
Published as a conference paper at ICLR 2021

TAMING GANS WITH LOOKAHEAD–MINMAX

Tatjana Chavdarova∗
EPFL

Mattéo Pagliardini∗
EPFL

Sebastian U. Stich
EPFL

François Fleuret
University of Geneva

Martin Jaggi
EPFL

ABSTRACT

Generative Adversarial Networks are notoriously challenging to train. The under-
lying minmax optimization is highly susceptible to the variance of the stochastic
gradient and the rotational component of the associated game vector field. To tackle
these challenges, we propose the Lookahead algorithm for minmax optimization,
originally developed for single objective minimization only. The backtracking
step of our Lookahead–minmax naturally handles the rotational game dynamics,
a property which was identified to be key for enabling gradient ascent descent
methods to converge on challenging examples often analyzed in the literature.
Moreover, it implicitly handles high variance without using large mini-batches,
known to be essential for reaching state of the art performance. Experimental
results on MNIST, SVHN, CIFAR-10, and ImageNet demonstrate a clear advan-
tage of combining Lookahead–minmax with Adam or extragradient, in terms of
performance and improved stability, for negligible memory and computational cost.
Using 30-fold fewer parameters and 16-fold smaller minibatches we outperform the
reported performance of the class-dependent BigGAN on CIFAR-10 by obtaining
FID of 12.19 without using the class labels, bringing state-of-the-art GAN training
within reach of common computational resources. Our source code is available:
https://github.com/Chavdarova/LAGAN-Lookahead_Minimax.

1 INTRODUCTION

Gradient-based methods are the workhorse of machine learning. These methods optimize the
parameters of a model with respect to a single objective f : X → R . However, an increasing interest
for multi-objective optimization arises in various domains—such as mathematics, economics, multi-
agent reinforcement learning (Omidshafiei et al., 2017)—where several agents aim at optimizing
their own cost function fi : X1 × · · · × XN → R simultaneously.

A particularly successful class of algorithms of this kind are the Generative Adversarial Net-
works (Goodfellow et al., 2014, (GANs)), which consist of two players referred to as a generator and
a discriminator. GANs were originally formulated as minmax optimization f : X ×Y → R (Von Neu-
mann & Morgenstern, 1944), where the generator and the discriminator aim at minimizing and
maximizing the same value function, see § 2. A natural generalization of gradient descent for minmax
problems is the gradient descent ascent algorithm (GDA), which alternates between a gradient descent
step for the min-player and a gradient ascent step for the max-player. This minmax training aims at
finding a Nash equilibrium where no player has the incentive of changing its parameters.

Despite the impressive quality of the samples generated by the GANs—relative to classical maximum
likelihood-based generative models—these models remain notoriously difficult to train. In particular,
poor performance (sometimes manifesting as “mode collapse”), brittle dependency on hyperparam-
eters, or divergence are often reported. Consequently, obtaining state-of-the-art performance was
shown to require large computational resources (Brock et al., 2019), making well-performing models
unavailable for common computational budgets.

∗Equal contributions. Correspondence to firstname.lastname@epfl.ch.

1

https://github.com/Chavdarova/LAGAN-Lookahead_Minimax

Published as a conference paper at ICLR 2021

Figure 1: Illustration of Lookahead–minmax
(Alg.1) with GDA on: minx maxy x · y, with
α=0.5. The solution, trajectory {xt, yt}Tt=1,
and the lines between (xP , yP) and (xt, yt)
are shown with red star, blue line, and dashed
green line, resp. The backtracking step of
Alg. 1 (lines 10 & 11) allows the otherwise
non-converging GDA to converge, see § 4.2.1.

0 1 2 3 4 5
Iteration ×105

15

20

25

FI
D

Fast weights
Slow weights

LA-step every
10k iterations

Figure 2: FID (↓) of Lookahead–minmax on 32×32 ImageNet
(§ 5), see Fig. 12 for IS. We observe significant improvements
after each LA-step, what empirically confirms the existence
of rotations and thus the intuition of the behaviour of LA-
minmax on games, as well as the relevance of the bilinear
game for real world applications–Fig.1.

