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Abstract A RNA interference, also called a gene knockdown, is a biological
technique which consists of inhibiting a targeted gene in a cell. By doing so,
one can identify statistical dependencies between a gene and a cell phenotype.
However, during such a gene inhibition process, additional genes may also be
modified. This is called the “off-target-effect”. The consequence is that there
are some additional phenotype perturbations which are “off-target”.

In this paper, we study new machine-learning tools that both model the
cell phenotypes and remove the “off-target-effect”.

We propose two new automatic methods to remove the off-target compo-
nents from a data sample. The first method is based on Vector Quantization
(VQ). The second method we propose relies on a classification forest. Both
methods rely on analyzing the homogeneity of several repetitions of a gene
knockdown. The baseline we consider is a Gaussian Mixture Model (GMM)
whose parameters are learned under constraints with a standard Expectation-
Maximization algorithm.

We evaluate these methods on a real data set, a semi-synthetic data set,
and a synthetic toy data set. The real data set and the semi-synthetic data set
are composed of cell growth dynamic quantities measured in time laps movies.
The main result is that we obtain the best recognition performance with the
probabilistic version of the Vector Quantization-based method.
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1 Introduction

1.1 The off-target-effect

The analysis of gene functions is a major challenge classically carried out using
RNA interference: one can infer the role of a gene by using a RNA molecule
that knockdowns its expression, and examine the resulting phenotypical per-
turbation. For instance, if a cell is smaller after a gene inhibition, one can
conclude that the considered gene has an important role regarding the said
size. This technique is used for understanding phenomena such as endocytosis
[6] and cell migration [2].

However, the gene inhibition technique with RNA remains often impre-
cise, and may cause the inhibition of additional and non-targeted genes. This
phenomenon, which is called the “off-target-effect” [12], may induce some ad-
ditional changes in the phenotype. For instance, a cell may be smaller after
the gene inhibition, but it may also have a greater mobility during its growth,
due to a hidden gene inhibition.

In this article, we propose novel machine-learning-based tools to automat-
ically remove the “off-target” components from a data-set of phenotypic mea-
surements.

1.2 State-of-the-art

The usual protocol used to study the relation between gene expression and
phenotype is as follows [8], [6]: The phenotype obtained with a given RNA
molecule is first modeled by a vector each component of which is associated
to a particular feature of the cell (related to its morphological, dynamic, or
contextual properties) and depends on the similarity of that feature between
normal cells and perturbed cells.

The measure of similarity can be either a standard statistical measure such
as the Kolmogorov-Smironov (KS) test [30], the z-test [25], the t-test [25], the
χ2-test [6], or it can be a machine-learning based technique such as the neural
networks [2], Support Vector Machine (SVM) [31], Random Forest [28], etc.

Then, the methodology to deal with the “off-target-effects” is applied to
the phenotypic vectors coming from each RNA molecule.

A classical method is based on RNA selection. It consists of using multi-
ple RNA molecules targeting the same gene, and keeping only the common
phenotypic perturbations. Echeverri et al. [8] stated that if at least 2 out of
3 used RNA molecules produce the same phenotype changes, we can consider
it as “on target”. In addition, they recommend to repeat the experiment to
validate the results.

An alternative method consists of making an average gene profile. In that
case, using again several RNA molecules targeting the same gene, one averages
the multiple resulting vector of phenotypic measurements. Collinet et al. [6]
compute the most probable phenotype using a Bayesian model.
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1.3 Our contributions

We first propose in section 4 a model based on a Vector Quantization [14,
23]. Using the K-means algorithm, we find clusters in the feature space, and
use a hard classification rule to determine whether samples in a cluster are
“on-target” components, or “off-target” components (section 4.1). In section
4.2, we propose a soft version of this classification rule using a probabilistic
K-means. Note that choosing the optimal number of clusters is not straight-
forward. In the context of unsupervised learning, some methods assess the
optimal number of clusters [19,20]. These methods start with an empty set
of clusters which is filled dynamically using on line learning. In unsupervised
learning, the objective is to model the sample distribution. By contrast, we
tackle the special case of supervised clustering. We do not want to model the
sample distribution, we rather want a model of the class specificities and of
the class mixtures. In this context, assessing the number of clusters is different
from unsupervised techniques [19,20]. We address the supervised selection of
the cluster number in section 4.3.

Our second contribution, presented in section 5, is based on the analysis
of the Random Forest outputs [5,4]. We start from the idea that the “RNA
entropy” of an on-target component – that is the entropy of the distribution
of the RNA used to produce the phenotypes in that cluster – is high, since
multiple RNA molecules are represented. Conversely, an off-target component
resulting from a single RNA molecule leads to a small RNA entropy. In order
to compute this entropy, each sample is associated to a probability vector that
is build from tree-based classification steps.

In addition, we propose to use the two methods above as a mean to initialize
the Expectation-Maximization (EM) procedure. Collinet et al. [6] proposed a
Gaussian mixture model to characterize the “on-target” component, but the
parameters of the model are trained from an EM algorithm which is very
sensitive to its initialization. We show that our approach drastically improves
the recognition performance. The Gaussian mixture model being our baseline,
this is the first methodological approach we present, see section 3.

1.4 Data sets

In section 6.1, in order to interpret the results, we use a synthetic 2D data set.

