
Fast Face Detection with Precise Pose Estimation

François Fleuret
IMEDIA research group

INRIA
Domaine de Voluceau

78150 Le Chesnay
FRANCE

Donald Geman
Center for Imaging Science
Johns Hopkins University

3400 N. Charles St.
Baltimore, MD 21218-2686

USA

Abstract

We present a fast algorithm for face detection and pre-
cise pose estimation. Our detection scheme is based on
a tree-structured hierarchy of face vs. background classi-
fiers combined with a lazy evaluation strategy which con-
centrates computation on ambiguous areas of the image.
The hierarchy corresponds to successive partitions of the
pose parameter space, and thereby provides, at no addi-
tional cost, a fine estimate of the 2D pose of detected faces.

1. Introduction

Standard methods for face detection apply roughly the
same, computationally intensive, strategy: a face vs. back-
ground classifier is applied at every image location and at
several scales. Different base classifiers have been used,
such as artificial neural networks [4], support vector ma-
chines [3] and Gaussian models [5].

Some recent work [1, 2, 6] has focused on hierarchi-
cal representations combining several classifiers at differ-
ent levels of invariance and discrimination, and based on
primitive Boolean features. In these schemes, the various
classifiers reject different types of non-face structures, and
can result in lower false positive rates. Also, due to the hier-
archical architecture, when such detectors are implemented
by a coarse-to-fine (“lazy”) procedure, the overall computa-
tion is concentrated on the portions of the scene that cannot
be easily classified as non-face.

We present in this paper an extension of [2]. The core
idea in this approach is to (manually) design a hierarchy
of subsets (or “cells”) of pose space (see Figure 2) and to
build a corresponding family of very simple binary classi-
fiers, one for each cell. Each classifier is then dedicated to
the face instantiations with poses in a particular cell; it re-

Figure 1. Each detection is displayed with
an equilateral triangle. Two of the vertices
should correspond to the eyes and the third
roughly estimates the location of the mouth.
Note that all faces have been rescaled for
printing, yet originally appeared at different
sizes: From upper-left to lower-right, the dis-
tances between the eyes were

���
, � � , ��� and��� pixels respectively.

sponds positively if and only if it finds in the picture a min-
imum number of edges among a subset of edges dedicated
to the pose cell and determined during an off-line training
phase.

The family of classifiers is combined into one detector,
very tolerant (insensitive) to both scale and location, which
is then applied at one location per �
	�� block in the scene,
and at four different scales (� , �
 , �� and ��). The criterion
for detection at a given rough location and rough scale is
the existence of a chain in the hierarchy, from root to leaf,

Cells ��� ��� ��� ������
� � � � � ���� ���� �!���!�
� �� � � � � ����

�"� �!���#�
�

�%$

& & � � ���� '
�"� �!���#�

� ''
 & & � � ���� �
�"� �!���#�

� �
$ �

& & � &(���
��)
�*�����!���

�)
�
+�

& & & &(���
� $ �*�����!���

� $
) $
& & & � ���

Table 1. The tolerance in pixels and degrees
of the pose parameters for each cell in the
pose hierarchy. First the position is increas-
ingly constrained, then alternately the scale
and tilt.

whose corresponding classifiers all respond positively (see
Figure 2.)

We improve the algorithm in [2] in three ways: 1/ The
classifiers count the number of edge fragments and flat ar-
eas instead of counting larger conjunctions (special pairs,
triples, etc.) of edge fragments; 2/ A pose is associated with
each alarm (detected chain) at no additional cost; 3/ An “av-
erage pose” is computed for each set of alarms which seems
to be more precise than in any previously reported results on
face detection.

This paper is written from an algorithmic perspective. In,
2, we describe the search strategy behind the main detector-
. In

,
3, we explain the structure of the component classi-

fiers and how these are induced from a training database. In
order to accurately estimate the pose, we give in

,
4 a sim-

ple heuristic to suppress trivial alarms and group the others.
Finally, in

,
5 and

,
6, we provide experimental results, and

summarize and evaluate our approach.

2. Detection Algorithm

The global procedure is to parse the scene at various
scales, and at a sampling of locations, with a window of
size

� �.	 � � , in each case applying a detector
-

which
computes the list of the faces present in the window, and
estimates their poses.

The pose of a face is defined in the image plane: The
center /0� � �21 is the middle of the segment joining the two
eyes, the scale � is the distance (in pixels) between the eyes,
and the tilt � is the angle between the vertical and the line
passing through the center and the mouth.

The detector
-

is intended to find all faces verifying/3� � �21
465 & � �
78�*9

, : &(�.; � ;<&8�
and � ; � ; � � . We

...

