) with cluster closures. The
second approach is to exactly assign a fraction of data at each iteration. This is the approach used in
Agarwal et al. (2005), where a representative core-set is clustered, and in Bottou and Bengio (1995),
and Sculley (2010), where random samples are drawn at each iteration. Using only a fraction of data
is effective in reducing redundancy induced slow-downs.

The mini-batch k-means algorithm of Sculley (2010), henceforth mbatch, proceeds as follows. Cen-
troids are initialised as a random selection of k samples. Then at every iteration, b of N samples are
selected uniformly at random and assigned to clusters. Cluster centroids are updated as the mean
of all samples ever assigned to them, and are therefore running averages of assignments. Samples
randomly selected more often have more influence on centroids as they reappear more frequently in
running averages, although the law of large numbers smooths out any discrepancies in the long run.
mbatch is presented in greater detail in § 2.2.

1.3 Our contribution

The underlying goal of this work is to accelerate mbatch by using triangle inequality based distance
bounds. In so doing, we hope to merge the complementary strengths of two powerful and widely
used approaches for accelerating lloyd.

The effective incorporation of bounds into mbatch requires a new sampling approach. To see this,
first note that bounding can only accelerate the processing of samples which have already been
visited, as the first visit is used to establish bounds. Next, note that the expected proportion of visits
during the first epoch which are revisits is at most 1/e, as shown in SM-A. Thus the majority of
visits are first time visits and hence cannot be accelerated by bounds. However, for highly redundant
datasets, mbatch often obtains satisfactory clustering in a single epoch, and so bounds need to be
effective during the first epoch if they are to contribute more than a minor speed-up.

To better harness bounds, one must preferentially reuse already visited samples. To this end, we
propose nested mini-batches. Specifically, lettingMt ⊆ {1, . . . , N} be the mini-batch indices used
at iteration t ≥ 1, we enforce thatMt ⊆Mt+1. One concern with nesting is that samples entering
in early iterations have more influence than samples entering at late iterations, thereby introducing
bias. To resolve this problem, we enforce that samples appear at most once in running averages.
Specifically, when a sample is revisited, its old assignment is first removed before it is reassigned.
The idea of nested mini-batches is discussed in § 3.1.

The second challenge introduced by using nested mini-batches is determining the size ofMt. On
the one hand, ifMt grows too slowly, then one may suffer from premature fine-tuning. Specifically,
when updating centroids usingMt ⊂ {1, . . . , N}, one is using energy estimated on samples indexed
byMt as a proxy for energy over all N training samples. IfMt is small and the energy estimate
is poor, then minimising the energy estimate exactly is a waste of computation, as as soon as the
mini-batch is augmented the proxy energy loss function will change. On the other hand, if Mt

grows too rapidly, the problem of redundancy arises. Specifically, if centroid updates obtained with
a small fraction ofMt are similar to the updates obtained withMt, then it is waste of computation
usingMt in its entirety. These ideas are pursued in § 3.2.

2 Related works

2.1 Exact acceleration using the triangle inequality

The standard approach to perform the assignment step of lloyd requires k distance calculations.
The idea introduced in Elkan (2003) is to eliminate certain of these k calculations by maintaining
bounds on distances between samples and centroids. Several novel bounding based algorithms have
since been proposed, the most recent being the yinyang algorithm of Ding et al. (2015). A thorough
comparison of bounding based algorithms was presented in Drake (2013). We illustrate the basic

2

idea of Elkan (2003) in Alg. 1, where for every sample i, one maintains k lower bounds, l(i, j) for
j ∈ {1, . . . , k}, each bound satisfying l(i, j) ≤ ‖x(i)− c(j)‖. Before computing ‖x(i)− c(j)‖ on
line 4 of Alg. 1, one checks that l(i, j) < d(i), where d(i) is the distance from sample i to the nearest
currently found centroid. If l(i, j) ≥ d(i) then ‖x(i) − c(j)‖ ≥ d(i), and thus j can automatically
be eliminated as a nearest centroid candidate.

Algorithm 1 assignment-with-bounds(i)
1: d(i)← ‖x(i)− c(a(i))‖ . where d(i) is distance to nearest centroid found so far
2: for all j ∈ {1, . . . , k} \ {a(i)} do
3: if l(i, j) < d(i) then
4: l(i, j)← ‖x(i)− c(j)‖ . make lower bound on distance between x(i) and c(j) tight
5: if l(i, j) < d(i) then
6: a(i) = j
7: d(i) = l(i, j)
8: end if
9: end if

10: end for

The fully-fledged algorithm of Elkan (2003) uses additional tests to the one shown in Alg. 1, and
includes upper bounds and inter-centroid distances. The most recently published bounding based al-
gorithm, yinyang of Ding et al. (2015), is like that of Elkan (2003) but does not maintain bounds on
all k distances to centroids, rather it maintains lower bounds on groups of centroids simultaneously.

