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Abstract

This paper offers a methodological contribution for computing the distance
between two empirical distributions in an Euclidean space of very large di-
mension.

We propose to use decision trees instead of relying on standard quantifi-10

cation of the feature space. Our contribution is two-fold: We first define a
new distance between empirical distributions, based on the Kullback-Leibler
(KL) divergence between the distributions over the leaves of decision trees
built for the two empirical distributions. Then, we propose a new procedure
to build these unsupervised trees efficiently.15

The performance of this new metric is illustrated on image clustering and
neuron classification. Results show that the tree-based method outperforms
standard methods based on standard bag-of-features procedures.

Keywords: Kulback-Leibler distance, unsupervised trees, distribution
modeling.

1. Introduction

This paper tackles the problem of computing distance between two sets
of points in an Euclidean space of large dimension.20

The most straight-forward methods to address this problem consists of
quantifying the space into bins, and computing a distance between the result-
ing empirical distributions [3]. However, such approaches are useless when
the dimension of the feature space dimension gets very large. In many appli-
cation domains, a popular approach consists of fitting a mixture of Gaussians25
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[4], and estimating the Kullback-Leibler (KL) divergence between the distri-
butions from these models. The first drawback of these methods based on
Gaussian kernels is that a model (number of clusters, regularization of the
covariance matrices, etc) must be chosen for the probability density func-
tion. The second drawback is that such a distance, or related methods for30

instance based on Parzen windows [7] or the Mahalanobis distance [6], are
computationally intensive when the number of points is high.

In many application fields, in particular in computer vision, very efficient
techniques rely on the idea of bag-of-features (bof), which model the empir-
ical distributions with distribution over clusters computed adaptively from35

data [9, 11, 22, 10].
In this paper, we propose a new tree-based method for computing the

distance between two sets of points. The core idea of our method is to
build a fully developed unsupervised tree from each family of points, and to
compute the KL divergence between the empirical distribution over leaves40

estimated from each family of points. The distribution associated to the
family used to build the tree will be uniform, but the distribution associated
to other families may be more deterministic, reflecting the distance between
them.

In § 2, we present this KL-based distance between dissimilar unsupervised45

trees, and introduce a new fast method for learning the unsupervised trees.
Our efforts have been focused on trees because they offer three clear bene-
fits: they tolerate high dimensional data-sets, they do not require to choose
an empirical density model for the distribution of the points, and they are
flexible to data in the sense that they can mix categorical features with con-50

tinuous features [21, 8]. The main advantage of our proposed distance is that
there is no tuning parameters and low computational cost.

After describing in § 3 how the distance is used for both unsupervised
and supervised learning, we provide experimental results in § 4 that show
how our method outperforms bag-of-features on average.55

2. Tree-based Kullback-Leibler divergence

We describe here the proposed method which consists of measuring the
distance between two sets of points. The global distance is presented in § 2.1,
and the method for building trees is presented in § 2.2. Then, in sections
§ 2.3 and § 2.4, we discuss respectively the dimension of the feature space,60

and the computational cost.
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2.1. Distance between dissimilar trees

Let Xi = {Xi,1 . . . Xi,Ki
} be a matrix that represents one object to classify,

where Xi,k ∈ RF and F is the number of features. Any object i is then
associated to Ki points in a feature space. For instance, in computer vision65

Xi,k would stand for the kth SIFT point in the image i [9, 11]. In biology,
for the classification of neurons in videos (see § 4.3), Xi,k would denote the
parameters of the neuron i in the kth frame. Let Qi be the probability density
function of the points in Xi. Having the objective to classify the object i, we
will define a distance between the distributions {Qi}i.70

The distributions {Qi}i are modeled by using unsupervised trees (§ 2.2).
Let TXi

be the unsupervised tree associated to the object i, and let Mi be
the number of leaves in TXi

. For computing the distance ∆(Qi, Qj) between
the object i and the object j, we propose to pass Xi through the tree TXj

and to pass Xj through the tree TXi
. Let the vector TXi

(Xj) ∈ RMi be the75

distribution of Xj over the leafs of the tree TXi
. Then, we define the distance

between the object i and the object j as follows:

∆(Qi, Qj) =
1

2

[
dKL(TXi

(Xj), TXi
(Xi)) + dKL(TXj

(Xi), TXj
(Xj))

]
(1)

where dKL(TXi
(Xj), TXi

(Xi)) denotes the KL divergence between vector TXi
(Xj)

and vector TXi
(Xi):

dKL(TXi
(Xj), TXi

(Xi)) =

Mi∑
m=1

T m
Xi

(Xj) log
T m
Xi

(Xj)

