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Abstract. As scene segmentation systems reach visually accurate results,
many recent papers focus on making these network architectures faster,
smaller and more efficient. In particular, studies often aim at designing
‘real-time’ systems. Achieving this goal is particularly relevant in the
context of real-time video understanding for autonomous vehicles, and
robots.
In this paper, we argue that the commonly used performance metric
of mean Intersection over Union (mIoU) does not fully capture the
information required to estimate the true performance of these networks
when they operate in ‘real-time’. We propose a change of objective in
the segmentation task, and its associated metric that encapsulates this
missing information in the following way: We propose to predict the
future output segmentation map that will match the future input frame
at the time when the network finishes the processing. We introduce the
associated latency-aware metric, from which we can determine a ranking.
We perform latency timing experiments of some recent networks on
different hardware and assess the performances of these networks on our
proposed task. We propose improvements to scene segmentation networks
to better perform on our task by using multi-frames input and increasing
capacity in the initial convolutional layers.

1 Introduction

Recent image segmentation networks achieve near-human level performance due
to their expressive power, and more focus is on designing architectures that
are faster, and can run on smaller hardware with less memory and computing
power. In particular, enabling real-time segmentation is critical for applications
in robotics, autonomous driving or medical imaging during surgery.

The primary way currently used to assess performance is a task whose objective
is the prediction of the input frame’s segmentation, which is compared to the
input frame’s ground-truth segmentation using a given metric (e.g. mIoU). In
what follows, we will use ‘accuracy’ to refer to such a metric. For networks aiming
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at low-latency, researchers also estimate efficiency with the Frames Per Second
(FPS) metric, or its inverse the Seconds Per Frame metric, also called latency.

On real-time segmentation benchmarks, networks are ranked according either
to some accuracy metric or latency. Often, accuracy-latency charts also allows
to quickly estimate a new network overall performances. However, we claim
there still is critical information missing to the practitioner: What is the actual
accuracy of the system when deployed and used in practice? In other terms, we
want to help answer the question of how the system’s latency will affect the
relevance of its predictions.

We propose an intuitive extension to the usual video segmentation task by
introducing a change in the objective. We change the goal from predicting input
frame segmentation to predicting future frame segmentation. Going beyond intro-
ducing a useful metric, our ‘latency-aware’ task aims at encouraging researchers
to focus on a more relevant goal for real-time contexts, i.e. designing anticipatory
networks.

The change we propose in the objective definition is straightforwardly appli-
cable to a wide range of problem domains (e.g. object tracking, object detection,
object segmentation, pose estimation). In the remainder of this paper, we will
focus on the scene semantic segmentation task and perform our experiments on
it.

Our contributions are as follows:

– We propose a simple, and relevant task that aims to assess actual performance
of real-time networks,

– we highlight the associated metric and discuss its benefits,

– we analyse the relevance of the metric through multiple experiments on
different scene segmentation networks,

– we propose improvements to a fast image-segmentation network for better
performance on our task by taking multiple frames as input and increasing
the number of channels of early convolutional layers.

We will make our code publicly available at the time of the conference.

2 Related Work

2.1 Image Semantic Segmentation

Most popular approaches for tackling Semantic Segmentation use a variant of
powerful deep classification networks that are made fully convolutional, with all
final fully connected layers replaced by convolutions. That seminal idea is at the
core of the FCN paper [1].

The main issue coming with this technique is that it significantly reduces the
image resolution in order to retrieve semantic information. Subsequent models for
semantic segmentation are built as a “fully convolutional network” and attempt
to cope with the dimension reductions, while increasing the Receptive Field.

One commonly used techniques is to use a decoder network plugged after the
FCN to upsample the segmentation map using transposed convolution, as first
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did [2] and [3] with SegNet and U-Net. This setup allows to merge spatially rich
shallow layers into semantically rich deeper layers.

DeepLab v2[4] later proposed to use dilated convolutions [5] to avoid down-
sampling. This allows to process images with a large field of view without having
to reduce them, but it comes with a larger computational complexity.

Finally, [6] proposed to use a “Spatial Pyramidal Pooling” (SPP) module [7]
for segmentation. SPP pools the image simultaneously at different resolutions
over a grid, therefore enlarging the Receptive Field. This allows to incorporate a
larger context, and take into account higher-level semantic.