To maintain the validity of bounds, after each centroid update one performs l(i, j)← l(i, j)− p(j),
where p(j) is the distance moved by centroid j during the centroid update, the validity of this
correction follows from the triangle inequality. Lower bounds are initialised as exact distances in the
first iteration, and only in subsequent iterations can bounds help in eliminating distance calculations.
Therefore, the algorithm of Elkan (2003) and its derivatives are all at least as slow as lloyd during
the first iteration.

2.2 Mini-batch k-means

The work of Sculley (2010) introduces mbatch, presented in Alg. 4, as a scalable alternative to
lloyd. Reusing notation, we let the mini-batch size be b, and the total number of assignments ever
made to cluster j be v(j). Let S(j) be the cumulative sum of data samples assigned to cluster j.
The centroid update, line 9 of Alg. 4, is then c(j) ← S(j)/v(j). Sculley (2010) present mbatch in
the context sparse datasets, and at the end of each round an l1-sparsification operation is performed
to encourage sparsity. In this paper we are interested in mbatch in a more general context and do
not consider sparsification.

Algorithm 2 initialise-c-S-v
for j ∈ {1, . . . , k} do

c(j)← x(i) for some i ∈ {1, . . . , N}
S(j)← x(i)
v(j)← 1

end for

Algorithm 3 accumulate(i)
S(a(i))← S(a(i)) + x(i)
v(a(i))← v(a(i)) + 1

3 Nested mini-batch k-means : nmbatch

The bottleneck of mbatch is the assignment step, on line 5 of Alg. 4, which requires k distance
calculations per sample. The underlying motivation of this paper is to reduce the number of distance
calculations at assignment by using distance bounds. However, as already discussed in § 1.3, simply
wrapping line 5 in a bound test would not result in much gain, as only a minority of visited samples
would benefit from bounds in the first epoch. For this reason, we will replace random mini-batches
at line 3 of Alg. 4 by nested mini-batches. This modification motivates a change to the running
average centroid updates, discussed in Section 3.1. It also introduces the need for a scheme to

3

Algorithm 4 mbatch

1: initialise-c-S-v()
2: while convergence criterion not satisfied do
3: M ← uniform random sample of size b from {1, . . . , N}
4: for all i ∈M do
5: a(i)← argminj∈{1,...,k} ‖x(i)− c(j)‖
6: accumulate(i)
7: end for
8: for all j ∈ {1, . . . , k} do
9: c(j)← S(j)/v(j)

10: end for
11: end while

choose mini-batch sizes, discussed in 3.2. The resulting algorithm, which we refer to as nmbatch,
is presented in Alg. 5.

There is no random sampling in nmbatch, although an initial random shuffling of samples can be
performed to remove any ordering that may exist. Let bt be the size of the mini-batch at iteration
t, that is bt = |Mt|. We simply take Mt to be the first bt indices, that is Mt = {1, . . . , bt}.
Thus Mt ⊆ Mt+1 corresponds to bt ≤ bt+1. Let T be the number of iterations of nmbatch
before terminating. We use as stopping criterion that no assignments change on the full training set,
although this is not important and can be modified.

3.1 One sample, one vote : modifying cumulative sums to prevent duplicity

In mbatch, a sample used n times makes n contributions to one or more centroids, through line 6 of
Alg. 4. Due to the extreme and systematic difference in the number of times samples are used with
nested mini-batches, it is necessary to curtail any potential bias that duplicitous contribution may
incur. To this end, we only alow a sample’s most recent assignment to contribute to centroids. This
is done by removing old assignments before samples are reused, shown on lines 15 and 16 of Alg. 5.

3.2 Finding the sweet spot : balancing premature fine-tuning with redundancy

We now discuss how to sensibly select mini-batch size bt, where recall that the sample indices of the
mini-batch at iteration t areMt = {1, . . . , bt}. The only constraint imposed so far is that bt ≤ bt+1

for t ∈ {1, . . . , T − 1}, that is that bt does not decrease. We consider two extreme schemes to
illustrate the importance of finding a scheme where bt grows neither too rapidly nor too slowly.