T m
Xi

(Xi)
(2)

where T m
Xi

(Xj) is the mth component of the vector TXi
(Xj). In other words,80

T m
Xi

(Xj) is related to the number of points Xj,k that reach the mth leaf of the
tree TXi

. Note that the vector TXi
(Xi) ∈ RMi is uniform with the components

equal to 1/Mi.
The distance (1) can be interpreted as follows: If the distribution of the

points of one family is uniform over the leaves of the tree built with the other85

family, Qi areQj similar. In other words, ifQi andQj are identical, the points
Xi should fill all the leafs of the tree TXj

and the points Xj should fill all
the leafs of the tree TXi

. In this case, we should find that TXi
(Xj) = TXi

(Xi)
and TXj

(Xi) = TXj
(Xj), and then, the distance ∆(Qi, Qj) must reach its

minimum value: ∆(Qi, Qj) = 0.90

If the distribution of the points in the leaves of the tree build with the
other family is deterministic, i.e. they all fall in the same leaf, then Qi and
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Qj are as dissimilar as possible. In other words, if Qi and Qj are widely
separated in the feature space, the points Xi should fill only one leaf of the
tree TXj

and the points Xj should fill only one leaf of the tree TXi
. In this95

case, TXi
(Xj) and TXj

(Xi) have a binary form, i.e. only one component
equals one and the others equal zero, and then, the distance ∆(Qi, Qj) must
reach its maximum value: ∆(Qi, Qj) = 1

2
[logMi + logMj]. The process is

illustrated in Figure 1.
The proposed method offers has three nice practical properties. First,100

the quantity (2) is always numerically defined since T m
Xi

(Xi) = 1
Mi

is always
greater than zero. Second, since TXi

(Xi) is always uniform, it is not necessary
to pass Xi through TXi

. Third, the distance can be used with dissimilar trees,
i.e. trees that do not have the same number of leaves.

Figure 1: Top-left: the circles (Xi = {Xi,1 . . . Xi,4}) and the boundaries (dashed) of the
associated decision tree (TXi) such that the distribution TXi(Xi) is uniform. Top-right: the
crosses (Xj = {Xj,1 . . . Xj,4}) and the boundaries (dashed) associated decision tree (TXj )
such that the distribution TXj

(Xj) is uniform. Bottom-left: the distribution TXj
(Xi)

is computed by listing the circles (Xi) in the leafs of the tree TXj
. Bottom-right: the

distribution TXi
(Xj) is computed by listing the crosses (Xj) in the leafs of the tree TXi

.
In this example, ∆(Qi, Qj) = 1

2

[
3
4 log 3 + log 4

]
= 1.1. ∆(Qi, Qj) 6= 0 which means that

Qi and Qj are not equal.

4



2.2. Unsupervised tree learning105

Unsupervised trees are usually used as tools for classification and clus-
tering. In this content, they are an alternative to k-means and are used for
grouping together similar data [20, 24, 25]. For instance, a tree can be used
for creating clusters in the feature space [24]. Then, bof are built by passing
the key points in the tree.110

Alternatively, unsupervised trees can be used for modeling probability
density functions. In this case, a set of unsupervised trees {TXi

}i is generated,
where each tree is used for modeling the corresponding distribution Qi (please
refer to § 2.1 for the notations). An unsupervised tree can then be viewed
as a histogram with bins of different sizes. Breiman [8] proposed to generate115

such trees by simulating synthetic classes and to use supervised decision
trees for separating the data of interest from the synthetic data [19]. Other
authors proposed unsupervised tree techniques based on a specific criterion
but for only one dimension [26]. The main drawback of these methods is
the impossibility to process high dimensional data-set. Herein, we propose120

a fast and very simple way for constructing unsupervised trees. The major
advantages of our method are that there are no tuning parameters or other
criterion optimization, and it can be used with high-dimensional data.