Both section 6.2 and section 6.3 consider an application in the field of neu-
roscience. We propose to characterize cells’ development dynamics in time-laps
movies [17]. In the field of neurobiology, it has been observed connections be-
tween the static morphological properties of a cell and its genotype [27]. More
recent works in oncology have shown that studying the cell growth dynam-
ics provides important information about the cell genotype [11,24]. Following
that line of thinking, biologists want to quantify how much neurites’ morpho-
dynamic depends on the genotype characteristics.
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For instance, Figure 1-(a) shows one video of neurons for which the gene
RhoA has been inhibited, which leads to longer neurites. Figure 1-(b) shows
one video of neurons for which the gene Map2K7 has been inhibited which
leads to shorter neurites and faster protrusion and retraction process.

The characterization of such aspects of the neurite phenotypes, requires to
deal with the “off-target-effect”, which is our core objective.

(a) (b)

Fig. 1 (a) A video that contains some cells for which the gene RhoA is inhibited. This
leads to bigger neurites. (b) A video that contains some cells for which the gene Map2K7 is
inhibited. This leads to shorter neurites.

2 Basic idea

Before we deal with the methodological and experimental aspects, we present
the concepts and the basic idea of the process and introduce notation.

We consider that a cell is represented by a set of F features: the soma
area, the instantaneous soma speed, the number of neurites, the neurite total
length, the instantaneous neurite activity (protruding or retracting), etc. Let
X ∈ RF be the feature vector associated to a cell.

We consider M RNA molecules that inhibit the same gene, to which corre-
spond M cell classes. We consider M+1 distributions for X, one corresponding
to the “on-target” component, and the M others to the “off-target” compo-
nents.

This is illustrated in figure 2. We consider a synthetic example with three
RNA molecules (M = 3), and where each cell is represented by two features
(F = 2): its speed and its size. Each cell is represented by a vector in the two-
dimensional feature space. These vectors are depicted by crosses, dots and
squares, depending on the RNA molecule which is associated with each cell.
We identify four clusters (M+1 = 4). The first cluster is the “on-target” com-
ponent which is composed of every RNA molecules. The three other clusters
are the “off-target” components that are composed of a single RNA molecule
each.
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The methods we propose aim at characterizing the statistical distribution of
each cluster. Then, we can remove the “off-target” components and we are able
to extract the phenotypic gene profile. This approach assumes two important
properties: (a) the “off-target” components and the “on-target” component
are additive in the feature space, and (b) at least one RNA molecule must be
absent in each of the “off-target” components.

1st "off-target" component

2nd "off-target" component

3rd "off-target" component
The "on-target" component

1st RNA molecule
2nd RNA molecule
3rd RNA molecule

Cell size

Cell speed

Fig. 2 In this schematic example, we consider that a cell is described by two features
(F = 2): its speed and its size. In the figure, a cell is represented by a vector in the two-
dimensional feature space. There are three RNA molecules (M = 3) that are represented
by crosses, dots, and squares, respectively. The “Off-target” components are represented by
the clusters that contain vectors from single RNA molecules. The “On-target” component
is the cluster that contains vectors from every RNA molecules.

3 Gaussian Mixture Model (GMM)

In order to understand the baseline [6], we introduce the Gaussian mixture
model and the Expectation-Maximization training procedure. For a random
initialization, the method is called “Random+GMM”, else, by using an other
initialization that we call “init”, the method is designated as “init+GMM”.

3.1 State-of-the-art

Gaussian-Mixture models (GMM) are mostly used to model a statistical dis-
tribution of vectors. The distribution g of the random variable X ∈ RF has
the following form:

g(x) =

C∑
c=1

ρcN (x | µc, Σc) (1)
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where C denotes the number of components in the mixture, N (X | µc, Σc)
denotes the multivariate normal distribution with mean µc and covariance
matrix Σc, and ρc denotes the component prior.

Dempster et al. [7] proposed to assess the parameters Θ = {ρc, µc, Σc}Cc=1

with an Expectation-Maximization (EM) algorithm [7]. If we consider a diag-
onal covariance matrix, K-means [10] is also suitable.

The model can be extended to a classification task where each class is
independently modeled using equation (1). Let M be the number of classes,
and gt be the class t distribution. The distribution f of a random variable
X ∈ RF has the following expression:

f(x) =

M∑
t=1

πtgt(x) (2)

In supervised learning, the parameters {πt, Θt}Mt=1 are learned indepen-
dently, class by class, by using the usual EM procedure [7], where Θt are the
parameters of gt. Note that the training data set {Xn, Yn}Nn=1 is composed of
the vectors Xn ∈ RF and the labels Yn ∈ {1, . . . ,M}.

In weakly supervised learning, the label Yn is a hidden variable. The train-
ing data set is {Xn, πn}Nn=1, where πn = {πn,t}Mt=1 is a vector that indicates
the prior probability that sample Xn belong to each class:

πn,t = p(Yn = t) (3)

In the case of equi-probable prior πn,t ∈ {0, 1/M}, Bishop and Ulusoy [3]
proposed an EM approach to train the parameters {πt, Θt}Mt=1. This method
has been extended to any prior value πn,t ∈ [0, 1] in [16].