The first extreme scheme is bt = N for t ∈ {1, . . . , T}. This is just a return to full batch k-means,
and thus redundancy is a problem, particularly at early iterations. The second extreme scheme,
whereMt grows very slowly, is the following: if any assignment changes at iteration t, then bt+1 =
bt, otherwise bt+1 = bt + 1. The problem with this second scheme is that computation may be
wasted in finding centroids which accurately minimise the energy estimated on unrepresentative
subsets of the full training set. This is what we refer to as premature fine-tuning.

To develop a scheme which balances redundancy and premature fine-tuning, we need to find sensible
definitions for these terms. A first attempt might be to define them in terms of energy (1), as this is
ultimately what we wish to minimise. Redundancy would correspond to a slow decrease in energy
caused by long iteration times, and premature fine-tuning would correspond to approaching a local
minimum of a poor proxy for (1). A difficulty with an energy based approach is that we do not want
to compute (1) at each iteration and there is no clear way to quantify the underestimation of (1) using
a mini-batch. We instead consider definitions based on centroid statistics.

3.2.1 Balancing intra-cluster standard deviation with centroid displacement

Let ct(j) denote centroid j at iteration t, and let ct+1(j|b) be ct+1(j) when Mt+1 = {1, . . . , b},
so that ct+1(j|b) is the update to ct(j) using samples {x(1), . . . , x(b)}. Consider two options,

4

Algorithm 5 nmbatch

1: t = 1 . Iteration number
2: M0 ← {}
3: M1 ← {1, . . . , bs} . Indices of samples in current mini-batch
4: initialise-c-S-v()
5: for j ∈ {1, . . . , k} do
6: sse(j)← 0 . Initialise sum of squares of samples in cluster j
7: end for
8: while stop condition is false do
9: for i ∈Mt−1 and j ∈ {1, . . . , k} do

10: l(i, j)← l(i, j)− p(j) . Update bounds of reused samples
11: end for
12: for i ∈Mt−1 do
13: aold(i)← a(i)
14: sse(aold(i))← sse(aold(i))− d(i)2 . Remove expired sse, S and v contributions
15: S(aold(i))← S(aold(i))− x(i)
16: v(aold(i))← v(aold(i))− 1
17: assignment-with-bounds(i) . Reset assignment a(i)
18: accumulate(i)
19: sse(a(i))← sse(a(i)) + d(i)2

20: end for
21: for i ∈Mt \Mt−1 and j ∈ {1, . . . , k} do
22: l(i, j)← ‖x(i)− c(j)‖ . Tight initialisation for new samples
23: end for
24: for i ∈Mt \Mt−1 do
25: a(i)← argminj∈{1,...,k} l(i, j)

26: d(i)← l(i, a(i))
27: accumulate(i)
28: sse(a(i))← sse(a(i)) + d(i)2

29: end for
30: for j ∈ {1, . . . , k} do
31: σ̂C(j)←

√
(sse(j))/ (v(j)(v(j)− 1))

32: cold(j)← c(j)
33: c(j)← S(j)/v(j)
34: p(j)← ‖c(j)− cold(j)‖
35: end for
36: if minj∈{1,...,k} (σ̂c(j)/p(j)) > ρ then . Check doubling condition
37: Mt+1 ← {1, . . . ,min (2|Mt|, N)}
38: else
39: Mt+1 ←Mt

40: end if
41: t← t+ 1
42: end while

bt+1 = bt with resulting update ct+1(j|bt), and bt+1 = 2bt with update ct+1(j|2bt). If,

‖ct+1(j|2bt)− ct+1(j|bt)‖ � ‖ct(j)− ct+1(j|bt)‖, (2)

then it makes little difference if centroid j is updated with bt+1 = bt or bt+1 = 2bt, as illustrated in
Figure 1, left. Using bt+1 = 2bt would therefore be redundant. If on the other hand,

‖ct+1(j|2bt)− ct+1(j|bt)‖ � ‖ct(j)− ct+1(j|bt)‖, (3)

this suggests premature fine-tuning, as illustrated in Figure 1, right. Balancing redundancy and
premature fine-tuning thus equates to balancing the terms on the left and right hand sides of (2)
and (3). Let us denote byMt(j) the indices of samples inMt assigned to cluster j. In SM-B we
show that the term on the left hand side of (2) and (3) can be estimated by 1

2 σ̂C(j), where

σ̂2
C(j) =

1

|Mt(j)|2
∑

i∈Mt(j)

‖x(i)− ct(j)‖2. (4)

5

•
•

•
• •

•

ct(j)

ct+1(j|bt)

ct+1(j|2bt)ct(j)
ct+1(j|2bt)

ct+1(j|bt)

Figure 1: Centroid based definitions of redundancy and premature fine-tuning. Starting from cen-
troid ct(j), the update can be performed with a mini-batch of size bt or 2bt. On the left, it makes
little difference and so using all 2bt points would be redundant. On the right, using 2bt samples
results in a much larger change to the centroid, suggesting that ct(j) is near to a local minimum of
energy computed on bt points, corresponding to premature fine-tuning.

