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Abstract—This paper addresses the problem of multi-view
people occupancy map estimation. Existing solutions either
operate per-view, or rely on a background subtraction pre-
processing. Both approaches lessen the detection performance as
scenes become more crowded. The former does not exploit joint
information, whereas the latter deals with ambiguous input due
to the foreground blobs becoming more and more interconnected
as the number of targets increases.

Although deep learning algorithms have proven to excel on
remarkably numerous computer vision tasks, such a method has
not been applied yet to this problem. In large part this is due to
the lack of large-scale multi-camera data-set.

The core of our method is an architecture which makes use of
monocular pedestrian data-set, available at larger scale than the
multi-view ones, applies parallel processing to the multiple video
streams, and jointly utilises it. Our end-to-end deep learning
method outperforms existing methods by large margins on the
commonly used PETS 2009 data-set. Furthermore, we make
publicly available a new three-camera HD data-set.

I. INTRODUCTION

Due to the high demand in applications, pedestrian detection
differentiated itself as a separate class from object detection,
enjoying separate attention from the research community. In
spite of recent advances, performance of monocular methods
remains limited due to the occlusions that often occur among
the individuals. Multi-camera approaches offer a promising ex-
tension to resolve the one-view detection ambiguities, provided
that the multi-stream information is used jointly to yield the
detection estimation. In this paper, we confine our discussion
to a set-up of either a single calibrated static camera, or several
synchronized cameras with overlapping fields of view.

Surprisingly, currently only few multi-view methods jointly
utilize the information across views, herein referred to as
joint methods. Each of the existing joint methods performs
background subtraction pre-processing of the input images,
where the goal is to segment the moving objects out of the
background, while taking into account pixel-wise time con-
sistency. There exist a vast catalog of background-subtraction
methods, specific to certain applications or even illumination
regimes, which are often shown to be difficult to tune, error-
prone and noisy. Regarding multi-camera people detection in
particular, these segmenting methods introduce ambiguities
when the foreground blobs are highly interconnected, hence
limiting the success of the joint methods to less-crowded
applications. Also, apart from persons, other moving objects
are being segmented as well.

On the other hand, state of the art monocular detectors
leverage the full signal either by using a deep Convolutional
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Fig. 1: Illustration of the people occupancy map estimation
problem in a static camera setup. As an example we depict
two cameras and the area is discretized into a 10×10 grid
cells, thus following the notation in the text: C=2, G=100.

Neural Network (CNN), or by building predictors on top of
“deep features” extracted by such a network. Surprisingly, the
multi-view occupancy map estimation problem has not been
re-visited to incorporate these outperforming methods.

Quite the contrary, the ongoing research on multi-camera
people detection incorporates hand-crafted features, whereas
to the best of our knowledge real-world industrial applica-
tions use monocular CNN pedestrian detector, and yield the
final estimation by averaging the separate per-view ones. We
presume that this is mostly due to the non-existence of a large-
scale multi-camera data-set which would allow for training a
multi-input architecture.

As a solution, we propose a method which consists of:
(i) fine-tuning a state of the art object detection network
on monocular pedestrian detection; (ii) combining several
instances of the early layers of that network into a multi-
-view deep network whose outer layers are trained for mul-
ti-view appearance-based joint detection on relatively smaller
multi-camera data-set. Our proposed architecture allows for
processing the input from the separate views in parallel, and
the subsequent interconnection layers allow for automatically
learning how features across different views map into each
other. In this paper, we focus on per-frame processing, whereas
utilising time consistency could be a further extension.

In summary, we: (i) propose the first full deep learning mul-
ti-camera people detector; (ii) we empirically demonstrate
the superiority of such a method; and we (iii) provide a new
three-view data-set with fairly more accurate calibration in
terms of consistency of a projection across all of the views.