At iteration (i), given a training data set {Xn, πn}Nn=1 and the current
values of the parameters for class t

Θ
(i)
t =

{
ρ
(i)
t,c, µ

(i)
t,c, Σ

(i)
t,c

}C

c=1
,

the EM procedure consists of: In the first step, which is called the “expecta-
tion” step, we compute for each sample both the class posterior:

γn,t =
πn,tg

(i)
t (Xn)

f (i)(Xn)
(4)

and the component posterior:

αn,t,c =
ρt,cN (Xn | µ(i)

c , Σ
(i)
c )

g(i)(Xn)
(5)

In the second step, which is called the “maximization” step, we update the

new set of parameters Θ
(i+1)
t :

ρ
(i+1)
t,c =

N∑
n=1

γn,tαn,t,c

N∑
n=1

γn,t

(6)
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µ
(i+1)
t,c =

N∑
n=1

γn,tαn,t,cXn

N∑
n=1

γn,tαn,t,c

(7)

Σ
(i+1)
t,c =

N∑
n=1

γn,tαn,t,c(Xn − µ(i+1)
t,c )(Xn − µ(i+1)

t,c )T

N∑
n=1

γn,tαn,t,c

(8)

These two steps are iterated until convergence. We consider that the method
converges when the likelihood is stabilized. The number of components C per
mixture is assessed by maximizing the likelihood, or by using the Mean-Shift
algorithm [32]. In this paper, we maximize the likelihood to learn the param-
eters.

3.2 Modeling the RNA perturbations with GMM

Following section 2, we consider cells represented by vectors {Xm
n }

Nm
n=1, where

Xm
n ∈ RF represents a cell which is obtained from the RNA molecule m ∈
{1, . . . ,M}.

Ideally, if there was no “off-target-effect”, these vectors would all follow
the same distribution g0 that we call the “on-target” component. However, in
practice, there is an “off-target” component following the distribution gm. In
this situation, a vector Xm

n is generated by either g0 or gm, and its distribution
is a mixture of the “on-target” component g0 and the specific “off-target” com-
ponent gm. Let fm be that mixture distribution. Then, the relation between
{fm}Mm=1 and {gt}Mt=0 is as follows:

fm = πm
0 g0 + (1− πm

0 )gm, (9)

where πm
0 ∈ [0, 1] is the prior probability that a vector is generated by the “on-

target” component. By considering all the RNA molecules, the distribution
takes the following expression:

f =

M∑
m=0

(1− πm
0 )gm (10)

where 1 − π0
0 =

∑M
m=1 π

m
0 . The model (10) being the same as the model (2),

we can consider the EM algorithm [16] to train the parameters {Θt}Mt=0.
In this application, we can also include some specific constraints. Let Y m

n be
a random variable on {0, . . . ,M} which specifies which component generated
Xm

n . If Y m
n = 0, sample Xm

n is generated by the “on-target” component g0,
and ∀t > 0 if Y m

n = t, sample Xm
n is generated by the “off-target” component



8 R. LEFORT, L. FUSCO, O. PERTZ, F. FLEURET

gt. Since we know which RNA molecule is associated to each cell, we have the
following rules: p(Y m

n = t) = 0 if t > 0, t 6= m
p(Y m

n = 0) = πm
0

p(Y m
n = m) = 1− πm

0

(11)

In other words, a cell obtained from a RNA molecule m can not be generated
from an “off-target” component of an other RNA molecule t 6= m. It is gen-
erated by either the “on-target” component, or the “off-target” component of
the considered RNA molecule m. Then, from the constraints (11), we define
the new posteriors at the current iteration (i):

γmn,t = 0 if t 6= m

γmn,t =
πm
0 g

(i)
0 (Xm

n )

f
(i)
m (Xm

n )
if t = 0

γmn,t =
(1− πm

0 )g
(i)
m (Xm

n )

f
(i)
m (Xm

n )
if t = m

(12)

This method allows to characterize each component of the distribution of
the random variable Xm

n . We can now classify the vector Xm
n as being “on-

target” or “off-target”. This classification step is achieved by using the Bayes
rule: 

p(Y m
n = 0 | Xm

n , Θ0, . . . , ΘM ) =
πm
0 g0(Xm

n )

fm(Xm
n )

p(Y m
n = m | Xm

n , Θ0, . . . , ΘM ) =
(1− πm

0 )gm(Xm
n )

fm(Xm
n )

(13)

3.3 Estimation of the parameters

The first parameter to set is the number of iterations of the EM algorithm. We

stop the iterations when the likelihood L
(
{Xm

n }, {Θ
(i)
t }
)

at iteration i is very

close to the likelihood at iteration i+ 1. In other words, we stop the iteration
whether: ∣∣∣L({Xm

n }, {Θ
(i+1)
t }

)
− L

(
{Xm

n }, {Θ
(i)
t }
)∣∣∣ < ε (14)

In practice, using our dataset, we noticed that the classification performances
do not change after 50 iterations. So, the number of iterations is set to 50. But,
if a user does not know a dataset, we recommend to train ε by grid search.

