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Predictability is a prerequisite for effective human control of artificial intelligence (AI). For example, the inability 
to predict the malfunctioning of AI impedes timely human intervention. In this paper, we employ a computerized 
navigation task, namely, a game called lunar lander, to investigate empirically how AI’s predictability compares 
to humans’ predictability. We ask participants to guess whether the landings of a spaceship performed by AI 
and humans will succeed. We show that humans are worse at predicting AI performance than at predicting 
human performance in this environment. Significantly, participants underestimate the differences in the relative 
predictability of AI and, at times, overestimate their prediction skills. These results raise doubts about the human 
ability to exercise control of AI effectively — at least in certain contexts.
1. Introduction

Using artificial intelligence (AI) in high-stakes environments re-

quires “meaningful human control” (Siebert et al., 2022, Steen et al., 
2022, de Sio & van den Hoven, 2018). Ensuring human control of AI 
serves two primary purposes: prevention of system mistakes, i.e., in-

creasing the overall accuracy of human-AI teams, and attribution of 
responsibility when mistakes occur, i.e., assuring that someone is held 
accountable when a system causes (avoidable) damage or harm. More-

over, granting people control is known to reduce “algorithm aversion” 
(Dietvorst et al., 2018), i.e., it makes people rely more on algorithms 
and potentially improves their overall performance on a task. Assuring 
a certain degree of human control is likely to become a legal duty as the 
proposed EU Artificial Intelligence Act requires companies to guarantee 
“human oversight” of “high-risk” AI systems (Beck & Burri, 2022).

An essential prerequisite for effective human control is the suffi-

cient predictability of AI. Predictability refers to a human’s ability to 
foresee the output of an AI, allowing humans to detect and prevent 
AI-produced mistakes. Given that AI systems, especially advanced ma-
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1 “Explainability” refers to a more general understanding of an AI system’s functioning, which might or might not lead to better predictability. In a narrow sense, 

however, predictability does not require explainability. For example, one could predict the AI’s performance by simply looking at its accuracy in the past/in the 

chine learning models, are often “black boxes”, doubts abound about 
whether sufficient AI predictability is feasible. To address the issue of 
insufficient predictability, researchers have called for more explainable 
AI (Lipton, 2017, Miller, 2019).1 While the existing literature inves-

tigates AI predictability and discusses how more explainable models 
improve predictability (Anderson et al., 2019, Chandrasekaran et al., 
2018, Guillemé et al., 2019, Ribeiro et al., 2016, Iyer et al., 2018), it is 
not based on a shared understanding of sufficient predictability. Deter-

mining sufficient predictability is important for the possible trade-off 
between the predictability and the performance of an AI system (Bell 
et al., 2020). If making AI more predictable for humans diminishes its 
performance, it will be tempting to accommodate less AI predictability. 
At the same time, a certain level of predictability remains desirable to 
ensure human control of AI.

We contribute to the discussion on sufficient predictability in three 
important ways. First, we suggest that human predictability serves as 
a natural benchmark to assess the sufficiency of AI predictability. If 
there is a gap between AI and human predictability in the sense that 
AI predictability is lower, one could argue that controlling AI is more 
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difficult than controlling humans and look for possible remedies. Our 
first research question is thus:

RQ1. How does AI predictability compare to human predictability?

Second, we argue that if — in a specific task — there was a gap 
between the predictability of an AI system’s performance and the pre-

dictability of a human operator’s performance, and people did not cor-

rectly assess the size of this gap in predictability, there would be a 
reason for heightened concern. The second research question is thus:

RQ2. How well do people assess a potential gap between AI and human 
predictability?

If people believe that they correctly assess relative predictability, 
they will be interested in remedies to improve the predictability of an 
AI system. If, instead, people underestimate the predictability gap, they 
will not want to implement appropriate measures to reduce it and ul-

timately improve their ability to exercise control of the AI in relative 
terms.

Finally, we investigate how one’s proficiency in a task affects one’s 
ability to predict the performance of the two types of agents (humans 
and AI). Arguably, people performing well on a given task might better 
understand what leads to a failed or successful completion of the task. If 
this were the case, the natural solution to improve predictability would 
be to train people to perform the task better. However, if the AI or an-

other human applied a different, perhaps unusual strategy to complete 
a task, and the environment was rich enough to allow for multiple ways 
of performing the task, improving people’s own performance would not 
necessarily lead to higher predictability.

The third research question we address is:
RQ3. How does peoples’ performance in a task affect predictability?.

When discussing the effects of task proficiency, we again look at 
AI and human predictability and compare objective and perceived pre-

dictability.

The remainder of the paper is organized as follows: Section 2 dis-

cusses related literature, Section 3 presents the design of our exper-

iment, Section 4 highlights the key findings, Section 5 discusses the 
results, and Section 6 concludes.