It was empirically shown that: (i) GANs often converge to a locally stable stationary point that is
not a differential Nash equilibrium (Berard et al., 2020); (ii) increased batch size improves GAN
performances (Brock et al., 2019) in contrast to minimization (Defazio & Bottou, 2019; Shallue et al.,
2018). A principal reason is attributed to the rotations arising due to the adversarial component of
the associated vector field of the gradient of the two player’s parameters (Mescheder et al., 2018;
Balduzzi et al., 2018), which are atypical for minimization. More precisely, the Jacobian of the
associated vector field (see def. in § 2) can be decomposed into a symmetric and antisymmetric
component (Balduzzi et al., 2018), which behave as a potential (Monderer & Shapley, 1996) and a
Hamiltonian game, resp. Games are often combination of the two, making this general case harder to
solve.

In the context of single objective minimization, Zhang et al. (2019) recently proposed the Lookahead
algorithm, which intuitively uses an update direction by “looking ahead” at the sequence of parameters
that change with higher variance due to the “stochasticity” of the gradient estimates–called fast
weights–generated by an inner optimizer. Lookahead was shown to improve the stability during
training and to reduce the variance of the so called slow weights.

Contributions. Our contributions can be summarized as follows:

• We propose Lookahead–minmax for optimizing minmax problems, that applies extrapolation
in the joint parameter space (see Alg 1), so as to account for the rotational component of the
associated game vector field (defined in § 2).

• In the context of: (i) single objective minimization: by building on insights of Wang et al.
(2020), who argue that Lookahead can be interpreted as an instance of local SGD, we derive
improved convergence guarantees for the Lookahead algorithm; (ii) two-player games:
we elaborate why Lookahead–minmax suppresses the rotational part in a simple bilinear
game, and prove its convergence for a given converging base-optimizer; in § 3 and 4, resp.

• We motivate the use of Lookahead–minmax for games by considering the extensively studied
toy bilinear example (Goodfellow, 2016) and show that: (i) the use of lookahead allows for
convergence of the otherwise diverging GDA on the classical bilinear game in full-batch
setting (see § 4.2.1), as well as (ii) it yields good performance on challenging stochastic
variants of this game, despite the high variance (see § 4.2.2).

• We empirically benchmark Lookahead–minmax on GANs on four standard datasets—
MNIST, CIFAR-10, SVHN and ImageNet—on two different models (DCGAN & ResNet),
with standard optimization methods for GANs, GDA and Extragradient, called LA–AltGAN
and LA–ExtraGradient, resp. We consistently observe both stability and performance
improvements at a negligible additional cost that does not require additional forward and
backward passes, see § 5.

2

Published as a conference paper at ICLR 2021

2 BACKGROUND

GAN formulation. Given the data distribution pd, the generator is a mapping G : z 7→ x,
where z is sampled from a known distribution z ∼ pz and ideally x ∼ pd. The discriminator
D : x 7→ D(x) ∈ [0, 1] is a binary classifier whose output represents a conditional probability
estimate that an x sampled from a balanced mixture of real data from pd and G-generated data is
actually real. The optimization of a GAN is formulated as a differentiable two-player game where the
generator G with parameters θ, and the discriminator D with parameters ϕ, aim at minimizing their
own cost function Lθ and Lϕ, respectively, as follows:

θ? ∈ arg min
θ∈Θ

Lθ(θ,ϕ?) and ϕ? ∈ arg min
ϕ∈Φ

Lϕ(θ?,ϕ) . (2P-G)

When Lϕ = −Lθ the game is called a zero-sum and equation 2P-G is a minmax problem.