The monocular methods overview in § II is of those methods
which utilize deep learning, whereas a complete overview
is given for the more closely related methods to this work
- the joint multi-camera people detectors. The problem on



which this paper focuses is formally stated in § III, where
we also introduce the multi-view architecture that we propose.
Our empirical evaluation presented in § IV demonstrates the
encouraging superiority of the deep multi-view detection, and
also gives insights about practical considerations which arise.

II. RELATED WORK

A. Deep monocular pedestrian detection

Applying the R-CNN algorithm [1] to monocular pedestrian
detection [2] exceeded the state of the art methods at that
time on the Caltech pedestrian data-set [3], being the first
demonstration that CNNs are well-suited to the task. Later it
was shown that the explicit dealing with pedestrian occlusions,
by fine-tuning a separate fully convolutional network for sub-
parts of the bounding boxes, provides a 50% relative improve-
ment [4]. On top of the part-designated CNNs the authors
employ a linear SVM, sparsified to reduce the computational
load.

In [5] a Boosting algorithm is proposed, which merges
the proposal generation and the detection steps. The cascade
learning is formulated as Lagrangian optimisation of a risk
accounting for both accuracy and complexity, and integrates
both hand-crafted and convolutional features. The downstream
classifier of the extension of R-CNN known as Faster R-
CNN [6] was recently shown to degrade the performance,
and it was proposed to be replaced by boosting forests [7].
The resulting method does not use hand-crafted features and
reaches state of the art accuracy.

B. Multi-view occupancy map estimation methods

The first method which uses multi-view streams jointly is
the Probabilistic Occupancy Map (POM) [8]. Based on a crude
generative model, it estimates the probabilities of occupancy
through mean-field inference, naturally handling occlusions.
Further, it can be combined with a convex max-cost flow op-
timization to leverage time consistency [9]. In [10] the problem
is re-casted as a linear inverse, regularized by enforcing a
sparsity constraint on the occupancy vector. It uses a dictionary
whose atoms approximate multi-view silhouettes. To elevate
the need of O-Lasso computations, in [11] a regression model
was derived which includes solely Boolean arithmetic and
sustains the sparsity assumption of [10]. In addition, the
iterative method is replaced with a greedy algorithm based
on set covering.

In [12] the occlusions are explicitly modeled per view by a
separate Bayesian Network, and a multi-view network is then
constructed by combining them, based on the ground locations
and the geometrical constraints. Although considering crowd
analysis, the multi-view image generation of [13] is with a
stochastic generative process of random crowd configurations,
and then maximum a posteriori (MAP) estimate is used to find
the best fit with respect to the image observations.

All of these methods utilise background subtraction pre-
processing.
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Fig. 2: The input to the model when estimating qp consists
of the cropped regions Ap of It (see § III-A). The illustrated
example is in-line with the one in Fig. 1.

III. DEEP MULTI-VIEW PEOPLE DETECTION

A. Problem definition

We discretize the area common to the fields of view of
C cameras in a regular grid of G points or interchangeably
- cells (Fig. 1). To estimate the occupancy of a cell p, we
consider a cylinder centred at the pth position, whose height
corresponds to the one of the humans’ average height. We use
the cameras’ calibration to obtain the cylinder’s projections
into the views where it is visible. These rectangular projections
yield the cropped regions Ap of It, as illustrated in Fig. 2.

At each time step t we are given a set of images It =
I1t , . . . ICt taken synchronously. Hence, given sub-images
cropped for a particular position p = 1, . . . , G in the sep-
arate views Ap =

(
A1

p, . . . ,AC
p

)
, we aim at estimating the

probability of it being occupied, that is

qp = p(Xp = 1 | Ap),

where Xp on {0, 1} stands for the position p being free and
occupied, respectively. In the following, let I be the set of all
possible cropped sub-images.

B. Method

Ideally, given a large scale multi-camera data-set, a multi-
stream processing model can be directly trained. However, due
to the lack of such data-set, as well as the fact that in practice
the annotated data is often scarce, the method we propose takes
advantage of the existing larger monocular pedestrian data-set
Caltech [3] what allows for better generalization.