2. Related work

2.1. Human vs. AI performance and behavior

A vast body of literature compares human and AI performance in 
various tasks. Machine learning algorithms have made tangible progress 
in tasks like chess or Go (Silver et al., 2016). Recent empirical papers 
plausibly argue that AI can reach or even exceed human-level perfor-

mance in more complex tasks, such as image recognition (He et al., 
2015, Russakovsky et al., 2015) or writing review articles (Blanco-

Gonzalez et al., 2022). The differences in performance between AI and 
humans are often attributed to differences in learning patterns or cog-

nitive abilities (Kühl et al., 2022). Despite recent technological devel-

opments, researchers in cognitive psychology and philosophy of science 
urge caution in taking evidence of better-than-human performance on 
a specific task as a sign of “human-like” intelligence or behavior (Cow-

ley et al., 2022, Momennejad, 2023). For example, adapting to sudden 
changes in the decision environment still poses a significant challenge 
for AI systems (Lake et al., 2017, Crosby et al., 2019). Therefore, in 
many areas, AI operates very differently from humans. Such differences 
may be beneficial in some contexts, but they can lead to failures in oth-

ers (Kühl et al., 2022).

In our experimental environment, the task is successfully landing a 
spaceship on a lunar surface. Humans tend to be unsuccessful at nav-

igating, while AI agents trained to perform the navigational task tend 
to be good at it. AI agents, in particular, navigate differently than hu-

mans, adopting different landing patterns and maximizing the chances 
of landing successfully. Given this finding and the literature, we have 
adapted the environment of our experiments to the effect that AI per-
2

forms equally to humans while still navigating differently than humans. 
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We intuited that this difference in navigation, i.e., in “behavior” if we 
use anthropomorphic terms, poses a challenge to AI predictability.

2.2. Human-AI collaboration: evaluation and prediction

According to recent proposals, AI systems need to be studied “not as 
engineering artefacts, but as a class of actors with particular behavioral

patterns and ecology” (Rahwan et al., 2019). Accordingly, empirical 
work in human-robot interaction has explored how humans evaluate 
machine behavior on the one hand and how humans predict machine 
behavior on the other.

Concerning the evaluation of machine behavior, extant studies have 
reported interesting and quite diverging findings. Malle et al. (2015), 
who were among the first to call for research in moral human-robot 
interaction, reported that people find consequentialist actions more 
morally acceptable for robots than humans in sacrificial dilemmas. Liu 
and Du (2021) explored the context of autonomous vehicles and found 
that, when accidents occur, people judge AI driving systems more re-

sponsible than human drivers. They are also blamed more (see also 
Hong (2020)). de Graaf and Malle (2019) showed that people employ 
similar mentalizing explanations for robot and human behavior, sug-

gesting that they are “comfortable considering robots as having beliefs 
and knowledge, as being rational” (p. 245). Shank et al. (2019) explored 
evaluations of AI-driven agents modelled on real-life scenarios, such 
as a chatbot tweeting hate speech. In their studies, however, artificial 
agents were deemed less blameworthy than human agents engaging in 
identical actions (see also Shank and DeSanti (2018)). Kneer and Chris-

ten (2023) find that autonomous weapon systems in military contexts 
are also deemed less morally responsible than human agents when com-

mitting a war crime. Other work, by contrast, shows that in situations 
of reckless decision-making, AI-driven systems are blamed to similar 
extents as individual human agents and corporations (Stuart & Kneer, 
2021) and that the more sophisticated the AI model, the higher peo-

ple’s propensity to ascribe moral blame to them (Kneer & Stuart, 2021). 
Overall, it seems that the evaluation of AI v. human behavior is strongly 
context-sensitive.

As regards people’s ability to predict machine behavior adequately, 
which has attracted less attention, researchers have found that humans 
do well, e.g., in image classification (Zhou & Firestone, 2019). How-

ever, people’s ability to adequately predict AI behavior is much weaker 
in more complex environments such as real-time strategy games (An-

derson et al., 2019). In the experiment reported below, we asked par-

ticipants to predict the overall outcome – success or failure – and thus 
the capability of AI rather than the type of action the AI would engage 
in.

2.3. Appropriate reliance in AI decision making

The issue of sufficient predictability that we aim to address in this 
paper is related to the notion of appropriate predictability, which con-

cerns a human’s ability to predict the successes and failures of an AI 
system. Appropriate predictability ultimately determines the appropri-

ate level of reliance on a system, that is, the need to rely on the correct 
functioning of the system and intervene when the system fails (Schem-

mer et al., 2023). Inappropriate predictability might occur, for example, 
when people are good at recognizing a proper outcome but remain blind 
to system errors. In such cases, even if the predictability of AI were com-

parable to humans’ predictability, there could still be insufficient pre-

dictability. This insufficient (or inappropriate) predictability, in turn, 
could lead to inappropriate reliance on the system (“overtrusting”), 
which some empirical studies have documented (Glikson & Woolley, 
2020, Siau & Wang, 2018). To account for inappropriate/insufficient 
predictability, our environment allows for both types of mistakes: mis-
predicting success or failure.
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Fig. 1. First stage of the experiment: a landing task.
3. Experimental design

We employed a computerized real-effort task: landing a spaceship in 
a lunar landscape (the lunar lander environment).2 The task presents a 
challenging control problem. A Player plays a video game in which they 
fly and land a spaceship between two flags on a landing pad. The player 
has to complete the landing operation within a limited amount of time. 
The player controls the spacecraft by pressing keyboard keys to fire the 
main and side engines. Solving the task requires considering physical 
phenomena, such as acceleration, velocity, and rigid body dynamics. In 
addition to a real-time decision environment with fine-grained control, 
the task allows for easy training of potent deep learning agents such 
as PPO (https://arxiv .org /abs /1707 .06347) and existing baselines from 
the Stable Baselines library (https://stable -baselines3 .readthedocs .io /
en /master/).