Minmax optimization methods. As GDA does not converge for some simple convex-concave
game, Korpelevich (1976) proposed the extragradient method, where a “prediction” step is performed
to obtain an extrapolated point (θt+ 1

2
,ϕt+ 1

2
) using GDA, and the gradients at the extrapolated point

are then applied to the current iterate (θt,ϕt) as follows:

Extrapolation:

{
θt+ 1

2
=θt−η∇θLθ(θt,ϕt)

ϕt+ 1
2
=ϕt−η∇ϕLϕ(θt,ϕt)

Update:

{
θt+1=θt−η∇θLθ(θt+ 1

2
,ϕt+ 1

2
)

ϕt+1=ϕt−η∇ϕLϕ(θt+ 1
2
,ϕt+ 1

2
)

(EG)

where η denotes the step size. In the context of zero-sum games, the extragradient method converges
for any convex-concave function L and any closed convex sets Θ and Φ (Facchinei & Pang, 2003).

The joint vector field. Mescheder et al. (2017) and Balduzzi et al. (2018) argue that the vector
field obtained by concatenating the gradients of the two players gives more insights of the dynamics
than studying the loss surface. The joint vector field (JVF) and the Jacobian of JVF are defined as:

v(θ,ϕ) =

(
∇θLθ(θ,ϕ)

∇ϕLϕ(θ,ϕ)

)
, and v′(θ,ϕ) =

(
∇2
θLθ(θ,ϕ) ∇ϕ∇θLθ(θ,ϕ)

∇θ∇ϕLϕ(θ,ϕ) ∇2
ϕLϕ(θ,ϕ)

)
, resp. (JVF)

Rotational component of the game vector field. Berard et al. (2020) show empirically that GANs
converge to a locally stable stationary point (Verhulst, 1990, LSSP) that is not a differential Nash
equilibrium–defined as a point where the norm of the Jacobian is zero and where the Hessian of both
the players are definite positive, see § C. LSSP is defined as a point (θ?,ϕ?) where:

v(θ?,ϕ?) = 0, and R(λ) > 0,∀λ ∈ Sp(v′(θ?,ϕ?)) , (LSSP)

where Sp(·) denotes the spectrum of v′(·) andR(·) the real part. In summary, (i) if all the eigenvalues
of v′(θt,ϕt) have positive real part the point (θt,ϕt) is LSSP, and (ii) if the eigenvalues of
v′(θt,ϕt) have imaginary part, the dynamics of the game exhibit rotations.

Impact of noise due to the stochastic gradient estimates on games. Chavdarova et al. (2019)
point out that relative to minimization, noise impedes more the game optimization, and show that there
exists a class of zero-sum games for which the stochastic extragradient method diverges. Intuitively,
bounded noise of the stochastic gradient hurts the convergence as with higher probability the noisy
gradient points in a direction that makes the algorithm to diverge from the equilibrium, due to the
properties of v′(·) (see Fig.1, Chavdarova et al., 2019).

3 LOOKAHEAD FOR SINGLE OBJECTIVE

In the context of single objective minimization, Zhang et al. (2019) recently proposed the Lookahead
algorithm where at every step t: (i) a copy of the current iterate ω̃t is made: ω̃t ← ωt, (ii) ω̃t is
then updated for k ≥ 1 times yielding ω̃t+k, and finally (iii) the actual update ωt+1 is obtained as
a point that lies on a line between the two iterates: the current ωt and the predicted one ω̃t+k:

ωt+1 ← ωt + α(ω̃t+k − ωt), where α ∈ [0, 1] . (LA)