Formally, given the points Xi = {Xi,1 . . . Xi,Ki
} that follow the distribu-

tion Qi, a Mi-leaf tree TXi
is built such that each component of the vector125

TXi
(Xi) equals 1

Ki
= 1

Mi
, i.e. the distribution TXi

(Xi) is uniform (please refer
to § 2.1 for the notations and see the Figure 1 for illustration). Intuitively,
a tree is built such that each final node contains only one training instance,
i.e. the probability for the training instance to reach a leaf always equals
1
Ki

= 1
Mi

. This is illustrated in Figure 1: each leaf of the trees contains only130

one point.
The speed of the process is a significant issue. For this reason, oblique

unsupervised trees are considered. This means that each node of the tree is
associated to a hyperplane separator that considers the whole feature space.
The learning step of the unsupervised tree involves the computation of the135

hyperplanes coefficients. Efficiency, hyperplane coefficients are derived from
the bisection of two random points that are sampled among the data of the
considered node. In Figure 1, hyperplanes are represented by both horizontal
and vertical dashed lines.
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2.3. Discussion about the dimensionality140

Decision trees are naturally suitable for distribution modeling. In com-
parison to histograms, they can capture all aspects of a distribution, and
they focus on their particularities. For instance, a 3D histogram partitions
the feature space in homogeneous subspaces, regardless of the distribution
of observations. In comparison, decision trees partition the feature space145

according to the distribution.
In addition, decision trees are naturally suitable for dimensionality re-

duction. Let F be the number of features and B the number of bins for
each feature of histogram. Computing histograms in high dimensional space
is impossible with histograms, because the total number of bins is BF . In150

comparison, considering decision trees, the number of bins always equals the
number of leaves.

In data analysis, classification tasks are often preceded by dimensionality
reduction. By using unsupervised tree, our method considers in a unique
step both dimensionality reduction and classification task.155

The high-dimensional tolerance is illustrated in the experiments (§ 4), by
using data-sets that consider F = 2 and F = 1000 (§ 4.1), F = 128 (§ 4.2)
and F = 95 (§ 4.3).

2.4. Computational cost

For Parzen-windows [7], for Gaussian kernel [17], and for mixture of Gaus-160

sian [2], the complexity for computing distance between two sets of points is
O(NiNj) where Ni and Nj denote the number of points for instance i and j
respectively. This may be computationally difficult if Ni and Nj are high or
if the number of feature is high.

In comparison, the complexities for building the two trees areO(Nilog(Ni))165

and O(Njlog(Nj)) respectively. The complexities for passing the samples Xi

in the opposite tree TXj
is O(Nilog(Nj)) and the complexities for passing

the samples Xj in the opposite tree TXi
is O(Njlog(Ni)). Then, the final

complexity is O((Ni +Nj)log(Ni +Nj)) which is less than O(NiNj) asymp-
totically.170

3. Unsupervised classification and supervised classification

In this section, we present how the proposed divergence (1) can be used
for both unsupervised learning (§ 3.1) and supervised learning (§ 3.2).
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3.1. Unsupervised learning

Recall that Qi denotes the distribution of the points Xi = {Xi,1 . . . Xi,Ki
}.175

Using a clustering method, similar Qi are grouped together. Once a distance
between Qi and Qj is defined, any clustering method can be used.

In this paper, we consider k-means. The k-means algorithm groups to-
gether similar objects by alternating the two following stpdf. First, the labels
are updated according to the distance between the examples and the class180

centroids. Second, the class centroids have to be re-assessed.
When working with distributions of points, the centroids of the distri-

butions have to be defined. Among the methods that we have tried, the
best performance of the clustering has been achieved when the two k-means
stpdf are fused. Instead of computing the distance between each distribution185

and the centroid distribution, the mean distance is computed. The distance
∆(Qi, Q̄) between any distribution Qi and the centroid Q̄ can then be directly
computed without centroid assessment:

∆(Qi, Q̄) =
1∑N

j=1 δ(Qj)

N∑
j=1

∆(Qi, Qj)δ(Qj) (3)

where δ(Qj) = 0 if Qj belong to the considered class and δ(Qj) = 1 otherwise,
and N is the number of objects. The distance ∆(Qi, Qj) is computed as in190

equation (1).

3.2. Supervised learning

Given a distance, the k-nearest-neighborhood classifier (k-nn) can be used
to classify data, but it usually does not model properly the class boundary.
Using the distance as a kernel, one can also use SVM, which are usually more195

efficient in such case [9, 11, 22, 10].
Let us consider the special case of two classes. Let h(x) =

∑
n αnynK(x, xn)

be the classification function of the example x, where yn ∈ {+1,−1} refers
to the classes associated to the training example xn, coefficients {αn} are
assessed in the training step, and K(x1, x2) is a kernel function. The Gaus-200

sian kernel is chosen as K(x1, x2) = exp(−d(x1, x2)
2/σ) where σ is a scale

parameter and d(x1, x2) is the distance between examples x1 and x2.
Depending on the application, d(x1, x2) can refer to the Euclidean dis-

tance [9] or to the χ2 distance [22, 10], etc. We use the distance proposed in
equation (1): d(Xi,Xj) = ∆(Qi, Qj).205
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The generalization of the method to multi-class classification is straight-
forward. Multi-class k-nn requires no particular tools, as well as kernel-based
classifiers for which the kernel matrix contains all the distances between all
the examples from each classes.