Fig. 1 illustrates the game and its two possible outcomes.

We simplified the game and chose only two possible outcomes: suc-

cess or failure of the landing operation. We did not, for example, reward 
participants based on the overall time spent on a trial, the total energy 
used, and other components of more complex reward functions. Two 

2 This is a well-known environment with active maintainers. You can find 
the general environment at the OpenAI gym library here https://github .com /
openai /gym and the code we used in the experiment here: https://drive .google .
3

com /file /d /1sJzPLEKBrNy2Oz3NidM27KkBfE1h1I9A /view ?usp =share _link.
features of the task are worth mentioning. First, the rules of the game 
are relatively simple to understand. Second, the task is new to most of 
the participants. We deliberately chose a task with which participants 
have little to no prior experience. That the task was new allowed us to 
measure the predictability of human and AI performance based on the 
same level of exposure to the game (induced in the experiment).

The AI we are considering in our experiment is a standard artificial 
neural network trained with classical reinforcement learning (Sutton & 
Barto, 2018). Starting with a random policy initially, the AI gradually 
improved the policy through a large number of games.

Most importantly, the behavioral pattern of the AI system and the 
human operator(s) in the game differ (as confirmed by a pre-test), i.e., 
AI and humans adopt different strategies to land the spaceship. AI first 
tends to navigate the spaceship outside of the area designated by the 
two flags on the screen. It then tries to slide it across the floor to the 
center of the screen, i.e., to the space between the two flags. Humans, 
by contrast, often attempt first to stabilize the spaceship in the center 
of the screen and then land it between the flags. This divergence of 
behavior emerges “naturally”, as we did not guide the AI to land the 
object in any pre-defined way. We merely set the goal to maximize the 
chances of successful landings.

We suspect that it is common for humans in many real-life envi-

ronments to employ different approaches than AI systems to problem-

solving and suggest that a difference in the predictability of AI and 

humans is likely to emerge frequently.

https://arxiv.org/abs/1707.06347
https://stable-baselines3.readthedocs.io/en/master/
https://stable-baselines3.readthedocs.io/en/master/
https://github.com/openai/gym
https://github.com/openai/gym
https://drive.google.com/file/d/1sJzPLEKBrNy2Oz3NidM27KkBfE1h1I9A/view?usp=share_link
https://drive.google.com/file/d/1sJzPLEKBrNy2Oz3NidM27KkBfE1h1I9A/view?usp=share_link
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The experiment proceeded in three stages: In Stage 1, after an in-

troduction to the game and after seeing a few examples of failed and 
successful landings, participants were asked to play 30 rounds of the 
game with feedback given between rounds but no payment. This stage 
allowed us to measure participants’ own performance on the task and 
familiarize them with the game.

In Stage 2, the main stage of the experiment, participants performed 
the prediction task. For this task, we informed the participants that we 
had trained an artificially intelligent agent and a human operator to 
play the same game they had just played and each had played mul-

tiple rounds of the game. Before making a guess, participants could 
watch 50 to 75% of the duration of the landing (random cutoff points 
for each trial). We randomized the order of successful and unsuccessful 
pre-recorded landings for each participant. We then fixed the randomly 
drawn sequence of successful and unsuccessful landings for the AI and 
the human blocks. Importantly, we did not give the participants any 
feedback between each landing. We incentivized the prediction task. 
For a correct guess, participants earned eight points, and for a wrong 
guess, zero points. At the end of the experiment, we randomly selected 
two payoff-relevant landings, one per block of predictions (1 point = 
1 CHF). In Stage 3, which occurred before participants learned about 
their performance in Stage 2, we elicited their beliefs about their perfor-

mance in the prediction task. Participants submitted a number between 
0 and 20 to indicate the number of presumed correct predictions. We 
then compared participants’ answers with their true performance in the 
prediction task. Participants earned another 2 points if they guessed 
their performance correctly in each block (with +/-1 tolerance regard-

ing the number guessed).

We implemented two treatments: FULL INFO and NO INFO. The 
treatments only differed in the information provided to the participants 
on the operator type, human or AI. In the FULL INFO treatment, partici-

pants knew whether the AI or a human had performed the landings. The 
information was continuously displayed on the screen. In the NO INFO 
treatment, participants did not receive any information on the opera-

tor type. In this treatment, participants made their predictions without 
knowing whether an AI or a human operator performed a particular 
landing. The comparison between these two treatments enabled us to 
assess whether any difference between AI and human predictability sim-

ply stems from the information on the operator type, i.e., the knowledge 
that an AI (or a human, respectively) performed a particular landing.