3

Published as a conference paper at ICLR 2021

Algorithm 1 General Lookahead–Minmax pseudocode.
1: Input: Stopping time T , learning rates ηθ, ηϕ, ini-

tial weights θ0, ϕ0, lookahead k and α, losses Lθ,
Lϕ, dϕ(·),d

θ
(·) base optimizer updates defined in § 4,

pd and pz real and noise–data distributions, resp.
2: θ̃0,0, ϕ̃0,0 ← θ0,ϕ0

3: for t ∈ 0, . . . , T−1 do
4: for i ∈ 0, . . . , k−1 do
5: Sample x, z ∼ pd, pz
6: ϕ̃t,i+1 = ϕ̃t,i − ηϕdϕt,i(θ̃t,i, ϕ̃t,i,x, z)
7: Sample z ∼ pz
8: θ̃t,i+1 = θ̃t,i+1 − ηθdθt,i(θ̃t,i, ϕ̃t,i, z)
9: end for

10: ϕt+1 = ϕt + αϕ(ϕ̃t,k −ϕt)
11: θt+1 = θt + αθ(θ̃t,k − θt)
12: θ̃t+1,0, ϕ̃t+1,0 ← θt+1,ϕt+1

13: end for
14: Output: θT , ϕT

0 200 400 600 800
Number of passes

10−6

10−4

10−2

100

102

D
ist

an
ce

to
th

e
op

tim
um

GDA
GDA η=10−4

ExtraGrad
LA–ExtraGrad
Unroll-Y

Unroll-XY
OGDA
LA-OGDA
LA-GDA α=0.5
LA-GDA α=0.4

Figure 3: Distance to the optimum of equa-
tion SB–G using different full–batch methods,
averaged over 5 runs. Unless otherwise speci-
fied, the learning rate is η = 0.3. See § 4.2.1.

Lookahead uses two additional hyperparameters: (i) k–the number of steps used to obtain the
prediction ω̃t+k, as well as (ii) α– that controls how large a step we make towards the predicted
iterate ω̃: the larger the closest, and when α = 1 equation LA is equivalent to regular optimization
(has no impact). Besides the extra hyperparameters, LA was shown to help the used optimizer to be
more resilient to the choice of its hyperparameters, achieve faster convergence across different tasks,
as well as to reduce the variance of the gradient estimates (Zhang et al., 2019).
Theoretical Analysis. Zhang et al. (2019) study LA on quadratic functions and Wang et al. (2020)
recently provided an analysis for general smooth non-convex functions. One of their main observa-
tions is that LA can be viewed as an instance of local SGD (or parallel SGD, Stich, 2019; Koloskova
et al., 2020; Woodworth et al., 2020b) which allows us to further tighten prior results.
Theorem 1. Let f : Rd → R be L-smooth (possibly non-convex) and assume access to unbiased
stochastic gradients σ2-bounded variance. Then the LA optimizer with hyperparemeters (k, α)
converges to a stationary point E‖∇f(ωout)‖2 ≤ ε (for the proof refer to Appendix A), after at most

O
(
σ2

ε2
+

1

ε
+

1− α
α

(
σ
√
k − 1

ε3/2
+
k

ε

))
iterations. Here ωout denotes uniformly at random chosen iterate of LA.
Remark 1. When in addition f is also quadratic, the complexity estimate improves to O

(
σ2

ε2 + 1
ε

)
.

The asymptotically most significant term, O
(
σ2

ε2

)
, matches with the corresponding term in the SGD

convergence rate for all choices of α ∈ (0, 1], and when α→ 1, the same convergence guarantees as
for SGD can be attained. When σ2 = 0 the rate improves to O

(
1
ε

)
, in contrast to O

(
1
ε2

)
in (Wang

et al., 2020).1 For small values of α, the worst-case complexity estimates of LA can in general be k
times worse than for SGD (except for quadratic functions, where the rates match). Deriving tighter
analyses for LA that corroborate the observed practical advantages is still an open problem.

4 LOOKAHEAD FOR MINMAX OBJECTIVES

We now study the LA optimizer in the context of minmax optimization. We start with an illustrative
example, considering the bilinear game: minθ maxϕ θ

>Iϕ (see Fig. 1).
Observation 1: Gradient Descent Ascent always diverges. The iterates of GDA are:

ωt+1 ,

[
θt+1

ϕt+1

]
=

[
θt
ϕt

]
+ η ·

[
−ϕt
θt

]
.