The second parameter to set is C, i.e. the targeted number of components
per class (see equation (1)). The parameter is optimized by using a grid search.
We choose the optimal value C ∈ {2, 4, 16, 32, 64, 128} that maximizes the
likelihood:

Ĉ = arg max
C
L ({Xm

n }, {Θt}, C) (15)
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Note that for our classification task, we do not need a fine evaluation of
the number of Gaussian components per class. This value can even be over-
estimated to guarantee a proper assessment of the ”off-target-effect”. The cell
classification being more important than a good model distribution, we set a
rough grid for C.

There is no prior on the data. Hence, at the initialization step, it is reason-
able to give the same weight to both the ”off-target-effect” and the ”on-target-
effect”. As a consequence, each effect has the same probability to appear. So,
the priors {πt

0}Mt=0 are set to 0.5 at the beginning of the EM algorithm.

4 Vector Quantization

We investigate in this section an alternative approach to the discovery of the
“off-target” effect, which bypass the modeling of the respective distributions,
and directly attempts at classifying each sample as either “off-target” or “on-
target”.

4.1 A hard classification rule (hard-VQ)

This method relies on the analysis of the presence or the absence of the RNA
molecules in each region of the feature space. These regions are build using a
vector quantization algorithm. If all the RNA molecules are present in a region
of the feature space, we assume that these cells are generated from the “on-
target” component. If a RNA molecule is not present in a region of the feature
space, we further assume that this region is “off-target”. This is illustrated in
Figure 2: the “off-target” components contain only crosses, dots, or squares,
while the “on-target” component contains all of the crosses, the dots, and the
squares. We call this method “hard-VQ”.

Formally, let {Xm
n }

Nm
n=1 be a representation of the cells in the feature space,

where the vector Xm
n ∈ RF represents a cell which is obtained from the RNA

molecule indexed by m ∈ {1, . . . ,M}. The first step of the method consists
of dividing the feature space into K clusters. This is achieved by using the
K-means algorithm [10] from all the available vectors {{Xm

n }
Nm
n=1}Mm=1. Let

Imn ∈ {1, . . . ,K}

be the index of the cluster which is associated to the sample Xm
n , and let

Hk = {Hm
k }Mm=1

be the histogram that of the vector distribution of the M RNA molecules in
cluster k ∈ {1, . . . ,K}. Each component Hm

k of the histogram Hk takes the
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following formal expression:

Hm
k =

Nm∑
n=1

1{Im
n =k}

M∑
j=1

Nj∑
n=1

1{Ij
n=k}

(16)

where 1{Im
n =k} = 1 if Imn = k, and 1{Im

n =k} = 0 otherwise.
The second step of the method consists of classifying each cluster into either

“off-target” or “on-target”. To this end, we analyze the histograms {Hk}Kk=1.
Let d(k) ∈ {0, 1} be the classification result, i.e. the decision, where d(k) = 1
if the kth cluster is considered as “on-target”, and d(k) = 0, if the kth cluster
is considered as “off-target”. The classification rule is defined as follows:

d(k) = 1{∀m, Hm
k >0} (17)

In other words, if all the RNA molecules are present in the kth cluster, all
the components of the vector Hk are different from zero, then, this cluster is
considered as an “on-target” component. If there is at least one RNA molecule
which is absent in the kth cluster, there is at least one component of the
vector Hk which equals to zero, then we consider this cluster as an “off-target”
component.

Finally, we define the RNA class posterior p(Y m
n | Xm

n , H1, . . . ,HK), where
Y m
n is defined in section 3 from the decision rule (17), with

p(Y m
n = t | Xm

n , H1, . . . ,HK) = 0 if t > 0, t 6= m,
p(Y m

n = 0 | Xm
n , H1, . . . ,HK) = 1{d(Im

n )=1},
p(Y m

n = m | Xm
n , H1, . . . ,HK) = 1{d(Im

n )=0}.
(18)

In other words, if the vector Xm
n is in a cluster classified as “on-target”, we

set Y m
n = 0, and if the vector Xm

n is in a cluster classified as “off-target”, we
set Y m

n = m.
Note that in this paper, the K-means procedure is initialized using the

K-means++ algorithm [1].

4.2 A soft version of the classification rule (soft-VQ)

We propose to extend the hard classification rule (18) to a soft version, by using
a probabilistic version of the K-means. This method is called “soft-VQ”. The
idea is to generate several clusterings and to merge them together. By doing
this, we aim to reduce the influence of the K-means initialization, and then,
we expect to improve the recognition performance. The main reason of that
improvement comes from the reduction of the noise brought by the vectors
that are close to the cluster boundaries.
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The algorithm is based on bootstrapping. We want to combine B classifiers.
At step b ∈ {1, . . . , B}, in order to build a classifier, we apply the K-means al-
gorithm on a random sub-population of the training data. This sub-population
is composed of vectors which are sampled at random among {{Xm

n }
Nm
n=1}Mm=1.

The proportion of sampled training data is denoted by α. Using the classifi-
cation rule (17), we classify the clusters at step b into “on-target” component
or “off-target” component. Following the “Bagging” idea [4], the final decision
to classify Xm

n as being either an “on-target” component or an “off-target”
component is taken from a vote.