Many works followed with techniques to produce high-quality segmentation
[8–11], including better ways to extract features [12–15] and to take into account
context [16, 17]. Some recent works also proposed attention-based methods [18–23]
and neural architecture search for image segmentation [24–26].

On a different application domain, similarly to the change we propose, back-
bones with enlarged front-end have been used with success for object detection
[27] were the authors are training their network without ImageNet pretraining.

2.2 Real-time Semantic Segmentation

Reducing the computational cost and the memory cost of deep segmentation
systems is critical for many applications that need to run real-time on slow
hardware. A precursor in fast segmentation is ICNet [28], which is a fast network
that uses multi-scale processing with a special fuse block to merge multi-scale
information.

One way of optimising neural network architecture for speed is by using
factorised convolutional blocks, e.g. factorizing kernels k× k into 1× k and k× 1
kernels as does ERFNet [29]. It can also be achieved using group convolutions,
and methods such as ShuffleNet [30] propose different ways to create connections
between groups.

One can also use depthwise separable convolution (DSC), which are the
combination of depthwise and pointwise convolutions. These DSC are used to
lower the number of parameters and makes the inference faster, at the cost of
accuracy. They are used broadly in MobileNets [31, 32].

Another important idea of these networks is to quickly downsample images
in order to perform most of the processing at a smaller resolution and avoid full
resolution processing. This idea is key to the design of ENet [33].

BiSeNet and BisenetV2 [34, 35] proposed a way to separate the localization
problem from the semantic extraction problem, and then to merge the two
information appropriately.

Recent work such as FasterSeg network [36] also use Neural Architecture
Search to succesfully discover fast neural architectures for semantic segmentation.

Among fast segmentation networks, Swiftnet [37] is another recent work that
proposes an architecture with a light-weight ImageNet-pretrained Resnet followed
by a simple decoder using lateral connections similarly to U-Net. For our work,
we choose SwiftNet as one of our base networks for its simplicity and its speed.
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2.3 Video Scene Segmentation Networks

Another part of the literature focuses on designing video segmentation systems.
More specifically, these works try to leverage the temporal correlation of con-
secutive frames in a video to improve the next-frame prediction and reduce
computation and latency. However, most works in this domain are more focused
on improving segmentation accuracy than reducing the latency.

The Clockwork net in [38] is a model that leverages temporal correlation by
running different parts of the network at each time-step conditionally to how
much the video has changed from the previous frame. This technique has the
disadvantage of not providing a fixed frame-rate.

Another direction to address the problem is to try propagating previous
features to consecutive frames to avoid recomputing very similar features for
following frames, as is done in [39], even though their design is not meant for
real-time.

The work [40] built on these two previous ideas. Their network decides at
each frame whether to propagate previous features or to recompute the entire
segmentation map. They improved the clockwork design to reduce the maximum
latency but did not reach real-time.

Other works use predictive learning, that is predicting future frames or flow
motion using past frames and segmentations to help current segmentation [41–43].

Video temporal coherence is also used along with representation warping
to produce better future segmentation maps. Warping is either applied at the
feature level [44, 45] or directly at the segmentation map level [46], and possibly
combined with existing features to produce the output. However, these works
are not focused on time efficiency.

A Bayesian approach for multi-modal future prediction of scene segmentation
was also proposed in [47] that allows to take into account model and observation
uncertainty.

Recently, Temporally Distributed Network [48] was introduced for fast video
segmentation. It uses a teacher-student design where fast student networks have
to predict - in turns - part of the feature map of the teacher network.

3 A new task for real-time networks

3.1 Motivation for latency awareness

Real-time network performance is usually assessed through accuracy-latency
charts that help in understanding a network’s trade-offs. These charts provide
instant accuracy of networks, i.e. the accuracy between the network’s prediction
and the input’s ground truth. In practice however, networks may need a few
seconds before they make a prediction. During that time, the scene has changed
and the network prediction does not match that change. It is then particularly
useful to compare the network prediction with this new scene’s segmentation.
This important comparison is missing from latency-accuracy charts as they do
not provide the actual accuracy (compensated for time-delay) that one will get in



Real-Time Segmentation Networks should be Latency Aware 5

practice. More, it does not provide neither a total order relation nor a ranking to
compare various real-time networks, as can be seen on benchmark websites such
as paperswithcode.com4, We believe that it is therefore relevant to introduce a
new objective for the segmentation task that takes into account network latency.
This allows to get a meaningful accuracy information and practical benchmarking
of networks.