Figure 2: Considering two Gaussians, the theoretical KL distance (§ 4.1) and the proposed
KL distance (1) are compared.

4. Experiments210

4.1. Comparison to the Kullback-Leibler divergence

We look in this section at the behavior of the proposed distance (1), com-
pared to the exact KL divergence by considering two Gaussian distributions
Q1 and Q2 with the mean µ1 and µ2 respectively, and diagonal covariance ma-
trices. The numbers of generated points are N1 and N2 respectively. Then,215

the theoretical expression of the KL-divergence is:

dthKL(Q1, Q2) =
1

2
(µ1 − µ2)

T (µ1 − µ2) (4)

Figure 2 shows the values of the KL divergence (4) and the corresponding
values of the proposed distance (1). Distances are reported as regards to the
Euclidean distance between µ1 and µ2. In this figure, results are reported for
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F = 2 features. We obtained exactly the same results for F = 1000 features.220

As expected, the closer µ1 and µ2, the lower the distance. Note that the
tree-based KL distance (1) is closer to the theoretical KL distance (4) when
the number of points increases.

For an intuitive understanding, we discuss the extreme values that are
reached. If µ1 = µ2, we observe that our tree-based distance ∆(Q1, Q2) 6= 0225

when dthKL(Q1, Q2) = 0. This is due to the fact that different subsequent
realizations of a given Gaussian distribution are not exactly the same. If the
Euclidean distance between µ1 and µ2 tends towards infinity, the tree-based
distance (1) never tends towards infinity. This is due to the finite number of
points (N1 and N2) for each realization.230

For instance, considering that only one leaf of the tree is reached and the
Euclidean distance between µ1 and µ2 tends to infinity, we can easily show
that the distance (1) equals ∆(Q1, Q2) = log(M) where M = N1 = N2 is
the number of leaves. Thus, if N1 = N2 = 10, ∆(Q1, Q2) = 2.3, if N1 =
N2 = 100, ∆(Q1, Q2) = 4.6, if N1 = N2 = 1, 000, ∆(Q1, Q2) = 6.9, and if235

N1 = N2 = 10, 000, ∆(Q1, Q2) = 9.2. The extreme values in Figure 2 are
then correct.

Table 1: The mean error rate and the standard deviation are reported for the three data-
sets (§ 4.2). Two clustering methods are considered: the proposed clustering method
(§ 3.1) that uses the distance (1) between unsupervised trees, and the bag of features that
considers typical k-means with Euclidean distance between histograms of clusters.

Data treeKL Bag of
Features

CBCL 0.27±0.06 0.28±0.12
ALOI 0.06±0.04 0.19±0.13
HPID 0.24±0.08 0.18±0.08
Mean 0.19±0.06 0.21±0.11

4.2. Unsupervised classification of images

For assessing the reliability of the proposed divergence (1), we test it on
the unsupervised classification of images (§ 3.1) using three data-sets. The240

CBCL face and car data-set1 contains 3 classes of images: no-face, face, and
car. The Amsterdam Library of Object Images [12] (ALOI) contains 1, 000
classes of images with 24 images per class. In this paper, we only take the first

1http://cbcl.mit.edu/projects/cbcl/software-data-sets/
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30 classes for improving the time of the experiment. The Head Pose Image
Database [18] (HPID) contains 15 classes, i.e. one class for one person, each245

class containing 93 images.
For each image i, a set of SIFT points Xi = {Xi,1 . . . Xi,Ki

} is extracted
[23]. A histogram with F = 128 features is then associated to each image.
Clustering of the images is now equivalent to clustering of the distributions
{Qi}i of the key points bu using the proposed method.250

Note that the experiments only deal with two-class classification. All
pairs of classes are considered and the reported results refer to the mean
error rate. A 50-iteration cross validation is used to extract the mean error
rate and the standard deviation. At each iteration, for each class, 20 objects
are sampled from the database. The error e is defined as a function of pair-255

wise error: e = 1− TP+TN
TP+FP+FN+TN

where TP denotes a true positive decision,
TN denotes a true negative decision, FP denotes a false positive decision,
and FN denotes a false negative decision.