1) Monocular fine-tuning with input-dropout: Primarily, to
learn discriminative features of the pedestrian class, we train
a CNN on monocular pedestrian binary classification. To ease
the training procedure we recommend starting from a pre-
trained object detection CNN. In particular, in our experiments
we used either GoogLeNet [14] or AlexNet [15], trained on
ImageNet [16] and we replaced the last fully connected layer
with a randomly initialized one with two output units. We
then fine-tune the resulting network on the Caltech data-set
(see § IV-A).

Experimental results on monocular pedestrian detection
indicate that state of the art detection accuracy is achieved
by explicitly dealing with the occlusions (for example by
detecting parts of the body), as explained in § II-A. As we
shall see in the following sections, the multi-view architecture
finally contains components initialized with the weights of the



Fig. 3: Input occlusion masks. Among these, the first one
represents no occlusion. As the arrows indicate, their width
and/or height are restrictively randomized within a margin.

monocular detector. Hence, it is necessary that the robustness
to occlusion of the model is implemented efficiently. Thus,
we propose a novel technique dubbed input dropout, which
consists in augmenting the input data by artificially masking
part of the signal. While this procedure is adapted to the
morphology of the positive class, it has to be carried out on
both the positive and the negative samples while training, so
as to avoid providing erroneous discriminative cues.

In our experiments in particular we defined 7 rectangular
occluding masks–#1 being “no occlusion at all”–(Fig. 3), and
for each sample, negative or positive, we pick one of the masks
uniformly at random, and replace the pixel it masks with white
noise. As for drop-out, this “input drop-out” forces the network
toward greater redundancy between representations.

2) Multi-camera architecture: Given a CNN monocular
detector, we retain d of its layers, resulting in an embedding
ψ : I → RQ, where Q is the number of output units of the
dth layer. The concatenation of C such embeddings is a multi-
view embedding Ψ : IC → RCQ, on top of which we train a
binary classifier Φ : RCQ → R2, as illustrated in Fig. 4.

Type of classifier of Φ. Particular object seen from different
perspectives/cameras can be discriminated both with features
which are consistent across views: e.g. color; and with features
that differ across the views: for example a line curved to the
left would be curved to the right viewed from the opposite
side. The former is more likely when the two cameras are
quite close to each other, and the latter in the opposite case.
The goal of Φ is to learn how features from different views
map to each other. Thus, a natural choice for φ is a multi-
layer perceptron (MLP), in aim to ”wire together what fires
together”. In our experiments the output of Ψ is flattened,
and Φ is a MLP, and also for demonstrative analysis Φ is
sometimes a (forest of) decision tree(s).

Full or partial fine-tuning. To allow the embedding to
capture cues discarded for monocular detection but which
are informative for multi-view, the complete multi-stream
architecture, that is both Ψ and Φ, can be trained, when the
latter is differentiable. On the other hand, keeping Ψ fixed
makes the capacity of the predictor family low, and hence
prevents over-fitting when the training multi-view data-set is
small, e.g. in the order of few hundreds of examples. Given the
size of the data-sets we have used, this approach performed
worse than keeping Ψ fixed.
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Fig. 4: Multi-view joint occupancy estimation. The input is
illustrated on the left; followed by the multi-view architecture
consisting of two conceptual parts Ψ and Φ (§ III-B2); and on
the rightmost side a top-view grid of the predictions is plotted
where a coloured cell represents a detection.

3) Non Maxima Supression (NMS): This step selects the
final detections so that out of those candidates overlapping
more then a predefined threshold in a particular view, only
one remains. Differently than standard implementations, we
take into account the detections’ scores, in such a way that the
priority of a detection candidate to be selected is proportional
to its detection score.