σ̂C(j) may underestimate ‖ct+1(j|2bt) − ct+1(j|bt)‖ as samples {x(bt+1), . . . , x(2bt)} have not
been used by centroids at iteration t, however our goal here is to establish dimensional homogeneity.
The right hand sides of (2) and (3) can be estimated by the distance moved by centroid j in the
preceding iteration, which we denote by p(j). Balancing redundancy and premature fine-tuning
thus equates to preventing σ̂C(j)/p(j) from getting too large or too small.

It may be that σ̂C(j)/p(j) differs significantly between clusters j. It is not possible to independently
control the number of samples per cluster, and so a joint decision needs to be made by clusters as to
whether or not to increase bt. We choose to make the decision based on the minimum ratio, on line
37 of Alg. 5, as premature fine-tuning is less costly when performed on a small mini-batch, and so
it makes sense to allow slowly converging centroids to catch-up with rapidly converging ones.

The decision to use a double-or-nothing scheme for growing the mini-batch is motivated by the fact
that σ̂C(j) drops by a constant factor when the mini-batch doubles in size. A linearly increasing
mini-batch would be prone to premature fine-tuning as the mini-batch would not be able to grow
rapidly enough.

Starting with an initial mini-batch size b0, nmbatch iterates until minj σ̂C(j)/p(j) is above some
threshold ρ, at which point mini-batch size increases as bt ← min(2bt, N), shown on line 37 of
Alg. 5. The mini-batch size is guaranteed to eventually reach N , as p(j) eventually goes to zero.
The doubling threshold ρ reflects the relative costs of premature fine-tuning and redundancy.

3.3 A note on parallelisation

The parallelisation of nmbatch can be done in the same way as in mbatch, whereby a mini-batch
is simply split into sub-mini-batches to be distributed. For mbatch, the only constraint on sub-
mini-batches is that they are of equal size to guarantee equal processing times. With nmbatch the
constraint is slightly stricter, as the time required to process a sample depends on its time of entry into
the mini-batch, due to bounds. Samples from all iterations should thus be balanced, the constraint
becoming that each sub-mini-batch contains an equal number of samples fromMt \Mt−1 for all t.

4 Results

We have performed experiments on 3 dense datasets and sparse dataset used in Sculley (2010). The
INFMNIST dataset (Loosli et al., 2007) is an extension of MNIST, consisting of 28×28 hand-written
digits (d = 784). We use 400,000 such digits for performing k-means and 40,000 for computing a
validation energyEV . STL10P (Coates et al., 2011) consists of 6×6×3 image patches (d = 108), we
train with 960,000 patches and use 40,000 for validation. KDDC98 contains 75,000 training samples
and 20,000 validation samples, in 310 dimensions. Finally, the sparse RCV1 dataset of Lewis et al.
(2004) consists of data in 47,237 dimensions, with two partitions containing 781,265 and 23,149
samples respectively. As done in Sculley (2010), we use the larger partition to learn clusters.

The experimental setup used on each of the datasets is the following: for 20 random seeds, the
training dataset is shuffled and the first k datapoints are taken as initialising centroids. Then, for
each of the algorithms, k-means is run on the shuffled training set. At regular intervals, a validation
energy EV is computed on the validation set. The time taken to compute EV is not included in run
times. The batchsize for mbatch and initial batchsize for nmbatch are 5, 000, and k = 50 clusters.