1Our results rely on optimally tuned stepsize γ for every choice of α. Wang et al. (2020) state a slightly
different observation but keep the stepize γ fixed for different choices of α.

4

Published as a conference paper at ICLR 2021

The norm of the iterates ‖ωt+1‖2 = (1 + η2)‖ωt‖2 increases for any stepsize η > 0, hence GDA
diverges for all choices of η.

In this bilinear game, taking a point on a line between two points on a cyclic trajectory would reduce
the distance to the optimum—as illustrated in Fig. 1—what motivates extending the Lookahead
algorithm to games, while using equation LA in joint parameter space ω , (θ,ϕ).

Observation 2: Lookahead can converge. The iterates of LA with k = 2 steps of GDA are:

ωt+1 ,

[
θt+1

ϕt+1

]
=

[
θt
ϕt

]
+ αη ·

[
−2ϕt − ηθt
2θt − ηϕt

]
We can again compute the norm: ‖ωt+1‖2 =

(
(1− η2α)2 + 4η2α2

)
‖ωt‖2. For the choice

α ∈ (0, 2
η2+4) the norm strictly decreases, hence the algorithm converges linearly.

4.1 THE GENERAL LOOKAHEAD-MINMAX ALGORITHM AND ITS CONVERGENCE

Alg. 1 summarizes the proposed Lookahead–minmax algorithm which for clarity does not cover
different update ratios for the two players–see Alg. 3 for this case. At every step t = 1, . . . , T , we
first compute k-step “predicted” iterates (θ̃t,k, ϕ̃t,k)—also called fast weights—using an inner “base”
optimizer whose updates for the two players are denoted with dϕ and dθ . For GDA and EG we have:

GDA:

{
dϕt,i , ∇ϕ̃L

ϕ(θ̃t,i, ϕ̃t,i,x, z)

dθt,i , ∇θ̃L
θ(θ̃t,i, ϕ̃t,i, z)

EG:

{
dϕt,i , ∇ϕ̃L

ϕ(θ̃t,i+ 1
2
, ϕ̃t,i+ 1

2
,x, z)

dθt,i , ∇θ̃L
θ(θ̃t,i+ 1

2
, ϕ̃t,i+ 1

2
, z)

,

where for the latter, ϕt,i+ 1
2
,θt,i+ 1

2
are computed using equation EG. The above updates can be

combined with Adam (Kingma & Ba, 2015), see § G for detailed descriptions of these algorithms.
The so called slow weights θt+1,ϕt+1 are then obtained as a point on a line between (θt,ϕt) and
(θ̃t,k, ϕ̃t,k)—i.e. equation LA, see lines 10 & 11 (herein called backtracking or LA–step). When
combined with GDA, Alg. 1 can be equivalently re-written as Alg. 3, and note that it differs from
using Lookahead separately per player–see § G.2. Moreover, Alg. 1 can be applied several times
using nested LA–steps with (different) k, see Alg. 6.

Local convergence. We analyze the game dynamics as a discrete dynamical system as in (Wang
et al., 2020; Gidel et al., 2019b). Let F (ω) denote the operator that an optimization method applies to
the iteratesω = (θ,ϕ), i.e. ωt = F◦· · ·◦F (ω0). For example, for GDA we have F (ω) = ω−ηv(ω).
A point ω? is called fixed point if F (ω?) = ω?, and it is stable if the spectral radius ρ(∇F (ω?)) ≤ 1,
where for GDA for example ∇F (ω?) = I − ηv′(ω?). In the following, we show that Lookahead-
minmax combined with a base optimizer which converges to a stable fixed point, also converges to the
same fixed point. On the other hand, its convergence when combined with a diverging base-optimizer
depends on the choice of its hyper-parameters. Developing a practical algorithm for finding optimal
set of hyper-parameters for realistic setup is out of the scope of this work, and in § 5 we show
empirically that Alg. 1 outperforms its base-optimizer for all tested hyperparameters.
Theorem 2. (Proposition 4.4.1 Bertsekas, 1999) If the spectral radius ρ(∇F (ω?)) < 1, the ω? is a
point of attraction and for ω0 in a sufficiently small neighborhood of ω?, the distance of ωt to the
stationary point ω? converges at a linear rate.