Classification performances are reported in Table 1. “Unsupervised Tree”
is the proposed tree-based clustering method. “Bag of Features” is the usual260

bof that uses the Euclidean distance between the histograms of the clusters.
For bof, we have found that the optimal number of clusters is 30.

The proposed distance is better for two out of three data-sets and the
standard deviation is better on average. Results show that our proposed
method can outperform the baseline, i.e. the bof. Finding one data-set for265

which the proposed method has the better results is sufficient to say that the
method is interesting. Also, in comparison to bof that consider a sensitive
parameters, i.e. the number of clusters, the proposed distance does not
consider parameter and the results obtained in Table 1 are steady.

Note that the classification performance could have been improved by270

extracting other features from the images. We have chosen the SIFT features
which correspond perfectly to our application: a set of points in a feature
space.

4.3. Classification of neurons in videos

Understanding cell morphologies and cell dynamics remains a difficult275

challenge in biology [14]. In the field of neurobiology, researchers have ob-
served links between the static image of neurons and their genotypes [13].
Recent works in oncology have shown that studying the cell dynamics pro-
vides important information about its genotype [15, 16]. In the same line
of thinking, we propose to study if the neuron morpho-dynamics in videos280
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depend on their genotype characteristics. For instance, Figure 3-(a) shows
one video of neurons for which the gene RhoA has been knocked-down which
leads to longer neurites. Figure 3-(b) shows one video of neurons for which
the gene Map2K7 has been knocked-down which leads to shorter neurites
and faster protrusion and retraction process.285

(a) (b)

Figure 3: (a) Video of neurons for which the gene RhoA has been knocked down. (b)
Video of neurons for which the gene Map2K7 has been knocked down.

Automated tools are needed for helping and assisting biologists in the
analysis of the videos. One method for pointing out the difference between
genotypes is to measure the ability for classifying the neurons. Each neuron
is tracked by first detecting soma and nucleus in each frame of the video, and
then neurons in different frames are fused together [5]. Then, four types of290

features are associated to each neuron:

• Three video features: the entropy of the frame intensities, the intensity
divergence between frames, and the pixel-based intensity divergence
between frames. Let X1

vn ∈ R(Fv×3) denote these features associated to
the neuron n in the video v. Fv denotes the number of frames in the295

video v.

• 30 global neuron features such as the nucleus time expanding, the nu-
cleus time contracting, the neurites time expending, etc. Let X2

vn ∈ R30

denote these features associated to the neuron n in the video v.

• 37 “by frame” neuron features such as the total cable length of neurites300

in each frame, the total number of filopodia in each frame, the soma
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eccentricity in each frame, etc. Let X3
vn ∈ {R37,R37, . . .} denote these

features associated to each frame of the neuron n in the video v.

• 25 “by frame” neurite features such as the number of branches in
each neurite in each frame, the number of filopodia in each neurite305

in each frame, the length of each neurite in each frame, etc. Let
X4

vn ∈ {R(Nvn1×25),R(Nvn2×25), . . .} denotes these features associated to
the neuron n in the video v such that Nvnf denotes the neurite number
of the neuron n in the frame f in the video v.

Supervised classification can be applied to investigate if the morpho-310

dynamics of the neurons depend on the neuron genotypes. The objects to
classify are the neurons in the videos. 100 experiments were performed for
computing the average and standard deviation of a classification rate. At
each iteration, data are separated into training data-set (7 videos for each
class) and test data-set (3 videos for each class). The classifiers are built315

using the training data-set and the mean classification rate is estimated on
the test data-set.

Six classes are considered. The class “Control” contains neurons which
are not genetically modified and the other classes (“RhoA”, “SrGap2”, “Net”,
“Map2K7”, and “Trio”) corresponds to categories of neurons whose genotype320

have been modified. An experiment consists of doing comparisons between
the class “Control”, and one with modified genotype.

Four classifiers are used for classifying the neurons:

• RF: The bof are computed from {X1
vn}vn, {X2

vn}vn, {X3
vn}vn, and

{X4
vn}vn, independently. The bof vectors Xvn ∈ R(3+30+37+25) are ob-325

tained by concatenation. Based on Xvn, random forests are used for
classifying the neuron n in the video v.

• linSVM: The bof vectors Xvn are built as previously. Based on Xvn,
a linear SVM is used for classifying the neuron n in the video v.