6

10−1 100 101 102 103 104
0.00

0.02

0.04

0.06

0.08

0.10

(E
V
−
E
∗)
/E
∗

KDDC98

lloyd
yinyang
mbatch
nmbatch

10−1 100 101 102 103 104
0.00

0.01

0.02

0.03

0.04

0.05

0.06
INFMNIST

10−1 100 101 102 103 104

time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(E
V
−
E
∗)
/E
∗

RCV1

10−1 100 101 102 103 104

time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
STL10P

Figure 2: The mean energy on validation data (EV) relative to lowest energy (E∗) across 20 runs
with standard deviations. Baselines are lloyd, yinyang, and mbatch, shown with the new algo-
rithm nmbatch with ρ = 100. We see that nmbatch is consistently faster than all baselines, and
obtains final minima very similar to those obtained by the exact algorithms. On the sparse dataset
RCV1, the speed-up is noticeable within 0.5% of the empirical minimum E∗. On the three dense
datasets, the speed-up over mbatch is between 10× and 100× at 2% of E∗, with even greater
speed-ups below 2% where nmbatch converges very quickly to local minima.

10−1 100 101 102 103

ρ

0.00

0.01

0.02

0.03

0.04

0.05

(E
V
−
E
∗)
/E
∗

KDDC98

100 101 102 103

ρ

INFMNIST

100 101 102 103

ρ

STL10P

100 101 102 103

ρ

RCV1

t = 2s (active)
t = 10s (actve)
t = 2s (deactive)
t = 10s (deactive)

Figure 3: Relative errors on validation data at t ∈ {2, 10}, for nmbatch with and with bound tests,
for ρ ∈ {10−1, 100, 101, 102, 103}. In the standard case of active bound testing, large values of ρ
work well, as premature fine-tuning is less of a concern. However with the bound test deactivated,
premature fine-tuning becomes costly for large ρ, and an optimal ρ value is one which trades off
redundancy (ρ too small) and premature fine-tuning (ρ too large).

The mean and standard deviation of EV over the 20 runs are computed, and this is what is plotted
in Figure 2, relative to the lowest obtained validation energy over all runs on a dataset, E∗. Before
comparing algorithms, we note that our implementation of the baseline mbatch is competitive with
existing implementations, as shown in Appendix A.

7

In Figure 2, we plot time-energy curves for nmbatch with three baselines. We use ρ = 100, as
described in the following paragraph. On the 3 dense datasets, we see that nmbatch is much faster
than mbatch, obtaining a solution within 2% of E∗ between 10× and 100× earlier than mbatch.
On the sparse dataset RCV1, the speed-up becomes noticeable within 0.5% of E∗. Note that in a
single epoch nmbatch gets very near to E∗, whereas the full batch algorithms lloyd and yinyang
only complete one iteration. The mean final energies of nmbatch and the exact algorithms are
consistently within one initialisation standard deviation. This means that the random initialisation
seed has a larger impact on final energy than the choose between nmbatch and an exact algorithm.

We now discuss the choice of ρ. Recall that the mini-batch size doubles when minj σ̂C(j)/p(j) > ρ.
Thus a large ρ means smaller p(j)s are needed to invoke a doubling, which means less robustness
against premature fine-tuning. The relative costs of premature fine-tuning and redundancy are influ-
enced by the use of bounds. Consider the case of premature fine-tuning with bounds. p(j) becomes
small, and thus bound tests become more effective as they decrease more slowly (line 10 of Alg. 5).
Thus, while premature fine-tuning does result in more samples being visited than necessary, each
visit is processed rapidly and so is less costly. We have found that taking ρ to be large works well for
nmbatch. Indeed, there is little difference in performance for ρ ∈ {10, 100, 1000}. To test that our
formulation is sensible, we performed tests with the bound test (line 3 of Alg. 1) deactivated. When
deactivated, ρ = 10 is in general better than larger values of ρ, as seen in Figure 3. Full time-energy
curves for different ρ values are provided in SM-C.

5 Conclusion and future work

We have shown how triangle inequality based bounding can be used to accelerate mini-batch k-
means. The key is the use of nested batches, which enables rapid processing of already used samples.
The idea of replacing uniformly sampled mini-batches with nested mini-batches is quite general,
and applicable to other mini-batch algorithms. In particular, we believe that the sparse dictionary
learning algorithm of Mairal et al. (2009) could benefit from nesting. One could also consider
adapting nested mini-batches to stochastic gradient descent, although this is more speculative.

Celebi et al. (2013) show that specialised initialisation schemes such as k-means++ can result in
better clusterings. While this is not the case for the datasets we have used, it would be interesting to
consider adapting such initialisation schemes to the mini-batch context.

Our nested mini-batch algorithm nmbatch uses a very simple bounding scheme. We believe that
further improvements could be obtained through more advanced bounding, and that the memory
footprint of O(KN) could be reduced by using a scheme where, as the mini-batch grows, the num-
ber of bounds maintained decreases, so that bounds on groups of clusters merge.