The experiment ended with a questionnaire. We elicited general at-

titudes and trust towards technology, participants’ gaming experience, 
risk preferences, and socio-demographic data. We also collected open-

ended responses about the strategies participants used when making 
predictions.

For the study, we complied with the ethical standards of the Faculty 
of Economics and Informatics of the University of Zurich.3 The study 
fell into the category of “low risk” as no ethical issue arose, and we, 
in particular, refrained from using deception in the experiment. Given 
this, formal IRB approval was not required for the study.

4. Results

The main sessions of the experiment took place in June 2022 at the 
ETH Decision Science Lab. In total, 119 participants took part in the ex-

periment. The participants were students of local universities recruited 
with a z-Root software from the pool of students registered at the Uni-

versity Registration Center.

The mean age of participants was 24.6; 56% of them were females. 
Regarding the highest education degree completed, 38% self-reported 
a high school, 32% a bachelor, 25% a master, and 2.5% a PhD degree. 
Around 86% of participants spend less than five hours a day playing 

3 Available at: https://www .research .uzh .ch /en /procedures /ethikkommis-
4

sionen .html.
Computers in Human Behavior Reports 10 (2023) 100290

Table 1

Share of correct predictions by outcome of the landing in % and p-values of 
paired t-tests.

Successes Failures

AI Human AI Human

FULL INFO 61.6 69.8 54.2 65.9

paired t.test 𝑝 < 0.01 𝑝 < 0.001

NO INFO 58.6 65.6 57.5 66.2

paired t.test 𝑝 < 0.001 𝑝 < 0.01

The share of correct predictions is computed as the number of correct predic-

tions divided by the total number of predictions made. The share is computed 
separately for successful pre-recorded landings (columns 1, 2) and failed pre-

recorded landings (columns 3 and 4).

video games, and 64% less than one hour per week. The average dura-

tion of a session was approximately 1 hour. The average earning was 
30 CHF.

To address our first research question (RQ1), we start by analyzing 
the share of correct predictions by treatment (FULL INFO v. NO INFO) 
and operator type red (AI v. human).

Fig. 2 compares the true predictability across operator types and 
treatment conditions (upper part) and guessed predictability across 
operator types and treatment conditions (lower part). We can make 
several observations concerning RQ1. First, we observe lower AI pre-

dictability than the human operator (𝑝 < 0.01, paired t-test). Second, we 
observe no difference across the treatments. The set of results suggests 
that the differences in the landing patterns rather than the information 
about the operator type drive the effect. The prediction levels across all 
the conditions are above the chance level of 50% (𝑝 < 0.01 in all four 
conditions).4

Next, we investigate how well participants separately predicted the 
successful and failed (pre-recorded) landings. Table 1 summarizes the 
findings.

As Table 1 shows, the difference in AI and human operator pre-

dictability persists for both successful and failed landings in both treat-

ment conditions. Concerning RQ1, these findings suggest that, in our 
context, AI’s predictability is lower than human operators’ predictabil-

ity.

To address our second research question (RQ2), we turn to partici-

pants’ beliefs about their performance in the prediction task. The lower 
part of Fig. 2 compares participants’ guesses regarding the fraction of 
correct predictions they made. As Fig. 2 shows, participants did not 
realize the difference in the predictability of AI and human operator 
(𝑝 = 0.82 and 𝑝 = 0.96 in FULL INFO and NO INFO, respectively). In-

terestingly, participants correctly guessed they were better than chance 
across all the conditions. They slightly underestimated the fraction of 
correct predictions for the human operator and stayed very close to the 
true predictability of the AI’s landings. Concerning RQ2, the findings 
suggest that, in our context, people underestimate the predictability gap 
between AI and human operator we identified above.

Finally, we analyze how participants’ performance in the landing 
task relates to their prediction success rate. We first note that the dis-

tribution of participants’ performance is skewed towards zero, i.e., a 
majority of participants failed to land at least once successfully. On 
average, we observed 10.5% of landings as successful. This finding sug-

gests that participants found the task difficult to perform.

4 Given binary outcomes, the probability of judging the landing outcome 
correctly by random guess is 0.5. “Naive” guessing, i.e., persistently guessing 
“success” (or “failure”) would result in 60% (40%) of correct guesses. None of 
the participants in our sample applied a naive guessing strategy, i.e., they all 
changed their prediction from “success” to “failure”, or inversely, at least once 

during the game.

https://www.research.uzh.ch/en/procedures/ethikkommissionen.html
https://www.research.uzh.ch/en/procedures/ethikkommissionen.html
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Fig. 2. Predictability: Share of correct predictions by operator type.
To analyze the effect of task proficiency on prediction success rate, 
we ran a set of linear mixed-effect models:

𝑌𝑖 = 𝛽0 + 𝛽1 ∗ 𝑇 𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡+ 𝛽2 ∗𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑇 𝑦𝑝𝑒+ 𝛽3 ∗𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑆𝑘𝑖𝑙𝑙𝑖 + 𝑎𝑖 + 𝑒𝑖

(1)

where 𝑌𝑖 - is the objective or guessed fraction of correct predictions over 
all trials, respectively;

𝑇 𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 - is a dummy for treatment condition (FULL INFO or NO 
INFO);

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑇 𝑦𝑝𝑒 - is a dummy for operator type (AI or Human)

𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑆𝑘𝑖𝑙𝑙- is the fraction of participants’ own successful landings in 
the practice stage;

𝑎𝑖 - is the individual random effect; 𝑒𝑖 - is the error term.