3.2 Defining a new objective for real-time networks

We propose to change the objective of the segmentation task: currently, the
objective of the task is to predict the input frame segmentation. Instead, we
propose as objective to predict the segmentation of the “future” frame at the
time the network finishes its computation.

Formally, let us consider a video sequence and let It and St denote respectively
the frame at time t and its ground truth segmentation. Let F denote the operation
of a network (say semantic segmentation) that takes lF milliseconds to process
the current input It. The common objective is to improve the metric:

acc (F (It), St) (1)

while our task proposes to optimise for:

acc (F (It), St+lF ) (2)

Instead of predicting the segmentation of the input frame, our task expects
systems to predict the segmentation of a future frame, thus acknowledging the
network latency.

This objective is particularly relevant for real-time applications in which we
are usually more interested in what is currently happening than in what was a
few seconds before : it is useful compare the information we get at a given time t
using a network (F (It−lF )) with the information we ideally would like to get at
that time (St).

As said earlier, this change of objective is applicable to a whole range of
different tasks such as object segmentation, object detection, object tracking,
pose detection, etc. We focus on the scene segmentation task for this work.

3.3 Corresponding Latency-Aware Metric

For scene semantic segmentation, the metric commonly used is the mean Inter-
section over Union (mIoU). Our new task naturally defines a metric that depends
on the latency of the network. We term it “Latency-Aware mIoU” (LAmIoU),
which is defined as per Eq. (2).
Considering this metric is interesting as it carries an additional practical meaning
compared to the classical instant mIoU: the accuracy (LAmIoU) that this metric
outputs is the accuracy that one will see in practice when running this network
in a real-time setting on the given hardware device.

4 https://paperswithcode.com/task/video-object-segmentation
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Fig. 1: Left: How mIoU is computed now; the output of the network is compared
to the ground truth segmentation of the image in input of the network. Right:
Our proposed way to measure mIoU; the output of the network is compared
to the ground truth segmentation of the future image when network finishes
processing.

3.4 Use with video datasets

In practice, a video sequence is collected with a specific sampling frequency (there
is some time delay d between two sampled frames), and thus the dataset does not
have a frame for every time t. For our task we therefore use the frame sampled
just after the model has output a prediction as shown in Fig. 2.

More precisely, let’s assume that t = 0 when frame of index 0 enters the
network and consider a video sequence with a delay d between two frames (fps
= 1/d). Then, the index of the segmentation map that the metric would use as
ground truth is:

kF = dlF /de (3)

In what follows, when we refer to t+ kF × d, we will simplify notation and
write t+ kF .

lf

Start
processing

End
processing

t t + kf

Target frame
used for the

task

Model

Fig. 2: Target frame used for our proposed objective
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Note that the performance on this task is hardware-dependent. Indeed, as
network latency depends on the device, the frame used for metric computation
depends on it as well. Knowing the value of this metric for a network on multiple
hardware allows one to pick the right network and hardware depending on
precision needs.

4 Dataset, Models and Experimental setup

4.1 Dataset

Dense pixel-level manual annotation of videos for scene segmentation is not
feasible due to the time and economic costs involved. Cityscapes dataset [49] was
estimated to take about 90 minutes per-frame for annotation and verification,
and thus only provides sparse annotations of one frame per video sequence. We
choose this dataset to conduct our experiments as it contains video sequences
and its use is widespread as a segmentation benchmark.

This dataset contains 2,975 training, 500 validation and 1,525 testing video
sequences. Each sequence contains 30 frames, and the 20th frame is annotated
with fine pixel-level class labels for 19 object categories. A sequence is 1.8s long,
therefore the frame rate is approximately 16.6 fps and there is about 60ms
between each frame. As Cityscapes contains only the ground truth segmentation
for one image per sequence, we process as follows:

1. We time the latency lF of the network
2. We determine how many frames of offset kF this time corresponds to: kF =
dlF /0.06e (0.06 = 60ms)

3. We use as input of the network the frame of index 20− kF , as we only have
the 20th frame’s ground truth segmentation

Note that the Cityscapes framerate is about half of the one usually encountered
in videos. This may be slightly detrimental as the higher the framerate is, the
more precise the latency-aware metric will be.