IV. EXPERIMENTS

A. Data-sets and metrics

Caltech10x [3]. For monocular training, we use the Caltech-
USA pedestrian data-set and its associated benchmarking
toolbox [17]. This set consists of fully annotated 30 Hz videos
taken from a moving vehicle in a regular traffic, and as in
other recent works, we use 10 fps sampling. This increases the
training data to ' 2 · 104 detections. We generate proposals
with the SquaresChnFtrs detector [18], and use as positive
examples the proposals with 0.5 overlap threshold.
PETS 2009 S1 L2 data-set [19]. For comparison with existing
methods we use the PETS 2009 data-set, which is a sequence
of 795 frames recorded with seven static outdoor cameras.
As noted by other authors: [12, p. 10], or [13, p. 10], we
also observe inconsistencies both in terms of calibration and
synchronization.
EPFL-RLC data-set [20]. This new corpus was captured with
three calibrated HD cameras, with a frame rate of 60 frames
per second. Currently the annotations represent a balanced
set of 4088 multi-view examples. Note that a negative multi-
camera example may contain a pedestrian in one of its views.
Thus, for each view the negative samples contain a bit of
annotated information wheter it contains a pedestrian or not.
This allows the data-set to be used for monocular pedestrian
training in which case its size is increased three-fold.

Full ground-truth annotations are provided for the last
300 frames of the sequence, intended to be used for testing
while ensuring diversity of the appearance with respect to the



training data. As for future work, we also make available the
full sequence of 8000 synchronized frames of each view.
Metrics. Apart from standard classification measures, we use
the Multiple Object Detection Accuracy (MODA) metric,
accounting for the normalized missed detections and false
positives, as well as the Multiple Object Detection Precision
(MODP) metric, which assesses the localization precision [21].
We also estimate the empirical precision and recall, calculated
by P=TP/(TP+FP ) and R=TP/(TP+FN) respectively,
where: TP , FP , and FN are true positives, false positives
and false negatives, respectively.

B. Monocular pedestrian detection

We conducted our experiments using the Torch framework
[22], and mainly GoogLeNet [14] and AlexNet [15]. The input
dimension for these models are respectively 224×224 and
227×227. As a performance measure we use the log average
miss rate (MR), as it is widely adopted.

When using GoogLeNet, batch size of 64, learning rate
0.005, SGD with momentum 0.9, as well as a proportion of
positive samples per mini-batch of r = 0.33, we observe mean
MR of 19.81 (σ=0.58) on the test data when the learning
starts to saturate. When input dropout is applied the mean MR
drops to 17.32 (σ=0.75), and further continues to decrease,
although with slight variance. Applying it allowed for reaching
MR performances which were never reached with standard
training, and the observed variance suggests that combining
it with more sophisticated learning rate policy can provide
further performance gain. When using AlexNet, the mean MR
is 24.04 (σ=0.39), and 22.43 (σ=0.51), without and with
input dropout, respectively.

In summary, we consistently observed performance im-
provement when using: (i) GoogLeNet, (ii) square cropping
versus warping the region, (iii) proportion of r=0.33 pos-
itive samples per mini-batch, as well as (iv) input dropout
(§ III-B1). We reduced the MR to 15.61%, which although is
higher than the results reported in [4], requires six-fold less
computation and is simpler to implement and deploy.

C. Multi-camera people detection

In our experiments, we discretize the ground surface of
the EPFL-RLC and PETS data-sets to grids of 45×55 and
140×140 positions, respectively. To train the multi-stream
model on the PETS data-set we automatically extract negative
examples which outnumber the positive ones provided by
the annotated detections. During one epoch of training, these
negatives are sampled without replacement. Both on EPFL-
RLC and PETS data-sets we observe improved performances
when training with forced ratio of increased negative samples
per mini-batch.

Contrary to the monocular training, we observed no perfor-
mance drop of training Φ if rectangular input is being used,
which is why we extract features with reduced input in the
width dimension by omitting 50 pixels of both sides. In our
implementation, we zero-pad the input of the view for which
a particular position is out of its field of view.