A Comparing Baseline Implementations

We compare our implementation of mbatch with two publicly available implementations, that ac-
companying Sculley (2010) in C++, and that in scikit-learn Pedregosa et al. (2011), written in
Cython. Comparisons are presented in Table 1, where our implementations are seen to be com-
petitive. Experiments were all single threaded. Our C++ and Python code is available at https:
//github.com/idiap/eakmeans.

INFMNIST (dense) RCV1 (sparse)
ours sklearn ours sklearn sofia
12.4 20.6 15.2 63.6 23.3

Table 1: Comparing implementations of mbatch on INFMNIST (left) and RCV1 (right). Time in
seconds to processN datapoints, whereN = 400, 000 for INFMNIST andN = 781, 265 for RCV1.
Implementations are our own (ours), that in scikit-learn (sklearn), and that of Sculley (2010) (sofia).

Acknowledgments

James Newling was funded by the Hasler Foundation under the grant 13018 MASH2.

8

https://github.com/idiap/eakmeans
https://github.com/idiap/eakmeans

References
Agarwal, P. K., Har-Peled, S., and Varadarajan, K. R. (2005). Geometric approximation via core-

sets. In COMBINATORIAL AND COMPUTATIONAL GEOMETRY, MSRI, pages 1–30. University
Press.

Bottou, L. and Bengio, Y. (1995). Convergence properties of the K-means algorithm. pages 585–
592.

Celebi, M. E., Kingravi, H. A., and Vela, P. A. (2013). A comparative study of efficient initialization
methods for the k-means clustering algorithm. Expert Syst. Appl., 40(1):200–210.

Coates, A., Lee, H., and Ng, A. (2011). An analysis of single-layer networks in unsupervised feature
learning. In Gordon, G., Dunson, D., and Dudk, M., editors, Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, volume 15 of JMLR Workshop
and Conference Proceedings, pages 215–223. JMLR W&CP.

Ding, Y., Zhao, Y., Shen, X., Musuvathi, M., and Mytkowicz, T. (2015). Yinyang k-means: A
drop-in replacement of the classic k-means with consistent speedup. In Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages
579–587.

Drake, J. (2013). Faster k-means clustering. Accessed online 19 August 2015.
Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In Machine Learning, Pro-

ceedings of the Twentieth International Conference (ICML 2003), August 21-24, 2003, Washing-
ton, DC, USA, pages 147–153.

Hamerly, G. (2010). Making k-means even faster. In SDM, pages 130–140.
Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., and Wu, A. (2002). An effi-

cient k-means clustering algorithm: analysis and implementation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 24(7):881–892.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). Rcv1: A new benchmark collection for text
categorization research. JOURNAL OF MACHINE LEARNING RESEARCH, 5:361–397.

Loosli, G., Canu, S., and Bottou, L. (2007). Training invariant support vector machines using
selective sampling. In Bottou, L., Chapelle, O., DeCoste, D., and Weston, J., editors, Large Scale
Kernel Machines, pages 301–320. MIT Press, Cambridge, MA.

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009). Online dictionary learning for sparse coding.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09,
pages 689–696, New York, NY, USA. ACM.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pret-
tenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830.

Pelleg, D. and Moore, A. (1999). Accelerating exact k-means algorithms with geometric reasoning.
In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’99, pages 277–281, New York, NY, USA. ACM.

Phillips, S. (2002). Acceleration of k-means and related clustering algorithms. volume 2409 of
Lecture Notes in Computer Science. Springer.

Sculley, D. (2010). Web-scale k-means clustering. In Proceedings of the 19th International Confer-
ence on World Wide Web, WWW ’10, pages 1177–1178, New York, NY, USA. ACM.

Wang, J., Wang, J., Ke, Q., Zeng, G., and Li, S. (2012). Fast approximate k-means via cluster
closures. In CVPR, pages 3037–3044. IEEE Computer Society.

9

SM-A Showing that there are more first time visits than revisits in the first
epoch

Let the probability that a sample is not visited in an epoch be p, where recall that an epoch consists
of drawing N/b mini-batches, where we assume N mod b = 0. Denote by q the probability that
the visit of a sample is a revisit. We argue that q = p : the number of samples not visited exactly
corresponds to the number of revisits, as the number of visits is the number of samples, by definition
of an epoch. Clearly, p = (1 − b/N)N/b, from which it can be shown that 1/4 ≤ p < 1/e. Thus
q ≤ 1/e as we want. In other words, there are at least 1.718 first time visits for 1 revisit.