4.2 Networks

For our experiments, we choose two image segmentation networks: SwiftNet [37]
and DeepLab-V3+ [50] with 2 different encoders : ResNet-101 and MobileNet v2
[32].

SwiftNet SwiftNet is a state-of-the-art network in real-time segmentation. For
our experiments, we build this network as detailed in the original paper and
describe it below. It is a network with an encoder-decoder structure:

– The encoder backbone is a classical ResNet-18 whose fully connected layers
have been removed to make it fully convolutional.
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– A Spatial Pyramidal Pooling Module with 4 different pooling layers of grid
size (1,2,4,8) is plugged in output of the encoder to increase its receptive
field.

– Finally, a decoder with 3 upsampling modules recovers original image resolu-
tion. An upsampling module upsamples the previous layer’s output and then
merges it with a skip connection coming from the encoder.

We will refer to it as SwiftNet-R18. It has approximately 12M parameters.
On Cityscapes validation set, it reaches 75% mIoU and runs at about 40 fps on a
GTX 1080 Ti. On this hardware, SwiftNet has a latency of 26 ms. This means we
have to use kF = d26/60e = 1 frame offset to compute the latency-aware mIoU.

DeepLab v3+ DeepLab v3+ is a state of the art network for image segmentation.
It has an encoder-decoder architecture very similar to that of SwiftNet:

– We use two different encoder backbones :
• A dilated ResNet-101 network stripped of its fully connected layers. We

use an output stride of 16, so the last two residual blocks make use of
dilated convolutions to enlarge the receptive field.

• A MobileNet-V2 network as described in [32]. It uses depthwise separa-
ble convolutions within “inverted” residuals blocks separated by linear
bottlenecks.

– An Atrous Spatial Pyramidal Pooling module is plugged after this encoder.
It convolves the encoder output with 4 atrous convolutions using different
dilation rates: (1, 6, 12, 18).

– Finally, a small decoder upsamples the ASPP output and concatenates it
with low-level features from the encoder. The decoder blends them with a
convolution and upsamples the output to the original input image size.

When using a ResNet-101 as backbone, the whole network has approximately
60M parameters and reaches 77% mIoU on Cityscapes validation set and runs at
5 fps. We will refer to it as DeepLab-R101. On our hardware, it has a latency
of 195 ms, which means we have to use kF = d195/60e = 4 frame offsets to
compute the latency-aware mIoU.

When using a MobileNet backbone, the model has about 5.5M parameters.
It reaches 72% mIoU on Cityscapes and runs at 13 fps. We will refer to it as
DeepLab-MN. It has a latency of 76 ms, so we have to use kF = d76/60e = 2
frame offsets.

4.3 Adapting SwiftNet for our task

As we will discuss further, it is useful to input previous frames along with
the current frame when training to predict a future segmentation map (that
corresponds to the latency-aware objective). When we added more input channels
to the first layer of the network, we noticed it is beneficial to increase the initial
layers capacity by enlarging the number of channels. We construct a variant of
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SwiftNet that takes multiple frames in input, and where we expand the number
of kernels in the initial convolution layers to deal with the increased input size.
Specifically, in the case of two input frames, we replace the first layer:

conv(3, 64, 7× 7, s = 2)

with the following block of four layers:

conv(6, 130, 7× 7, s = 2)
BN(130)
ReLU
conv(130, 64, 3× 3, s = 1)

Note that we cannot introduce changes affecting multiple encoder layers as this
would prevent us from reusing pretrained weights for the ResNet encoder, which
represents SwiftNet’s main strength. We have experimented with non-pretrained
ResNet and observed a 6% mIoU drop on average.

The newly created convolutions were initialized using He’s initialization [51]
rule. We will refer to our extended SwiftNet version as SwiftNet-R18-X.

4.4 Training

All experiments are performed with the PyTorch framework. We use ImageNet-1k
pretrained weights for all encoders in our networks.

Data augmentation We use image crops of 768× 768. We do standard image
augmentation with random horizontal flip, random scaling from 0.75 to 1.5 and
random Gaussian blur.