Unless otherwise stated, we use MLP with 3 fully connected
layers, ReLU non-linearities and log-softmax. Natural consid-
eration is the use of regularization as intuitively the weight
vector of the fully connected layers would be sparse. We
experimented with the p-norm regularization term: ‖w‖p =

(
∑N

i=1 |wi|p)1/p, both with p = 1, 2, while using SGD
optimization, but did not observe a substantial improvement.
In fact, by visualizing the weights when training without
regularization we observe that major part of the weight vector
tends towards zero, and that the training was more stable.

We provide bellow an empirical analysis of the impact on
performance of some aspects of our setup.

1) Training with hard-negative auto-generated examples:
Since the EPFL-RLC data-set demonstrates more accurate
joint-view calibration then PETS’09 we are able to automati-
cally generate multi-view negative samples which we refer to
as hard negatives and which force Φ to compare the multi-
stream extracted features in a way that generalizes better.

We perform this automatically in two different ways: (i) by
shifting the rectangles of a positive detection in one or two
of the views, or (ii) by combining positive detections of
different persons. Training with these hard negatives allows
respectively for: (i) sharper detections in the ground plan,
which makes the method less sensitive to the non-maxima
suppression post-processing; as well as (ii) forcing the clas-
sifier Φ to learn a stronger joint appearance model. The
former improve localization and the latter to decrease the
false positives of the detector. Note that in the experimental
results presented in the following, changing the ratio r implies
changing the difficulty of the classification for this data-set and
as we shall see hurts the accuracy.

From the results illustrated in Fig. 5 we observe that training
with such negatives improves the most important MODA
metric and reaches almost perfect precision, at the cost of
marginally decreasing the MODP metric, and decreased recall
due to the slightly increased number of missed detections.
However, as the camera calibration of the PETS data-set
demonstrates non-negligible joint-camera inconsistency of the
projections, we did not experiment with the multi-view hard
negatives for it, to avoid increasing the noise level of the input.

2) Monocular Vs. Multi-view classification: We compare
performance with and without using multiple views. As the
performance using a MLP for Φ is potentially highly depen-
dent on the persistence of tuning the hyper-parameters and/or
the choice of optimization methods, in this section we use
solely random forests for Φ.

For this purpose, we use the accuracy and the ROC while
considering all possible (sub)sets of the available views, both
on PETS and EPFL-RLC, as well as for different values of
the proportion r of positive samples. In all experiments, we
consistently observe performance improvement as more views
are being added, as illustrated on Fig. 6.

3) Impact of the Selected Layer on the Accuracy: We use
GoogLeNet and compare using the first 11, 15, 20 and 23
layers. After flattening the output of each of the layers, we
add fully connected layers, each of 1024, 512 and 2 units.
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Fig. 5: Impact of training with hard-negative multi-view samples, versus the NMS threshold (x-axis) on the EPFL-RLC data-set.

We experiment with: (i) mini-batch size of: 32, 64, 128;
(ii) optimisation technique: SGD w/o momentum, Adam [23],
Adadelta [24] and RMSPRop [25]; as well as (iii) different
initial values for the learning rate when necessary. We run
each experiment for 60 epochs on the EPFL-RLC data-set,
and we list in Table I the best test accuracy at that point for
each of the selected layers. In the majority of the experiments
we observe best performances using Adadelta or ADAM, and
batch size of 64.

Our experiments indicate that the depth of the CNN used as
feature extractor does not impact much the performance. This
is encouraging since shallower structures can be used what
decreases the computation time when the model is deployed.

4) Multi-view Information: Herein we focus on the ques-
tion if multi-view joint information exploitation allows for
easier discrimination among the two classes versus monocular
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Fig. 6: Accuracy, ROC and AUC on the EPFL-RLC test data,
using random forest of 100 trees, with d = 23, r = 0.33 and
GoogLeNet (§ IV-C2).

classification. To this end, we analyze if features from the
different views are used uniformly, or if features from one
of the views dominate the decision. The most straightforward
way to illustrate this is by using a single decision tree for Φ.
Legitimately, we define the importance of a feature in terms
of its depth in the decision tree: the higher, or the closest to
the root, the more important a feature is.