Formally, let db(k) ∈ {0, 1} be the decision taken by the classifier at step b,
where db(k) = 1 if the kth cluster is considered as “on-target”, and db(k) = 0,
if the kth cluster is considered as “off-target”. Then, the posterior takes the
formal expression:

p(Y m
n = 0 | Xm

n , H1, . . . ,HK) = 1
B

B∑
b=1

1{db(Im
n )=1}

p(Y m
n = m | Xm

n , H1, . . . ,HK) = 1
B

B∑
b=1

1{db(Im
n )=0}

(19)

Note that in this paper, we set the number of K-means to B = 100 and
the proportion of random training data to α = 0.5.

4.3 Estimation of K

Setting K is very important and not straightforward. If K is too high, all
the clusters may contain only one type of RNA molecule. In that case, all
the samples may be considered to be “off-target”. On the other hand, if K
is too small, we can expect that all the RNA molecules are present in each
cluster. In that case, all the cells will be considered to be “on-target”. In order
to address this issue, we propose an optimization criterion which forces the
vector distributions of the “on-target” components to be similar and the vector
distributions of the “off-target” components to be different.

Let {Xn, Yn}Nn=1 be the training data set, where Xn ∈ RF is a cell and
Yn ∈ {1, . . . ,M} indicates the index of the RNA molecule. From either the
posterior (18) or the posterior (19), we derive the decision rule dn(K) which
is similar to the decision (17). If Xn is considered to be on target, dn(K) = 0.
Else, if Xn is considered to be off target, dn(K) = 1. We want a value of K
that both minimizes the distance between the “on-target” distributions and
maximizes the distance between the “off-target” distributions.

To achieve this, the optimal value of K is defined as:

K̂ = arg max
K

[∆1(K)−∆0(K)] (20)

where
∆t(K) =

∑
m1 6=m2

δ [µm1
t (K), µm2

t (K)]
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is an average distance and µm
t (K) ∈ [0, 1]K

′
denotes a model of the distribu-

tion {Xn | Yn = m, dn(K) = t}. The distribution function µm
t (K) is computed

using the bag-of-word model [18]. In other word, µm
t (K) is a histogram that

counts the number of samples in {Xn | Yn = m, dn(K) = t} that are in each
of K ′ clusters. The K ′ clusters are computed using a K-means. The Bhat-
tacharyya distance is used to compute the distance:

δ [µm1
t (K), µm2

t (K)] = 1−
K′∑
k=1

√
µm1

t,k (K)µm2

t,k (K) (21)

For a given set of values K ∈ {K1, . . . ,KQ}, we noticed that the value
ranges of ∆1(K) and ∆0(K) are different. In order to have the same dynamics
for both distance measures, the measures are normalized as follows:

∆t(K)←
∆t(K)−min{∆t(K)}KQ

K=K1

max{∆t(K)}KQ

K=K1

(22)

This normalization forces the distance measures in the range from 0 to 1.
In this paper, the optimization criterion (20) is solved using a grid search

where K ∈ {2q}12q=2, and the number of clusters for the bag-of-words model is
set to K ′ = 1024 (see equation (21)).

5 Random forest

Our last method is based on bagging and Random Forests [9,4,15]. We train
a bag of decision trees to predict the RNA molecule associated to a certain
phenotypical vector, and we estimate how the said molecule can be predicted
from the phenotype using the posterior entropy. We will refer to this method
as “forest”.

The idea is that if a cell is “on-target”, it is difficult to know from which
RNA molecule it is from, since all the RNA molecules are present in an
“on-target” component. Thus, if we try to classify the cells among the RNA
molecules, the classification error rates of the “on-target” cells will be high.
The RNA entropy which characterizes the RNA probability will also be high.

On the other hand, given a set of cells that are “off-target”, it is rea-
sonable to suppose that the cell classification error will be low since an “off-
target” component contains less RNA molecules than an “on-target” compo-
nent. Thus, in the case of an “off-target” component, the RNA entropy is
low.

From these properties, we can derive an entropy-based index to characterize
the level of RNA uncertainty and to know whether a cell is either “on-target”
or “off-target”. In the next part of this section, we formulate the problem in
a formal way.

Let B be the number of trees in the forest. In order to train a tree fb of the
forest, the data set {Xn, Yn}Nn=1 is split randomly into a train set and a test set,
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where Xn ∈ R is a cell and Yn ∈ {1, . . . ,M} is the index of the RNA molecule.
Then, for a given test sample X, we can assign a class fb(X) ∈ {1, . . . ,M}.
From the forest, we compute the class probabilities γn = {γn,1, . . . , γn,M},
where γn,m ∈ [0, 1] and

∑M
m=1 γn,m = 1. Formally, γn,m is related to the

occurrence of each class:

γn,m =
1

B
|{b s.t. fb(Xn) = m}| (23)

From the probability vector γn, we propose an entropy-based rule to decide
whether Xn is “on-target” or “off-target”. The entropy hn allows characteriz-
ing the homogeneity of the vector γn:

hn = −
M∑

m=1

γn,m log γn,m

We propose the following rule:
if hn >

1

N

N∑
n′=1

hn′ , Xn is “on-target”

if hn <
1

N

N∑
n′=1

hn′ , Xn is “off-target”

(24)

More intuitively, if hn is low, Xn is always classified in the same class, which
means that it is from an “off-target” component. While if hn is high, Xn is
classified among each of the RNA molecule, which means that it is from a
“on-target” component. In addition, because we know that an “on-target”
component is composed of all the classes, we consider the following constraint
that if:

M∏
m=1

γn,m = 0 (25)

the vector Xn is considered as “off-target”.
In this paper, the trees are trained using the CART algorithm [5] and we

set the number of trees in the forest to B = 100. In addition, the proportion
between the random training data and the random test data to α = 0.5.