SwiftNet For SwiftNet, we use a batch size of 12 and train using the Adam
optimiser with default parameters. We use a learning rate of 5e−4 and a weight
decay of 1e−4. We also set a smaller learning rate of 1e−4 for the part that
is ImageNet-pretrained. We train the network for 200 epochs and use a cosine
annealing schedule with ηmin = 1e−6.

DeepLab v3+ For DeepLab, we use a batch size of 10 and train using the
SGD optimiser with momentum of 0.9. We use a learning rate of 5e−2 and a
weight decay of 5e−4. We similarly set a smaller learning rate of 5e−3 for the
part that is ImageNet-pretrained. We train the network for 200 epochs and use a
poly schedule with a power of 3.

5 Experiments and Results

We perform experiments to evaluate the effect of network latency on the LAmIoU
and to understand the changes in the training to suit the proposed objective.
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5.1 Effect of latency on the LAmIoU

The experiments described in this subsection are performed with DeepLab-R101
and SwiftNet-R18. These two networks are modified to accept in input 2 frames
Xt−1, Xt, as will be detailed later.

Decay of the LAmIoU with the frame offset In Fig. 3, we plot the LAmIoU
vs frame offsets. The two networks considered here are both trained and evaluated
on the future segmentation map (with offset).

We notice that the LAmIoU drops quickly and the decrease is consistent
between networks: an offset of 2 frames is enough to lose 10% mIoU for both
networks on Cityscapes. In practice, we can expect this order of magnitude of
mIoU drop, depending on the hardware.

Fig. 3: LAmIoU decay with different offsets in the objective on Cityscapes valida-
tion set

Decay of the LAmIoU with the hardware Each network has a different
latency per hardware. Therefore, the frame offset used for training and computing
the metric is also different per hardware.

We perform timing experiments on Tesla V100, GTX 1080 Ti and Tesla K80
GPUs for our two networks. We estimate latencies on these hardware and then
train the networks with the corresponding frame offsets. In Fig. 4, we report the
LAmIoU with respect to the inverse hardware speed (inverse of flops).

This plot exhibits an interesting and foreseeable fact: the slower deeplab
network, whose “instant” mIoU is higher, performs worse than the faster SwiftNet
network on slow hardware when measuring the LAmIoU. This graph illustrates
the need for a latency aware metric in real-time contexts, which allows for a
simple and fairer comparison of networks.
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Fig. 4: LAmIoU decay with hardware speed on Cityscapes validation set

5.2 Optimising network training for our latency-aware objective

In this subsection, we investigate how changing the inputs and training target
affects the LAmIoU. Precisely, we train using three different configurations and
comment on the differences in the networks output. These experiments are
performed on a GTX 1080 Ti GPU for each of the four networks described in
Section 4.2.

First configuration First, we evaluate the four networks when trained with
the usual objective (input It and target St) but evaluated with LAmIoU. The
results are reported in second line of Table 1. Compared to their instant mIoU,
we notice a significant drop between 10% and 30 %.

Second configuration We train the networks for the proposed objective of
predicting the future segmentation ground-truth used by the LAmIoU (input It
and target St+k). The value of k is different for each network since each has a
different latency. Therefore, they are trained and evaluated with a differently
offset ground-truth.

The results are reported in third line of Table 1. We can see a slight but
consistent increase of the LAmIoU metric for all networks. In Fig. 5, we show
some qualitative results of SwiftNet-R18 overlaying images It and It+1. We notice
that the segmentation mask is slightly blurry, as one would expect. However, we
note that the blur is often surprisingly anisotropic, i.e. the segmentation blur is
not surrounding the object, but favours a specific direction.

We conjecture that the network is able to predict some objects’ movement
based on their orientation. For instance, a person facing left in image It is likely
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to have moved left in the next image It+1. Similarly, a car facing the camera is
more likely to be coming toward the camera, and thus is probably going to look
bigger in the following frame.

(a) It and F (It) (b) It+1 and F (It) (c) It+1 and St+1 (G.T.)

Fig. 5: Output segmentation of SwiftNet-R18 trained to predict St+1 from It. We
observe anisotropic blur as the network is able to infer some objects movement
directions from their orientation.