We used the EPFL-RLC data-set and GoogLeNet with
d = 23, which for the three views provides us with 3×1024
features. We visit the nodes from the root to the leaves, and
count the features from each view. We find that among the 50,
100 and 150 top-nodes, the numbers of features from each
view are 16/15/19, 36/32/32, and 55/51/44, respectively.
This shows that the classifier exploits the views in quite a
balanced manner, what motivates multi-view joint detection.

D. Comparison to existing methods on PETS

Finally, in Table II we compare our method with the current
state of the art methods. We refer as ours when the full PETS
sequence is used as testing and the model has never being
trained on it; and as ours-ft the experiments where we divide
the sequence to training for fine-tuning the model, and testing.
In the latter we consider all the possible splits to train and test
frames, hence we list the mean and the standard deviation of
the particular performance measure estimated through these
multiple folds.

As the results in Table II show, without data normalization
specific to this dataset and without fine-tuning we outperform
the existing methods, what indicates generalization property
which is of interest. These results justify the multiple steps of
our approach.

TABLE I: Test accuracy on EPFL-RLC, for d layers, propor-
tion r of positive samples per batch (see § III-B2) and with
different level of difficulty (see § IV-A).

r
d 11 15 20 23

0.50 99.75% 100.00% 99.75% 98.77%
0.33 96.24% 97.05% 96.73% 94.60%
0.25 91.78% 83.57% 83.70% 81.74%



TABLE II: Comparison on the PETS data-set (see § IV-D).
The views’ enumeration omits the 2nd view.

Method Views MODA MODP Precision Recall
[12] 1,4,5,7 0.79 0.74 0.92 0.91
[13] 1,4,5,7 0.75 0.68 0.85 0.89

Ours-ft 1 0.94 (0.03) 0.61 (0.02) 0.97 (0.02) 0.96 (0.02)
Ours 1 0.88 0.75 0.97 0.91

Ours-ft 1,4,5,7 0.90 (0.05) 0.66 (0.02) 0.94 (0.03) 0.96 (0.02)
Ours-ft 1-7 0.94 (0.02) 0.68 (0.02) 0.98 (0.01) 0.97 (0.02)

We recall the calibration joint inaccuracy of PETS which
becomes more prominent as the number of used views of it
increases. This homograph mapping deterioration originates
in part from the presence of a slope in the scene [12]. To
the best of our knowledge researchers avoid using the seven
views at the same time. Instead, most often reported is the
case of using the views 1, 4, 5 and 7 (or 1, 5, 6, 8 in the
original views’ enumeration). It is interesting that in our
experiments we do not observe performance drop when all
of the seven views are used, and that in fact we observe
marginal improvement. This could be due to the contextual
padding that we recommended earlier. Further, the fact that
the MODP metric increases, indicates that Φ is able to learn
these calibration inconsistencies.

Our method outperforms the existing state of the art base-
lines, largely owing to its ability to leverage appearance, and
to filter out non-human foreground objects that a background-
subtraction procedure may trigger.

V. CONCLUSION AND FUTURE WORK

Our main contribution is proposing end-to-end deep learning
method for the multi-camera people detection problem whose
core is an architecture adapted to make use of existing
monocular data-sets as for improved generalisation, and which
jointly leverages the multi-stream deep features. As such it
outperforms the existing approaches.

It was shown that: (i) multi-view classification increases
the accuracy and the confidence of the classifier over the
monocular case, as well as that (ii) appearance features
extracted jointly from multiple views provide more easily
separable embedding that in turn allows for more accurate
classification than the monocular one. We also discussed
various implementation insights.

Given larger scale datasets, extensions such as: (i) more
explicit multi-view occlusion reasoning; and (ii) training
domain-adaptation modules, can further be done. The former
would allow for merging the two steps of generating detection
candidates and selecting them, whereas the latter would allow
for easier adaptation for the task at hand while preserving
automatically learnt multi-view features.
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