6 Experiments

6.1 Toy examples

In this section, a subjective analysis is suggested to show that the proposed
methods are able to distinguish the “off-target” components from the “on-
target” component. In this way, we generate a random data set that is visually
easy to interpret in a 2D feature space. Both the “on-target” component and
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Fig. 3 Subjective analysis from a toy synthetic data set. (a) The ground truth. (b) Esti-
mation using a soft Vector Quantization (soft-VQ). (c) Estimation using a random forest
(Forest). (d) Estimation using a Gaussian mixture model (Random+GMM).
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the “off-target” components follow Gaussian distributions, such that the means
and the variances are chosen arbitrarily.

The results are given in Figure 3. Figure 3-a shows the raw data, i.e. the
data as they are generated. Figure 3-b shows the classification results for soft-
VQ (section 4). Figure 3-c shows the classification results for the random forest
(section 5). Figure 3-d shows the classification results for the GMM (section
3).

The similarity between the estimated components in Figure 3-b and the
ground truth in Figure 3-a shows that the method soft-VQ is able in that case
to recognize the “off-target” components. The forest and the GMM [6] filtered
a lots of the “off-target” vectors as well, but are less precise.

6.2 Semi-synthetic data set

The subjective analysis in section 6.1 is used to illustrate the issue and the
kinds of results we obtain. But, a robust quantitative analysis must be carried
out to compare the methods using real data. We use cells in time laps movies
(Figure 1).

Initially, each cell is represented by 240 features. Some features character-
ize both the soma and nucleus shapes in each frame: Position, area, eccentric-
ity, major axis length, minor axis length, perimeter, and circularity. We also
characterize the distribution of these values in a video by using the quantiles
{0, 0.25, 0.5, 0.75, 1}. In addition, we compute the dynamical version of these
static measures by computing the Euclidean distance between the feature val-
ues in two consecutive frames. For instance, the instantaneous speed is the
dynamical version of the position. To be more exhaustive, we add both the
instantaneous acceleration, and the distance traveled, and we compute their
distributions in the video by using the quantiles.

Then, for all the static features, we compute the frequency of the protrusion-
retraction process, i.e. the number of times a soma is growing or retracting.
Other features characterize a neurite in each frame: number of branches, num-
ber of leaves, distribution of the branch lengths (using the quantiles), the
extreme length (the longest path from the root to a leaf), the total cable
length, and the neurite complexity that equals the extreme length divided by
the number of branches. Again, in order to have a neuron-based measure, we
characterize their distribution by using the quantiles. We also characterize the
neurite feature distribution in a video by using the quantiles. In addition, the
instantaneous number of neurites is computed as well as its distribution in the
video. Then, we compute the frequency of the protrusion-retraction process,
i.e. the number of times a neurite is growing or retracting.

Finally, some features characterize the change between two images in the
video. They are based on the entropy or they are pixel-based. Their distribu-
tion is computed by using the quantiles.
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In order to reduce the complexity, we select the 20 best features by using
the Kolmogorov-Smirnov test[30], which leads to a vector of 20 components
for each cell.
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Fig. 4 Measure of the phenotypic distance between each RNA molecule. The higher the
classification accuracy the higher the distance.

Because of the many possible cell phenotypes, it is not straightforward to
have an annotated data set. That is why we built a semi-synthetic data set from
a set of 17 RNA molecules. To do this, we first evaluate the phenotypic distance
by using the classification accuracy as measure of the distance. The classifica-
tion accuracy is computed from 100 cross validation steps by using a Support
Vector Machine with a Gaussian kernel [29]. Second, using the distance matrix
that is given in Figure 4, we choose the M+1 RNA molecules that are the most
further apart from each other. Then, one of the RNA molecule is chosen at
random to be the “on-target” component, and the remaining RNA molecules
are associated to each of the M RNA “off-target” components. By doing this,
we build a data set which ensures both the “on-target” and the “off-target”
components to have different distributions, while making these distributions
realistic. In order to statistically characterize the recognition performance and
to identify the best method, this random procedure is repeated 100 times. At
the end, we compute a mean correct classification accuracy, that is the av-
erage between the correct classification rate of the “on-target” class and the
correct classification rate of the “off-target” class. The standard deviation is
also computed to indicate the unstable methods.

All the results are given in Table 1. For each method, we plot the classi-
fication accuracy as a function of M , the number of RNA molecules. We not
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only compare the GMM (section 3), the hard-VQ (section 4.1), the soft-VQ
(section 4.2), and the forest (section 5), we also initialize the GMM by us-
ing hard-VQ, soft-VQ, and the forest. The method “Random” is a random
classification that provides a lower bound.

Table 1 Recognition performances as a function of the number of virtual RNA molecules.
The reported value represents the mean correct classification rate.