...

......

Figure 2. The parameter space of poses
is hierarchically decomposed into cells cor-
responding to successively stronger con-
straints on the positions of the eyes and
mouth in a

� �=	 � � reference frame (cf. the
three squares at the bottom). An alarm is
identified with a fine (leaf) cell

�
if the classi-

fier for every coarser cell (i.e., containing
�

)
responds positively. Such responses are in-
dicated by bold outlines and complete chains
of positive responses, from root to leaf, are joined
by bold lines.

call
���
� the set of all four-tuples /0� � � � � � ��1 verifying these

constraints.
We recursively partition

� �
� into a sequence of nested

partitions; each cell
�

of each partition is a subset of
poses which is included in exactly one of the cells in the
preceding, coarser partition. The first partition of

�>�
� is� ��@?

� �
 ?
� �' ?

� �� . In each of the four cells
� �A �

BDC � �!�E�F�E� � ,the center /0� � �21 is constrained to one of the four sub-
squares of size ��	G� of the initial ��	H� square. The second
partition further constrains /3� � �21 to

& 	 & squares, and con-
tains � � cells. This is the strongest constraint on location
in the hierarchy. The next four partitions involve splitting
parent cells into two pieces, and correspond to alternately
constraining the scale and the tilt. The set of partitions is
summarized in Table 1 and the hierarchy is illustrated in
Figure 2.

A binary classifier IKJL is constructed for each cell
� J L .

The classifier is a function of the image data in a
� �M	 � �

sub-image N and is intended to respond to faces appearing
in N whose pose belongs to

� J L . The classifiers are designed
to have a null false negative error rate, i.e., no missed detec-
tions, at the expense of false positive errors.

The list of alarms computed by
-

corresponds to the set
of fine cells

�POL , where Q is the last level (Q CR�
in Table

1), such that all the classifiers I corresponding to cells
�TS� OL respond positively, including I OL itself. These can be

visualized as chains of positive responses in the hierarchy
of cells (see Figure 2). Each such chain is identified with
an average pose in the finest cell, which serves as a good
approximation of the pose of the detected face.

The computation of this list of (complete) chains can be
performed efficiently by computing the response of a clas-
sifier IUJL if and only if all the classifiers corresponding to
cells containing

� J L (hence more invariant to pose) have
already been evaluated and responded positively. Areas
of the scene rejected by coarse classifiers are then rapidly
processed, whereas ambiguous areas, e.g., those containing
faces or face-like structures, will not be labeled until some
of the fine classifiers have been evaluated, and hence require
more computation (see Figure 4). Calculations of the mean
computation under certain models for the cost and statistics
of the classifiers IKJL appear in [2].

3. Cell Classifiers

Each classifier IKJL checks for a certain number of dis-
tinguished edge fragments and a certain number of distin-
guished flat areas, and hence is defined by two lists (of sizeV CW& � �) and two thresholds, all determined during train-
ing. Consequently, the classifiers are simply counting op-
erators. Checking for an edge fragment means evaluating
a binary local feature indexed by a direction X , a location/3� � �21 in the

� �Y	 � � reference window, and a “tolerance”
parameter Z which controls the degree of invariance (see
Figure 3); details about the edge detector are given in [2].
Similarly, for each cell, there is a list of locations /3� � �21expected to be flat; this means that the absolute difference
between the intensity at pixel /3� � �21 and each of its four
neighbors is smaller than � �\[of the neighbor differences
in the

� �G	 � � window.
We emphasize that the algorithm does not check for con-

junctions of edges as in [2], but only for individual edges
and flat areas. This change is motivated by the simplifica-
tion it affords and by the increasing decorrelation of indi-
vidual edges as the pose is increasingly constrained. Thus,
at least in the fine cells, little information about the shape
of the face is lost by merly counting individual edges rather
than looking for more complex structures.

All the classifiers in the hierarchy are built with the same
learning algorithm; the lists differ due to varying train-

y

x

σ

Figure 3. A local feature is present at /0� � �21 if
an edge of a given direction (here horizontal)
is detected anywhere in a strip of length Z
pixels around /0� � �21 . The orientation of the
strip is perpendicular to the edge direction.

ing sets, corresponding to varying constraints on the set of
poses. Our experiments are based on the ORL database1,
which contains � �8� grayscale face pictures of size �8� & 	
] �
pixels. We have marked (by hand) the locations of the eyes
and the mouth on each training image. (Of course the detec-
tion algorithm does not explicitly involve searching for such
facial attributes.) For each cell, we create a synthetic train-
ing set of � �8��� face images whose poses are in

� J L . This is
accomplished by randomly choosing four poses in

� J L for
each original picture and translating, rotating and scaling it
to each of these four poses.

