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1 Objective

Given a labeled training set

(xn, yn) ∈ RD × {1, . . . , Q}, n = 1, . . . , N

we want to estimate centroids

ck ∈ RD, k = 1, . . . , K.

such that the clustering is “as poorly informative” about y as possible.

This means that while we still want the clusters to be “compact” geometrically, we want

the values of ys to be equally represented in all clusters, so that knowing to which cluster

a sample belongs does say a lot about its position x as usual, but does not say anything

about its class y.

2 Standard k-Means

We reformulate the standard k-means, which is completely unsupervised, hence does not

take the yn into account, as follows:

Let

γ(n, k) ∈ {0, 1}, n = 1, . . . , N, k = 1, . . . , K

stands for the “memberships” of xn to the cluster defined by ck, with γ(n, k) = 0 standing

for “xn does not belong to cluster k”, and γ(n, k) = 1 stands for “xn belongs to cluster k”.

The k-means procedure consists of alternating the two following steps:
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1. Re-estimating the centroids

∀k, ck ←
∑

n γ(n, k)xn∑
n γ(n, k)

2. Re-estimating the memberships of each sample

∀n, γ(n, 1), . . . , γ(n,K)← argmin
g1,...,gK∈[0,1],

∑
k gk=1

∑
k

gk‖xn − ck‖2

Under that form, and even if we have relaxed the constraints for the γ to be integers,

that step always picks a value in {0, 1}K .

Interestingly the second step is a linear optimization under linear constraints.

3 Clueless k-Means

We want to enforce that the classes are equally represented in all clusters, that is

∀k, q,
∑

n γ(n, k)1{yn=q}∑
n γ(n, k)

=

∑
n 1{yn=q}

N
,

which is equivalent to

∀k, q,
∑
n

(
1{yn=q} −

1

N

∑
m

1{ym=q}

)
γ(n, k) = 0. (1)

A related criterion that we call “absolute” forces the fraction of samples from each class

to be the same in each cluster:

∀k, q,
∑
n

γ(n, k)1{yn=q} =
∑
n

1

K
1{yn=q}. (2)

We can add (1) or (2) as constraints to the second step described in the previous section,

which remains a linear optimization under linear constraints and can be solved with a

standard LP optimizer.
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Figure 1: Results on a synthetic 2d problem, where the population is composed of two

classes, one with samples uniformly distributed over a square at the top, and one with

samples uniformly distributed in a rectangle at the bottom. We compare the standard

k-means (top graph) with the two variants of the clueless k-means (bottom left graph for

the standard one, bottom right for the “absolute” one), using three clusters. As expected

in the bottom figure, the clusters are chosen such that they all capture samples from the

two classes.
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