We refer to true predictability as the objective fraction of correct 
5

predictions across 20 landings in each block (human and AI) and to 
guessed predictability or beliefs as participants’ own estimation of the 
fraction of correctly predicted outcomes of the landings in each block 
(human and AI). We ran the specification in Equation (1) with and 
without control variables. The controls include age, gender, and educa-

tion level. Table 2 presents the regression results for the objective and 
guessed predictability (=beliefs). As Table 2 shows, the coefficient for 
𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is positive and significant for the true predictability (Models 1 
and 2). This confirms our earlier finding about the higher predictability 
of the human operator compared to AI. Participants’ own performance 
in the landing task and the disclosure of information about the opera-

tor type do not significantly affect the true predictability, be it of the AI 
or the human operator’s performance.

We then replaced the dependent variable 𝑌 in Equation (1) and ran 
the same specification for the effect of performance on perceived pre-

dictability (participants’ beliefs). Models 3 and 4 from Table 2 show 
that the coefficients 𝑇 𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 and 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 remain insignificant. Inter-
estingly, the coefficient 𝐿𝑎𝑛𝑑𝑖𝑛𝑔 𝑠𝑘𝑖𝑙𝑙 is positive and significant for both 
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Table 2

Regression estimates: Predictability and beliefs.

True predictability Beliefs

Model 1 Model 2 Model 3 Model 4

(Intercept) 0.59∗∗∗ 0.67∗∗∗ 0.59∗∗∗ 0.72∗∗∗

(0.01) (0.04) (0.02) (0.09)
Treatment: Full INFO −0.01 −0.01 −0.00 0.01

(0.01) (0.01) (0.03) (0.03)
Operator: Human 0.09∗∗∗ 0.09∗∗∗ −0.00 −0.00

(0.01) (0.01) (0.01) (0.01)
Landing skill 0.01 −0.01 0.23∗∗ 0.17∗

(0.03) (0.04) (0.07) (0.08)
Controls No Yes No Yes

Num. obs. 238 238 238 238

Num. groups 119 119 119 119

Linear mixed-effect model fitted. DV = The share of correct predictions, com-

puted as the number of correct predictions divided by the total number of 
predictions made. Controls include age, gender, and education. Significance 
codes: ∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05.

specifications with and without controls: A 10 p.p. improvement in the 
landing task boosts perceived predictability by about 2 p.p., whereas 
objectively, predictability is not affected by performance in the land-

ing task. Regarding RQ3, we observe that if one performs better in 
the landing task, this does not lead to better predictability (of either 
AI or human operator). Instead, better performance is associated with 
more optimistic beliefs about one’s ability to predict performance suc-

cessfully. This finding suggests that more skilled participants might be 
overconfident about their prediction abilities.

5. Discussion

We have explored AI and human predictability in a real-effort task 
and discovered that in a novel environment, participants are better at 
predicting humans than AI. In contrast to a broad definition of pre-

dictability as a global understanding of AI (“shared mental models”), 
which requires people to be able to predict concrete outputs or actions 
of AI, we only required participants to guess the overall success of the 
task performed by AI or a human. Remarkably, a difference in AI and 
human operator predictability emerges in this very narrow setting. We 
attribute the effect on predictability to different behavioral patterns or 
strategies employed by human operators and AI to fulfill the task.

Lower predictability of AI coupled with peoples’ unawareness of any 
difference in predictability suggests that when predictability is neces-

sary for effective human control, controlling AI might be more chal-

lenging than controlling another human. Our findings, however, do not 
imply that humans should replace AI-based systems. In our setting, we 
deliberately equalized the accuracy across pre-recorded AI and expert 
human operator trials to elicit participants’ predictions. In many real-

life applications, however, AI outperforms humans. In these situations, 
the relative gain in performance should be weighed against a potential 
loss in relative predictability. We, therefore, extend the current dis-

cussion of the accuracy-predictability or efficiency-explainability trade-

offs, which focuses on AI exclusively (Bell et al., 2020) by including the 
human-to-human dimension. We did not observe any difference in rela-

tive predictability for failed and successful outcomes. This finding might 
be an artifact of our design as any (mis)prediction has the same impact 
on participants’ payoff. In reality, however, when AI performs well, and 
mistakes rarely occur, supervisors will shift their focus towards detect-

ing mistakes. Further research could investigate how the asymmetry in 
harm/benefit from the erroneous and flawless operation of AI affects 
predictability.