SM-B Showing that the expectations ‖ct+1(j|2bt)− ct+1(j|bt)‖2 and 1
2
σ̂2
C are

approximately the same

Recall thatMt(j) are the samples used to obtain cj(t), that is

ct(j) =
1

|Mt(j)|
∑

i∈Mt(j)

x(i).

The mean squared distance of samples inMt(j) to cj(t) we denote by σ̂2
S(j),

σ̂2
S(j) =

1

|Mt(j)|
∑

i∈Mt(j)

‖x(i)− ct(t)‖2.

We compute the expectation of ‖ct+1(j|2bt) − ct+1(j|bt)‖2, where the expectation is over all pos-
sible shufflings of the data. Recall that ct+1(j|2bt) is centroid j at iteration t + 1 if the mini-batch
at size t + 1 is 2bt, where bt is the mini-batch size at iteration t. Recall that we use Mt(j) to
denote samples assigned to ct(j). We will now denote byM2bt

t+1(j) the sample indices assigned to
ct+1(j|2bt) andMbt

t+1(j) the sample indices assigned to ct+1(j|bt). Thus,

E (‖ct+1(j|2bt)− ct+1(j|bt)‖2
)
=

= E

∥∥∥ 1

|M2bt
t+1(j)|

∑
i∈M2bt

t+1(j)

x(i)− 1

|Mbt
t+1(j)|

∑
i∈Mbt

t+1(j)

x(i)
∥∥∥2


= E

∥∥∥ 1

|M2bt
t+1(j)|

∑
i∈M2bt

t+1(j)\M
bt
t+1(j)

x(i) −

(
1

|Mbt
t+1(j)|

− 1

|M2bt
t+1(j)|

) ∑
i∈Mbt

t+1(j)

x(i)
∥∥∥2


10

We now assume that the number of samples per centroid does not change significantly between
iterations t and t+1 for a fixed batch size, so that |Mbt

t+1(j)| ≈ |Mt(j)| and |M2bt
t+1(j)| ≈ 2|Mt(j)|.

Continuing we have,

≈ 1

4|Mt(j)|2
E

∥∥∥ ∑
i∈M2bt

t+1(j)\M
bt
t+1(j)

x(i)−
∑

i∈Mbt
t+1(j)

x(i)
∥∥∥2


≈ 1

4|Mt(j)|2
E

∥∥∥ ∑
i∈M2bt

t+1(j)\M
bt
t+1(j)

(x(i)− ct(j)) −

∑
i∈Mbt

t+1(j)

(x(i)− ct(j))
∥∥∥2


The two summation terms are independant and the second has expectation approximately zero as-
suming the centroids do not move too much between rounds, so

≈ 1

4|Mt(j)|

E

 1

|Mt(j)|

∥∥∥ ∑
i∈M2bt

t+1(j)\M
bt
t+1(j)

(x(i)− ct(j))
∥∥∥2
+

E

 1

|Mt(j)|

∥∥∥ ∑
i∈Mbt

t+1(j)

(x(i)− ct(j))
∥∥∥2



Finally, each of the two expectation terms can be approximated by σ̂2
S(j). Approximating the first

term by σ̂2
S(j), may be an underestimation as the summation is over data which was not used to

obtain ct(j), whereas σ̂2
S(j) is obtained using data used by ct(j). Using this estimation we get,

≈ 1

2|Mt(j)|
σ̂2
S(j),

=
1

2|Mt(j)|2
∑

i∈Mt(j)

‖x(i)− ct(t)‖2,

=
1

2
σ̂2
C(j).

The final equality following from the definition of σ̂2
C(j).

SM-C Time-energy curves with various doubling thresholds

Figures 4 and 5 show the full time-energy curves for various values of the doubling threshold ρ, for
the cases where bounds are used and deactivated respectively.

SM-D On algorithms intermediate to mbatch and nmbatch

The primary argument presented in this paper for removing old assignments is to prevent a biased
use of samples in nmbatch. However, a second reason for removing old assignments is that they can
contaminate centroids if left unremoved. This second reason in favour of removing old assignments
is also applicable to mbatch, and so it is interesting to see if mbatch can be improved by removing
old assignments, without the inclusion of triangle inequality based bounds. We call this algorithm
mbatch.remove. In addition, it is interesting to consider the performance of nmbatch without
bound testing. We here call nmbatch without bound testing nmbatch.deact.