Number
of RNA M = 2 M = 3 M = 4 M = 5
molecules

hard-VQ 0.70±0.13 0.65±0.17 0.62±0.17 0.61±0.17
hard-VQ+GMM 0.71±0.11 0.70±0.09 0.68±0.09 0.64±0.10

soft-VQ 0.73±0.11 0.70±0.21 0.63±0.18 0.63±0.17
soft-VQ+GMM 0.73±0.12 0.73±0.10 0.69±0.10 0.66±0.09

Forest 0.77±0.06 0.73±0.05 0.69±0.06 0.64±0.09
Forest+GMM 0.73±0.08 0.68±0.06 0.65±0.05 0.61±0.04

Random 0.37±0.06 0.33±0.04 0.31±0.03 0.30±0.03
Random+GMM 0.51±0.05 0.50±0.04 0.50±0.04 0.50±0.03

From these results, we can make several observations. First of all, soft-VQ
and the forest outperform the other methods. Second, in comparison to the
GMM [6], we drastically improve the recognition performance by using the
proposed methods or by initializing the GMM with the proposed methods.
This improvement goes from about 10% to about 25% in the best case. Also,
the probabilistic K-means we proposed (soft-VQ) outperforms the hard deci-
sion rule (hard-VQ) with a range from 1% to 5%. In addition, these results
point out that the EM algorithm needs a proper initialization. For instance,
there is a 23% improvement by initializing the GMM with the soft-VQ (M = 2
and M = 3). To be done with the observations, we notice that the VQ-based
methods have a standard deviation which is about 15, while it is about 5 for the
forest and the GMM. Thus, in comparison to soft-VQ, soft-VQ+GMM allows
both improving the recognition performance and reducing the instability.

6.3 Real data set

In collaboration with biologists, we manually annotated a data set. We want to
characterize the neurite outgrowth of the cells in time laps movies (Figure 1).
A neurite is represented by three features: the total cable length of the neurite,
the extreme length of the neurite, and the number of branches in the neurite.
We have two sets of movies: cells for which the gene HGS is knockdown and
cells for which the gene TRAF2 is knockdown. For each of these two set of
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movies, there are three sub-set of movies, each sub-set being related to a RNA
molecule.

In order to annotate the data, we use the following protocol. For each
possible pair of features, we plot the data in the 2D feature space, and then,
we manually designate the off-target vectors. The annotation result is shown in
Figure 5-a for the gene HGS and in Figure 6-a for the gene TRAF2. The three
RNA molecules are respectively represented by red circles, blue crosses, and
black dots. As waited, the “on-target” component contains cells from the three
RNA molecules, while the “off-target” component contains cells from either
one or two RNA molecules. Figure 5-b and Figure 6-b show the classification
results by using the soft-VQ model. This subjective analysis demonstrates that
we properly identify the different components.

Table 2 Classification accuracy for the genes TRAF2 and HGS. The reported value repre-
sents the mean correct classification rate.

Gene names HGS TRAF2

hard-VQ 0.94 0.91
hard-VQ+GMM 0.80 0.84

soft-VQ 0.96 0.94
soft-VQ+GMM 0.83 0.81

Forest 0.76 0.80
Forest+GMM 0.78 0.83

Random 0.25 0.25
Random+GMM 0.70 0.76

In order to quantify the error rate, we provide the classification accuracy
as well. The recognition performances are given in Table 2 for each of the
methods. As previously, our proposed methods allow improving drastically
the classification accuracy in comparison to the GMM baseline [6] in a range
from 8% to 26%. In addition, our proposed methods are better for the GMM
initialization than a random GMM initialization (about 10%). In comparison
to section 6.2, the VQ-based methods clearly outperform the forest. This is
due to the default values of the forest parameters (number of trees and training
proportion) that are not fitted to this new data set. The advantage of the VQ-
based methods is that we estimate the optimal number of clusters (section
4.3).

Note that these results mainly depend on the quality of the data annota-
tion. The fact that we obtain more that 90% of classification accuracy proves
that the annotation procedure has been well designed.

In Table 3, we report an analysis of the main parameter sensitivity. The
four main parameters are the bootstrapping parameters (B and α) that are
used for both Forest and soft- VQ. We characterize their sensitivity by com-
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puting the average standard deviation of the classification accuracy. If the
standard deviation is high, the dispersion of the classification accuracy is high.
Regarding the parameter B, we note that the accuracy dispersion is lower if
B ∈ {100, 200, 300, 400, 500}. This means that it is equivalent to use B = 100
and B = 500. In addition, we note that the classification performance in-
creases from B = 1 to B = 100 and becomes steady from B = 100. For this
reason, we B = 100. Regarding the parameter α, we note that the dispersion
always increases when we remove the extreme values of alpha (either α = 0.1
or α = 0.9). As a consequence, setting α = 0.5 is a good compromise that
ensures a better choice than random.