• rbfSVM: The bof vectors Xvn are built as previously. Based on Xvn,330

a Gaussian SVM is used for classifying the neuron n in the video v.

• treeKL: Distance between the neuron i and the neuron j is computed
by using the tree-based KL distance (1) and by combining the four in-
formation levels as follows: dij = ∆(Q1

i , Q
1
j)+∆(Q2

i , Q
2
j)+∆(Q3

i , Q
3
j)+

∆(Q4
i , Q

4
j) where Qn

i denotes the probability density function of the335
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Figure 4: The classification accuracy is reported as a function of the filtering threshold.
The accuracy is reported for bag of feature (bof) associated to Random Forest (RF), for
bof associated to linear SVM (linSVM), for bof associated to rbf SVM (rbfSVM), and for
our proposed method (treeKL).

points Xn
i . Then, as presented in § 3.2, we use SVM with the following

kernel: Kij = exp(−d2ij/σ).

To reduce the noise induced by neuron death, we filter neurons which have
short neurites. Figure 4 shows the classification accuracy as a function of the
filtering threshold. The provided values refer to average classification over all340

experiments. The results confirm the good classification performances of the
proposed distance, in compliance with the performances of the unsupervised
classification in § 4.2. On average, the proposed method outperforms the bof
approaches. Also, the tree-based classifier (treeKL) outperforms the other
classifiers 44.7% of the time. RF outperforms 23.4% of the time, linSVM345

outperforms 14.9% of the time, and rbfSVM outperforms 17% of the time.
We conclude that the genotype of the neurons do modify the morpho-

dynamic of the neurons. This is proved by the fact that the groups of neurons
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that have been genetically modified (“RhoA”, “SrGap2”, “Net”, “Map2K7”,
and “Trio”) can be discriminated from to the “Control” neurons.350

Table 2: The classification accuracy is reported for each class of genes. The accuracy is
reported for bag of feature associated to Random Forest (RF), for bof associated to linear
SVM (linSVM), for bof associated to rbf SVM (rbfSVM), and for our proposed method
(treeKL).

RF linSVM rbfSVM treeKL
RhoA siRNA 1 0.50±26 0.52±21 0.53±24 0.56±22
RhoA siRNA 2 0.74±21 0.66±22 0.69±21 0.72±20
RhoA siRNA 3 0.69±23 0.62±22 0.62±21 0.65±22

Map2K7 siRNA 1 0.68±20 0.60±23 0.61±21 0.62±23
Map2K7 siRNA 2 0.49±27 0.53±24 0.51±25 0.55±23
Map2K7 siRNA 3 0.61±26 0.56±25 0.55±26 0.65±26

Net 0.64±24 0.64±22 0.63±20 0.68±22
SrGap2 siRNA 3 0.58±23 0.58±22 0.57±22 0.61±23
SrGap2 siRNA 2 0.56±23 0.55±21 0.55±19 0.55±22
SrGap2 siRNA 3 0.61±22 0.61±22 0.58±19 0.62±24
Trio siRNA 1 0.49±25 0.57±23 0.57±21 0.57±21
Trio siRNA 2 0.53±23 0.51±23 0.52±20 0.57±24

average 0.59±24 0.58±23 0.58±21 0.61±23

For knocking down a gene, biologists use siRNAs [13]. This method is
not as accurate as waited, such that several genes can be knocked down at
the same time. For illustrating this purpose, in table 2 we show the accuracy
between control and each other class. First, we note that our proposed
distance (treeKL) outperforms the other distances in average. Second, we355

note that performances are very sensitive to the corresponding siRNA. For
instance, the accuracy can vary from nearly 50% in average (RhoA siRNA
1) to nearly 70% in average (RhoA siRNA 2). This result provides a tool
for biologists who want to evaluate the accuracy of siRNAs. For instance,
regarding the previous example, the conclusion is that “siRNA 1” is not a360

good drug for RhoA.

5. Conclusion

We have proposed a new similarity measure between sets of points in a
large-dimension space. This measure relies on the KL-divergence between
empirical distributions over the leaves of trees build for each set of points in-365

dependently. It avoids the usual fine tuning of density model parameters, and
leverages the very good behavior of decision trees in high dimension. Syn-
thetic experiments show that in small dimension, this distance is monotonic
with the KL divergence of the underlying densities.
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We have demonstrated experimentally how it can be applied to both un-370

supervised and supervised learning. Both on image clustering and neuron dy-
namic classification in videos, it outperforms baselines using bag-of-features.
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