In Figure 6 we see that mbatch is indeed improved by removing old assignments: mbatch.remove
outperforms mbatch, especially at later iterations. The algorithm nmbatch.deact does not perform

11

100 101
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(E
V
−
E
∗)
/E
∗

KDDC98

ρ = 10−1

ρ = 100

ρ = 101

ρ = 102

ρ = 103

100 101 102
0.00

0.01

0.02

0.03

0.04

0.05

0.06
INFMNIST

100 101 102

time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(E
V
−
E
∗)
/E
∗

RCV1

100 101 102 103

time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
STL10P

Figure 4: Time-energy curves for nmbatch with various ρ. The dotted vertical lines correspond
to the time slices presented in Figure 2. We see that large ρ works best, with very little difference
between ρ = 102 and ρ = 103.

as well as nmbatch, as expected, however it is comparable to mbatch.remove, if not slightly bet-
ter. There is no algorithmic reason why nmbatch.deact should be better than mbatch.remove, as
nesting was proposed purely as way to better harness bounds. One possible explanation for the good
performance of nmbatch.deact is better memory usage: when samples are reused there are fewer
cache memory misses.

SM-E Premature fine-tuning, one more time please

The loss function being minimised changes when the mini-batch grows. With bt samples, it is

E(C) = 1

bt

bt∑
i=1

argmin
j∈{1,...,k}

‖x(i)− c(j)‖2,

and then with 2bt it is

E(C) 1

2bt

2bt∑
i=1

argmin
j∈{1,...,k}

‖x(i)− c(j)‖2.

Minima of these two loss functions are different, although as bt gets large they approach each each.
Premature fine-tuning refers to putting a large amount of effort into getting very close to a minimum
with bt samples, when we know that as soon as we switch to 2bt samples the minimum will move,
undoing our effort to get very close to a mimumum.

Coffee break definition: It’s like a glazed cherry without a cake, that finishing touch which is useless
until the main project is complete. Donald Knuth once wrote that premature optimization is the

12

100 101 102
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(E
V
−
E
∗)
/E
∗

KDDC98

ρ = 10−1

ρ = 100

ρ = 101

ρ = 102

ρ = 103

100 101 102 103
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045
INFMNIST

100 101 102 103

time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(E
V
−
E
∗)
/E
∗

RCV1

100 101 102 103

time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
STL10P

Figure 5: Time-energy curves for nmbatch with bounds disabled. The dotted vertical lines cor-
respond to the time slices presented in Figure 2, that is t = 2s and t = 10s. We see that with
bounds disabled, ρ = 101 in general outperforms ρ ∈ {102, 103}, providing empirical support for
the proposed doubling scheme.

root of all evil, where optimisations to code performed too early on in a project become useless as
software evolves. This is roughly what we’re talking about.

13

10−1 100 101 102 103 104
0.00

0.02

0.04

0.06

0.08

0.10

(E
V
−
E
∗)
/E
∗

KDDC98

lloyd
yinyang
minibatch
nmbatch
nmbatch.deact
mbatch.remove

10−1 100 101 102 103 104
0.00

0.01

0.02

0.03

0.04

0.05

0.06
INFMNIST

10−1 100 101 102 103 104

time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(E
V
−
E
∗)
/E
∗

RCV1

10−1 100 101 102 103 104

time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
STL10P

Figure 6: Performace of algorithms intermediate to nmbatch and mbatch. The interme-
diate algorithms are : nmbatch.deact, which is nmbatch with the bound test deactivated,
and mbatch.remove, which is mbatch with the removal of old assignments. nmbatch and
nmbatch.deact are with ρ = 100 as usual. We observe that, as expected, deactivation of the
bound test results in a significant slow-down of nmbatch. We also observe that the removal of old
assignments significantly improves mbatch, especially at later iterations.

14

	Introduction
	Previous works on accelerating the exact algorithm
	Previous approximate k-means algorithms
	Our contribution

	Related works
	Exact acceleration using the triangle inequality
	Mini-batch k-means

	Nested mini-batch k-means : nmbatch
	One sample, one vote : modifying cumulative sums to prevent duplicity
	Finding the sweet spot : balancing premature fine-tuning with redundancy
	Balancing intra-cluster standard deviation with centroid displacement

	A note on parallelisation

	Results
	Conclusion and future work
	Comparing Baseline Implementations
	Showing that there are more first time visits than revisits in the first epoch
	Showing that the expectations "026B30D ct+1(j|2bt) - ct+1(j|bt)"026B30D 2 and 12C2 are approximately the same
	Time-energy curves with various doubling thresholds
	On algorithms intermediate to mbatch and nmbatch
	Premature fine-tuning, one more time please