The above theorem guarantees local linear convergence to a fixed point for particular class of operators.
The following general theorem (proof in §. B) further shows that for any such base optimizer (of
same operator class) which converges linearly to the solution, Lookahead–Minmax converges too,
what includes Proximal Point, EG and OGDA, but does not give precise rates—left for future work.
Theorem 3. (Convergence of Lookahead–Minmax, given converging base optimizer) If the spectral
radius of the Jacobian of the operator of the base optimizer satisfies ρ(∇F base(ω?)) < 1, then for
ω0 in a neighborhood of ω?, the iterates ωt of Lookahead–Minmax converge to ω? as t→∞.

Re-visiting the above example. For the GDA operator we have ρ(∇FGDA(ω?)) = |λ| = 1+η2 ≥ 1

and as λ , reiθ ∈ C, with r > 1. Applying it k times will thus result in eigenvalues
{λ(t)}kt=1 = reiθ, . . . , rkeikθ which are diverging and rotating in C. The spectral radius of LA–GDA
with k = 2 is then 1− α+ αλ2 (see § B) where α selects a particular point that lies between 1 + 0i
and λ2 in C, allowing for reducing the spectral radius of the GDA base operator.

5

Published as a conference paper at ICLR 2021

4.2 MOTIVATING EXAMPLE: THE BILINEAR GAME

We argue that Lookahead-minmax allows for improved stability and performance on minmax prob-
lems due to two main reasons: (i) it handles well rotations, as well as (ii) it reduces the noise due
to making more conservative steps. In the following, we disentangle the two, and show in § 4.2.1
that Lookahead-minmax converges fast in the full-batch setting, without presence of noise as each
parameter update uses the full dataset.

In § 4.2.2 we consider the challenging problem of Chavdarova et al. (2019), designed to have high
variance. We show that besides therein proposed Stochastic Variance Reduced Extragradient (SVRE),
Lookahead-minmax is the only method that converges on this experiment, while considering all
methods of Gidel et al. (2019a, §7.1). More precisely, we consider the following bilinear problem:

min
θ∈Rd

max
ϕ∈Rd

L(θ,ϕ) = min
θ∈Rd

max
ϕ∈Rd

1

n

n∑
i=1

(θ>bi + θ>Aiϕ+ c>i ϕ), (SB–G)

with θ,ϕ, bi, ci∈Rd and A∈Rn×d×d, n=d=100, and we draw [Ai]kl=δkli and [bi]k, [ci]k∼
N (0, 1/d) , 1 ≤ k, l ≤ d, where δkli=1 if k=l=i, and 0 otherwise. As one pass we count a
forward and backward pass § D.5, and all results are normalized. See § D.1 for hyperparameters.

4.2.1 THE FULL-BATCH SETTING

In Fig. 3 we compare: (i) GDA with learning rate η = 10−4 and η = 0.3 (in blue), which oscilates
around the optimum with small enough step size, and diverges otherwise; (ii) Unroll-Y where the
max-player is unrolled k steps, before updating the min player, as in (Metz et al., 2017); (iii) Un-
roll-XY where both the players are unrolled k steps with fixed opponent, and the actual updates are
done with un unrolled opponent (see § D); (iv) LA–GDA with α = 0.5 and α = 0.4 (in red and
pink, resp.) which combines Alg. 1 with GDA. (v) ExtraGradient–Eq. EG; (vi) LA–ExtraGrad,
which combines Alg. 1 with ExtraGradient; (vii) OGDA Optimistic GDA (Rakhlin & Sridharan,
2013), as well as (viii) LA–OGDA which combines Alg. 1 with OGDA. See § D for description of
the algorithms and their implementation. Interestingly, we observe that Lookahead–Minmax allows
GDA to converge on this example, and moreover speeds up the convergence of ExtraGradient.