Table 3 In this table, we report an analysis of the sensitivity of the two main parameters B
and α that define the bootstrapping environment of both Forest and soft-VQ. We report the
average standard deviation of the classification accuracy. In order to study the sensitivity
of the parameter B, we compute the standard deviation of the classification accuracy for
each value of α given a value of B, then we average the standard deviation. In order to
study the sensitivity of the parameter α, we compute the standard deviation of the clas-
sification accuracy for each value of B given a value of α, then we average the standard
deviation. Let B1 = {10, 50, 75, 100, 200, 300, 400, 500}, B2 = {100, 200, 300, 400, 500}, α1 =
{0.1, 0.3, 0.5, 0.7, 0.9}, α2 = {0.3, 0.5, 0.7}, α3 = {0.1, 0.3, 0.5}, and α4 = {0.5, 0.7, 0.9}.

parameters default method HGS TRAF2

B ∈ B1, α = α1 B = 100 Forest 3.9% 3.6%
B ∈ B2, α = α1 B = 100 Forest 1.4% 1.6%

B ∈ B1, α = α1 B = 100 soft-VQ 1.3% 1.2%
B ∈ B2, α = α1 B = 100 soft-VQ 0.5% 0.2%

α ∈ α1, B = B1 α = 0.5 Forest 2.9% 3.6%
α ∈ α2, B = B1 α = 0.5 Forest 2.2% 2.1%
α ∈ α3, B = B1 α = 0.5 Forest 1.7% 3.6%
α ∈ α4, B = B1 α = 0.5 Forest 2.7% 2.9%

α ∈ α1, B = B1 α = 0.5 soft-VQ 7.3% 8.6%
α ∈ α2, B = B1 α = 0.5 soft-VQ 3.7% 1.3%
α ∈ α3, B = B1 α = 0.5 soft-VQ 7.5% 10.8%
α ∈ α4, B = B1 α = 0.5 soft-VQ 1.7% 0.6%

6.4 Discussion

The results in Tables 1 and 2 reveal that the forest-based method is less robust.
Actually, in Table 1 the forest gives similar to the soft-VQ, while in Table 2
the VQ-based method largely outperforms the forest in a range from 14% to
20%. The explanation of this phenomenon is the fact that we set the number
of trees in the forest to B = 100 the data proportion to train a tree at α = 0.5.
These values are well set in Table 1, but this is not true in Table 2. In order
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to improve the chosen value, we could train the optimal value in a grid search,
as it is done for the GMM in section 3.3.

We now discuss the fact that the standard deviation of the VQ-based meth-
ods is much higher than the forest and the random classification. The VQ
methods are trained in an unsupervised context. The consequence being that
cluster definition only depends on the random centroid initialization. Hence,
the cell classification may strongly vary between two VQ realizations. On the
other hand, both GMM and Forest are trained in a supervised manner. In
such a case, clusters are not only driven by centroid initialization, but also by
the class distributions. This constraint forces the clusters to converge to stead-
ier results, where clusters are centered around the class mixtures or the class
specificities. The consequence is a reduction of both the randomness of events
and the standard deviation. Note that the random classification is based on
a random class attribution to each cell. Hence, it is not surprising to have
similar error rates between several consecutive experiments.

(a) Ground truth

(b) Estimation using soft-VQ

Fig. 5 Classification results for the gene HGS: (a) The raw data set, (b) Estimation using
soft Vector Quantization (soft-VQ).

Now, we address the convergence of Expectation-Maximization (EM). In
Table 1, VQ+GMM outperforms VQ, but Forest outperforms Forest+GMM.
On the contrary, in Table 2, VQ outperforms VQ+GMM while Forest+GMM
outperforms Forest. The theory behind this results is that, using EM, the
likelihood does not necessarily converge towards a global maximum. Instead,
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any local extrema such as local maximum, local minimum or saddle point,
may be reached. The consequence is that the likelihood may slightly decrease
after an EM procedure, especially if the initialization is already interesting. In
their works, McLachlan and Krishnan give such examples [21].

(a) Ground truth

(b) Estimation using soft-VQ

Fig. 6 Classification results for the gene TRAF2: (a) The raw data set, (b) Estimation
using soft Vector Quantization (soft-VQ).

7 Conclusion

We have proposed several implementations of a common idea to detect au-
tomatically the “off-target” population in a set of samples. One is based on
Vector Quantization, and the other on a forest of decision trees. Both of these
methods are able to cope with large data sets in high-dimension space.

A necessary condition common to all our methods is to have at least one
phenotype which is the same for every RNA molecules. In other words, we
force a cell to be considered as “off-target” from the moment a RNA molecule
is not represented. However, these condition can be relaxed to extend the
approach to more general situations. For instance, when a lots of different RNA
molecules are used to knockdown a gene, we may be interested in considering
a percentage of RNA molecules having similar phenotypic components instead
of the majority. We could stipulate that, if 80% of the RNA molecules produce
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the same phenotype, this phenotype is “on-target”. We want to point out that
the rules (17) and (25) can easily be changed to use this soft criterion.

In the experimental sections, we compared our proposed models to a base-
line based on a Gaussian Mixture Model (GMM) [6]. In addition, we proposed
to initialize the GMM training step in a proper way, i.e. by using our proposed
methods. These experiments have been conducted from a real data set which
is made of cells in time-laps movies, as well as a semi-synthetic data set and
a toy synthetic data set.

Our main conclusion is that the VQ-based method drastically outperforms
the baseline [6]. The forest also provides good recognition performance, but
the evaluation of the parameters are not so easy such that we had bad results
on the real data set. An other argument that goes in favor of the VQ-based
model, is that this model is very straightforward and simple to understand
for non computer-scientists such as biologists. The forest approach may still
exhibit interesting properties in different contexts, for instance if the feature
space lacks a metric structure.
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