Interestingly, participants’ actual performance on the landing task 
was poor compared to the true performance of AI. However, low per-

formance or lack of experience on a task is not a problem per se. In 
6

contrast, the fact that participants’ own assessments of their ability to 
Computers in Human Behavior Reports 10 (2023) 100290

predict the outcome of landings performed by others were very close 
to the true predictability in the experiment suggests that being con-

fronted with a difficult task might help people form correct beliefs 
about their predictions (and take measures if necessary). It turned out 
that high-skill performers, i.e., participants who manage to land them-

selves successfully, actually overestimate their prediction success. These 
results suggest that improving one’s performance on a task does not nec-

essarily result in an objectively better ability to predict the performance 
of others (AI or a human) on the same task. Instead, it might make peo-

ple believe falsely that they can predict performance well and therefore 
effectively exercise control of others.

In our setting, we measured participants’ performance in the task 
after a fixed number of trials. Future research might investigate how 
exogenous manipulation of skills, e.g., via training, affects the perfor-

mance and predictability – be it objective or subjective – of AI and 
human operators.

6. Conclusion

This paper presents an empirical analysis of AI predictability in a 
real-effort task. The paper’s primary focus is on the comparison between 
AI and human predictability. The key findings suggest that when AI 
behaves unlike humans (while maintaining human-level performance), 
AI predictability is lower than human predictability. Investigating the 
link between lower predictability, trust an d human control presents an 
intriguing avenue for future research.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

The data from the experiments is available here Kandul, Serhiy; 
Micheli, Vincent; Beck, Juliane; Burri, Thomas; Fleuret, François; Kneer, 
Markus; Christen, Markus (2023), AI_human_predictability, Mendeley 
Data, V1, https://doi .org /10 .17632 /pbbvnjw638 .1.

Acknowledgements

This research has been funded by the Swiss National Science Foun-

dation as part of the National Research Program 77 “Digital Transfor-

mation”; Grant Number 187494.

References

Anderson, A., Dodge, J., Sadarangani, A., et al. (2019). Explaining reinforcement learning 
to mere mortals: An empirical study. In Proceedings of the twenty-eighth international 
joint conference on artificial intelligence (pp. 1328–1334).

Beck, J., & Burri, T. (2022). From ‘human control’ in international law to ‘human over-

sight’ in the new EU act on artificial intelligence (October 3, 2022). In Research 
handbook on meaningful human control of artificial intelligence systems.

Bell, A., Solano-Kamaiko, I., Nov, O., & Stoyanovich, J. (2020). It’s just not that simple: 
An empirical study of the accuracy-explainability trade-off in machine learning for 
public policy. In 2022 ACM conference on fairness, accountability, and transparency 
(FAccT ’22).

Blanco-Gonzalez, A., Cabezon, A., Seco-Gonzalez, A., Conde-Torres, D., Riveiro, P. A., 
Pineiro, A., & Garcia-Fandino, R. (2022). The role of AI in drug discovery: Challenges, 
opportunities, and strategies.

Chandrasekaran, A., Prabhu, V., Yadav, D., Chattopadhyay, P., & Parikh, D. (2018). Do 
explanations make VQA models more predictable to a human? In Proceedings of the 
2018 conference on empirical methods in natural language processing (pp. 1036–1042). 
Brussels, Belgium: Association for Computational Linguistics.

Cowley, H. P., Natter, M., Gray-Roncal, K., et al. (2022). A framework for rigorous eval-

uation of human performance in human and machine learning comparison studies. 
Nature: Scientific Reports, 12.

Crosby, M., Beyret, M., & Halina, B. (2019). The animal-AI olympics. Nature Machine 

Intelligence, 1.

https://doi.org/10.17632/pbbvnjw638.1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibC0B53054FFEFC149B8AFD8A35DDCEFC2s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibC0B53054FFEFC149B8AFD8A35DDCEFC2s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibC0B53054FFEFC149B8AFD8A35DDCEFC2s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib5A5C494EB705111520394E9F3F31204Cs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib5A5C494EB705111520394E9F3F31204Cs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib5A5C494EB705111520394E9F3F31204Cs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib8D45C85B51B27A04AD7FDFC3F126F9F8s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib8D45C85B51B27A04AD7FDFC3F126F9F8s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib8D45C85B51B27A04AD7FDFC3F126F9F8s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib8D45C85B51B27A04AD7FDFC3F126F9F8s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib437DE31BC081CDB78DEFBDB799EE22C2s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib437DE31BC081CDB78DEFBDB799EE22C2s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib437DE31BC081CDB78DEFBDB799EE22C2s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibAEDA6D66C337FA09F185719BAA2334F9s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibAEDA6D66C337FA09F185719BAA2334F9s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibAEDA6D66C337FA09F185719BAA2334F9s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibAEDA6D66C337FA09F185719BAA2334F9s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib05B6B54F41F8DB76CEEA07BE3A529928s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib05B6B54F41F8DB76CEEA07BE3A529928s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib05B6B54F41F8DB76CEEA07BE3A529928s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibE5FDA4A380EE9AE0A11B513F8FBA29EBs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibE5FDA4A380EE9AE0A11B513F8FBA29EBs1


Computers in Human Behavior Reports 10 (2023) 100290S. Kandul, V. Micheli, J. Beck et al.

de Graaf, M. M. A., & Malle, B. F. (2019). People’s explanations of robot behavior subtly 
reveal mental state inferences. In 2019 14th ACM/IEEE international conference on 
human-robot interaction (HRI) (pp. 239–248).

de Sio, S. F., & van den Hoven, J. (2018). Meaningful human control over autonomous 
systems: A philosophical account. Frontiers in Robotics and AI, Sec. Ethics in Robotics 
and Artificial Intelligence, 5, Article 15.