The list of edges is determined as follows. First, for each
location /3� � �21 in the

� �^	 � � window, and for each direc-
tion X , we compute the minimal tolerance Z such that the
probability of an edge somewhere in the strip is at least �
 ,
as estimated by the corresponding fraction of training pic-
tures. We reject the location and direction if this can not
be achieved for Z ; � . Then, we subsample

V
of the

remaining local features /0� � � � X � Z_1 to maximize the min-
imum number of positive responses over the training set.
This subsampling is iterative: at each step select a new fea-
ture which occurs on the training picture with the least num-
ber of positive responses to the features already selected.
The procedure is the same for selecting the

V
flat-area de-

tectors, which are indexed by only a location /3� � �21 . The
thresholds are the largest ones achieving a null false nega-
tive rate for the resulting classifier on the training set.

The complete training time is about two hours on a stan-
dard � Ghz desktop PC.

4. Pose Estimation

Due to the built-in invariances, the same face will induce
multiple alarms (detections). Therefore we post-process the
list of alarms in order to group them and to eliminate iso-

1http://www.cam-orl.co.uk/facedatabase.html

lated ones. Indeed, due to the rich and redundant informa-
tion in the set of complete chains provided by the detector,
this is relatively easy to accomplish and could be done in
numerous ways. For example, consider the distance

` /%/0� � � � � � �*1 � /0�ba � �ca � �8a � ��ad1%1
Cfe /3�H:g� a 1
�h /0��:g� a 1
i�jEk /l� � � a 1

An iterative process begins by assigning a mass of � to
each alarm. Then, if there exists a pair of alarms closer than�' , also verifying m �n:o� a m ; �
 i�jpk /q� � � a 1 , we replace the
two closest ones by a weighted average, with the sum of the
two masses. When this loop terminates, we eliminate all
alarms with small mass (say less than �). This procedure
yields estimates of the pose which are more accurate than
the resolution of the finest cells of the hierarchy (see Figures
1 and 4).

5. Results

We have implemented our algorithm in C++ on a
GNU/LinuxTMsystem and tested it on �8� scenes taken from
various news web sites, containing � ��7 frontal-view faces.
These pictures are well-focused and contain faces of scales
ranging from � pixels to �(� pixels on complex backgrounds.

The detection rate on these pictures is 92% (] faces
missed). On the average, for a picture of size

7�&8� 	 &(��� ,
there are � � ��� false alarms and complete processing on a� Ghz desktop PC requires

�
� ��� seconds.

We have estimated the error in the pose by marking by
hand the real pose on every test face. For] �\[of the alarms,
the distance between the real location and the estimated one
is within � &�[of the real scale, the difference between the
real scale and the estimated scale is within

& � [of the real
scale, and, finally, the estimated and real tilts are within

�
�]degrees.

6. Conclusion

We have presented a new way to represent objects and
to organize the computation in searching for them in natu-
ral scenes. By imposing successively stronger constraints
on the pose of a face, we progressively simplify the set of
shapes to be modeled. Consequently, we can use very prim-
itive classifiers and still obtain reasonable error rates, espe-
cially on high resolution images. Moreover, the search can
be made very efficient.

The main weakness of the current implementation is the
sensitivity of the edge detectors to degraded (e.g., blurred)
images. Also, the database used for training is too small
and biased. We intend to overcome these deficiencies, and
thereby lower the error rates, while maintaining computa-
tional efficiency and precise pose estimation.

Figure 4. Top row: Detections before clus-
tering. Middle row: Final result after pruning
and pose averaging. Bottom row: Intensity of
pixel usage (the graylevel shows the number
of accesses to each pixel during detection);
as expected, the computation is more intense
on highly structured areas of the scene.

References

[1] Y. Amit and D. Geman. A computational model for visual
selection. Neural Computation, 11:1691–1715, 1999.

[2] F. Fleuret and D. Geman. Coarse-to-fine visual selection.
International Journal of Computer Vision, 41(1/2):85–107,
2001.

[3] E. Osuna, R. Freund, and F. Girosi. Training support vector
machines: an application to face detection. In Proceedings,
CVPR, pages 130–136. IEEE Computer Society Press, 1997.

[4] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-
based face detection. IEEE Trans. PAMI, 20:23–38, 1998.

[5] K. K. Sung and T. Poggio. Example-based learning for view-
based face detection. IEEE Trans. PAMI, 20:39–51, 1998.

[6] P. Viola and M. J. Jones. Robust real-time object detec-
tion. Technical Report CRL2001/01, COMPAQ Cambridge
Research Laboratory, 2001.