Third configuration Finally, in order to allow the networks to infer speeds and
directions, we train them using both It−1 and It as inputs. The training objective
remains to predict the future segmentation ground-truth St+k. Results reported
in fourth line of Table 1 show a consistent improvement of the LAmIoU metric.
These numbers confirms the relevance of using previous frames for our latency-
aware objective. We reported in Fig. 6 examples of the output segmentation
of SwiftNet-R18 overlaid on image It and It+1 where it is clear that using an
additional input is useful to produce sharper and more accurate segmentation
maps.

For practical applications, we have seen that it is relevant to consider a
future ground-truth as objective. When doing so, we need to change our training
objective, and the result of this last configuration shows that it becomes necessary
to use previous frames to get better predictions. While this result may not be
surprising, the great majority of real-time scene segmentation works only use
the current input when designing and training their networks. This last result
emphasises the fact that networks constructed for real-time contexts should use
previous frames to better predict a future target.
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(a) It and F (It) (b) It+1 and F (It) (c) It+1 and St+1 (G.T.)

Fig. 6: Output segmentation of SwiftNet-R18 trained to predict St+1 from
(It−1, It). We observe a more precise segmentation as the network has a way to
infer relative speeds and directions.

5.3 Input translations experiment for increased Receptive Field

When processing simultaneously images from different time-steps It−1 and It, it
is important for the network to have a large receptive field (to be able to map
objects from one frame to the other). To do so without the need of big kernels, we
try to offset this load on the input. The idea is to trade part of the computational
cost usually associated with the use of big convolutional kernels for the memory
cost of having more inputs.

Practically, we concatenate to the current input of the network various
translations of the previous image It−1. When introducing translations, we want
to compensate for the use of big kernels by allowing the model to simultaneously
attend different parts of the image that a normal convolution kernel would
not process simultaneously. Particularly, we change the inputs {It−1, It} of the
previous experiment to {T1(It−1), · · · , TN (It−1), It−1, It}. corresponding to N
different fixed translations Ti. The translations offsets were chosen to span a
regular grid around the origin.

While initial experiments seemed promising, we further discovered that the
only reason for improved LAmIoU was the additional convolutional layer with
higher number of kernels that we added at the head of the model to handle the
translations where we had replaced the first convolution layer conv(3, 64, 7× 7,
s = 2) with the following block:

conv(6 + 3×N, 8×N, 7× 7, s = 2)
BN(8×N)
ReLU
conv(8×N, 64, 3× 3, s = 1).
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Table 1: Results for the 3 training configurations for the 4 networks. The first
line gives the instant mIoU, the next three lines reports value of the LAmIoU
metric for different training configurations. The last three lines give information
about latency, frame offset used for the network as explained in Section 4.1, and
fps of these networks when using a GTX 1080 Ti. Note that the k temporal offset
depends on the network, hardware and on the dataset framerate: this offset is
greater and leads to poorer performance for slow processing.

Input Target (train) Target (test) DeepLab-R101 DeepLab-MN SwiftNet-R18 SwiftNet-R18-X

It St St 0.77 0.72 0.75 0.74

L
A

m
Io

U


It St St+k 0.50 0.56 0.64 0.63
It St+k St+k 0.53 0.57 0.65 0.64
It−1, It St+k St+k 0.60 0.58 0.67 0.69

Frame offset (k) 4 2 1 1
Latency (ms) 195 76 26 38

FPS 5 13 38 26

with N the number of translations. Noticing that using additional inputs requires
increasing capacity in the early convolutional layers eventually lead to the design
of SwiftNet-R18-X presented in 4.3 in which we increased the number of kernels
in the first two layers.

6 Conclusion

We proposed a change in the usual objective of the segmentation task that makes
real-time networks account for their latency when making their predictions. In
addition to providing a new latency-aware ranking, the associated LAmIoU metric
is of particular practical relevance as it represents the actual mIoU value one
may obtain on a given hardware when taking into account network latency.

We argued the reasons why real-time networks should be latency-aware and
we believe introducing a new latency-aware segmentation objective encourages
research in anticipatory networks. With this objective in mind, we also proposed
addition to networks and training in order to perform better under this new metric.
While the focus of this paper is specifically toward video scene segmentation,
the same change of objective is relevant and applicable to a wide range of other
“real-time tasks” not limited to computer vision.
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