Dietvorst, B., Simmons, J. P., & Massey, C. (2018). Overcoming algorithm aversion: People 
will use imperfect algorithms if they can (even slightly) modify them. Management 
Science, 64(3), 1155–1170.

Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of 
empirical research. Academy of Management Annals, 14(2), 627–660.

Guillemé, M., Rozé, L., Masson, V., & Termier, A. (2019). Agnostic local explanation 
for time series classification. In 2019 IEEE 31st international conference on tools with 
artificial intelligence (ICTAI) (pp. 432–439).

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing 
human-level performance on ImageNet classification. In 2015 IEEE international con-

ference on computer vision (ICCV) (pp. 1026–1034).

Hong, J. W. (2020). Why is artificial intelligence blamed more? Analysis of faulting arti-

ficial intelligence for self- driving car accidents in experimental settings. International 
Journal of Human-Computer Interaction, 36(18), 1768–1774.

Iyer, R., Li, Y., Li, H., Lewis, M., Sundar, R., & Sycara, K. (2018). Transparency and explana-

tion in deep reinforcement learning neural networksIn Proceedings of the 2018 AAAI/ACM 
conference on AI, ethics, and society. Association for Computing Machinery.

Kneer, M., & Christen, M. (2023). Responsibility gaps and retributive dispositions: Ev-

idence from the US, Japan and Germany, https://doi .org /10 .13140 /RG .2 .2 .34656 .
15367.

Kneer, M., & Stuart, M. T. (2021). Playing the blame game with robots. In Companion of 
the 2021 ACM/IEEE international conference on human-robot interaction (pp. 407–411).

Kühl, N., Goutier, M., Baier, L., Wolff, C., & Martin, D. (2022). Human vs. supervised 
machine learning: Who learns patterns faster? Cognitive Systems Research, 76, 78–92.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines 
that learn and think like people. Behavioral and Brain Sciences, 40, Article e253.

Lipton, Z. C. (2017). The mythos of model interpretability.

Liu, P., & Du, Y. (2021). Blame attribution asymmetry in human–automation cooperation. 
Risk Analysis.

Malle, B. F., Scheutz, M., Arnold, T., Voiklis, J., & Cusimano, C. (2015). Sacrifice one 
for the good of many? People apply different moral norms to human and robot 

agents. In 2015 10th ACM/IEEE international conference on human-robot interaction 
(HRI) (pp. 117–124).

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. 
Artificial Intelligence, 267, 1–38.

Momennejad, I. (2023). A rubric for human-like agents and NeuroAI. Philosophical Trans-

actions of the Royal Society, Section B, 378.

Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J. F., Breazeal, C., & 
Crandall, J. W. (2019). Nature, 568(7753), 477–486.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you?: Explaining the 
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international 
conference on knowledge discovery and data mining (pp. 1135–1144).

Russakovsky, O., Deng, J., & Su, H. (2015). ImageNet large scale visual recognition chal-

lenge. International Journal of Computer Vision, 115, 211–252.

Schemmer, M., Kühl, N., Benz, C., Bartos, A., & Satzger, G. (2023). Appropriate reliance on 
AI advice: Conceptualization and the effect of explanations.

Shank, D. B., & DeSanti, A. (2018). Attributions of morality and mind to artificial intelli-

gence after real-world moral violations. Computers in Human Behavior, 86, 401–411.

Shank, D. B., DeSanti, A., & Maninger, T. (2019). When are artificial intelligence versus 
human agents faulted for wrongdoing? Moral attributions after individual and joint 
decisions. Information, Communication & Society, 22(5), 648–663.

Siau, K., & Wang, W. (2018). Building trust in artificial intelligence, machine learning, 
and robotics. Academy of Management Annals, 14(2), 627–660.

Siebert, L. C., Lupetti, M., Aizenberg, E., et al. (2022). Meaningful human control: Action-

able properties for AI system development. AI and Ethics.

Silver, D., Huang, A., Maddison, C., et al. (2016). Mastering the game of Go with deep 
neural networks and tree search. Nature, 529, 484–489.

Steen, M., van Diggelen, J., & Timan, T. (2022). Meaningful human control of drones: 
Exploring human–machine teaming, informed by four different ethical perspectives. 
AI and Ethics.

Stuart, M. T., & Kneer, M. (2021). Guilty artificial minds: Folk attributions of mens rea 
and culpability to artificially intelligent agents. Proceedings of the ACM on Human–

Computer Interaction, 5(CSCW2), 1–27.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd edition). 
The MIT Press. http://incompleteideas .net /book /the -book -2nd .html.

Zhou, Z., & Firestone, C. (2019). Humans can decipher adversarial images. Nature Com-

munications, 10.
7

http://refhub.elsevier.com/S2451-9588(23)00023-4/bib6DD2175900999B1A8A7FD14F5797382Fs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib6DD2175900999B1A8A7FD14F5797382Fs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib6DD2175900999B1A8A7FD14F5797382Fs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib72067A523B2A3816E0F51A19D08A3356s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib72067A523B2A3816E0F51A19D08A3356s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib72067A523B2A3816E0F51A19D08A3356s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibAF3179625574AA877BF5A1DC7F48820Bs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibAF3179625574AA877BF5A1DC7F48820Bs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibAF3179625574AA877BF5A1DC7F48820Bs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib066D6128A55AE48971A51EA1E4CF7515s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib066D6128A55AE48971A51EA1E4CF7515s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib1B12C8950A28F0E40E532876D4C53143s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib1B12C8950A28F0E40E532876D4C53143s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib1B12C8950A28F0E40E532876D4C53143s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib656F39EB360325F0DEF09ED750E42B81s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib656F39EB360325F0DEF09ED750E42B81s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib656F39EB360325F0DEF09ED750E42B81s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib88163C52FDB7520D2DA5295DCB52BFF0s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib88163C52FDB7520D2DA5295DCB52BFF0s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib88163C52FDB7520D2DA5295DCB52BFF0s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib85377D33EC3AD81F6E5591CB254537A1s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib85377D33EC3AD81F6E5591CB254537A1s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib85377D33EC3AD81F6E5591CB254537A1s1
https://doi.org/10.13140/RG.2.2.34656.15367
https://doi.org/10.13140/RG.2.2.34656.15367
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibB2814005D3C13C7CA07FC0360C17BC66s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibB2814005D3C13C7CA07FC0360C17BC66s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibF205C093E1EAF8990F71383B41359EE7s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibF205C093E1EAF8990F71383B41359EE7s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibD6E7ED88E40A02B07543D8024DC99ACDs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibD6E7ED88E40A02B07543D8024DC99ACDs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib77122CB39A3AA48E3A6FF8DF64AA93B9s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib9D4D6204EE943564637F06093236B181s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib9D4D6204EE943564637F06093236B181s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibD9E211992921B3EB72AFEAA45065B443s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibD9E211992921B3EB72AFEAA45065B443s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibD9E211992921B3EB72AFEAA45065B443s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibD9E211992921B3EB72AFEAA45065B443s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibF0AF962DDBC82430E947390B2F3F6E49s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibF0AF962DDBC82430E947390B2F3F6E49s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib874B8D3C6A28EF46B5A7485DB6A5EC89s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib874B8D3C6A28EF46B5A7485DB6A5EC89s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib50219D75E64A74C719AE598963FBCCFDs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib50219D75E64A74C719AE598963FBCCFDs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibE3E46BFA662C32AF38BAAF5F1705ECB8s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibE3E46BFA662C32AF38BAAF5F1705ECB8s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibE3E46BFA662C32AF38BAAF5F1705ECB8s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibAFB24CCCC314B15C0F92A486B95F0BBEs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibAFB24CCCC314B15C0F92A486B95F0BBEs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib095636030EF2EEDBF4FE7E2936076A90s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib095636030EF2EEDBF4FE7E2936076A90s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib93D08172D74CE6E459894CC7987E0A47s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib93D08172D74CE6E459894CC7987E0A47s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib0D6244190BE1444270C3A1A69740C521s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib0D6244190BE1444270C3A1A69740C521s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib0D6244190BE1444270C3A1A69740C521s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib830E634E1AB9D8522B7C7837C05F65FBs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib830E634E1AB9D8522B7C7837C05F65FBs1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibE8D286BC4726E04AF56E4B9AD43579D9s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibE8D286BC4726E04AF56E4B9AD43579D9s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib0DB3A1A5EFAE78022FA051E1E199E59Ds1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib0DB3A1A5EFAE78022FA051E1E199E59Ds1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibD97CCED53D3E05658F7F7A6165DC1194s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibD97CCED53D3E05658F7F7A6165DC1194s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bibD97CCED53D3E05658F7F7A6165DC1194s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib8C9DC94F765972774F0C78AB884EED46s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib8C9DC94F765972774F0C78AB884EED46s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib8C9DC94F765972774F0C78AB884EED46s1
http://incompleteideas.net/book/the-book-2nd.html
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib748964E0A3E61C156E09750566A42395s1
http://refhub.elsevier.com/S2451-9588(23)00023-4/bib748964E0A3E61C156E09750566A42395s1

	Human control redressed: Comparing AI and human predictability in a real-effort task
	1 Introduction
	2 Related work
	2.1 Human vs. AI performance and behavior
	2.2 Human-AI collaboration: evaluation and prediction
	2.3 Appropriate reliance in AI decision making

	3 Experimental design
	4 Results
	5 Discussion
	6 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