4.2.2 THE STOCHASTIC SETTING

In this section, we show that besides SVRE, Lookahead–minmax also converges on equation SB–G.
In addition, we test all the methods of Gidel et al. (2019a, §7.1) using minibatches of several sizes
B = 1, 16, 64, and sampling without replacement. In particular, we tested: (i) the Adam method
combined with GDA (shown in blue); (ii) ExtraGradient–Eq. EG; as well as (iii) ExtraAdam
proposed by (Gidel et al., 2019a); (iv) our proposed method LA-GDA (Alg. 1) combined with GDA;
as well as (v) SVRE (Chavdarova et al., 2019, Alg.1) for completeness. Fig. 4 depicts our results.
See § D for details on the implementation and choice of hyperparameters. We observe that besides
the good performance of LA-GDA on games in the batch setting, it also has the property to cope well
large variance of the gradient estimates, and it converges without using restarting.

0 500

full-batch

0

10

20

30

40

D
ist

an
ce

to
th

e
op

tim
um

0 20000

B = 64

0

10

20

30

40

0 20000

B = 16

0

10

20

30

40

0 20000

B = 1

0

10

20

30

40

Adam Extra-Adam Extragradient LA-GDA SVRE

Number of passes
Figure 4: Convergence of Adam, ExtraAdam, Extragradient, SVRE and LA-GDA, on equation SB–G, for several
minibatch sizes B, averaged over 5 runs–with random initialization of both the parameters and the data points
(A, b and c). Fast (ϕ̃, θ̃) and slow (ϕ,θ) weights of LA–GDA are shown with solid and dashed lines, resp.

6

Published as a conference paper at ICLR 2021

Fréchet Inception distance ↓ Inception score ↑
(32×32) ImageNet no avg EMA EMA-slow no avg EMA EMA-slow

AltGAN 15.63± .46 14.16± .27 − 7.23± .13 7.81± .07 −
LA–AltGAN 14.37± .20 13.06± .20 12.53± .06 7.58± .07 7.97± .11 8.42± .11

NLA–AltGAN 13.14± .25 13.07± .25 12.71± .13 7.85± .05 7.87± .01 8.10± .05
ExtraGrad 15.48± .44 14.15± .63 − 7.31± .06 7.85± .10 −

LA–ExtraGrad 14.53± .27 14.13± .23 14.09± .28 7.62± .06 7.70± .07 7.89± .04
NLA–ExtraGrad 15.05± .96 14.79± .93 13.88± .45 7.39± .12 7.48± .12 7.76± .15

CIFAR-10
AltGAN 21.37± 1.60 16.92± 1.16 − 7.41± .16 8.03± .13 −

LA–AltGAN 16.74± .46 13.98± .47 12.67± .57 8.05± .43 8.19± .05 8.55± .04
ExtraGrad 18.49± .99 15.47± 1.82 − 7.61± .07 8.05± .09 −

LA–ExtraGrad 15.25± .30 14.68± .30 13.39± .23 7.99± .03 8.04± .04 8.40± .05
Unrolled–GAN 21.04± 1.08 17.51± 1.08 − 7.43± .07 7.88± .12 −

SVHN
AltGAN 7.84± 1.21 6.83± 2.88 − 3.10± .09 3.19± .09 −

LA–AltGAN 3.87± .09 3.28± .09 3.21± .19 3.16± .02 3.22± .08 3.30± .07
ExtraGrad 4.08± .11 3.22± .09 − 3.21± .02 3.16± .02 −

LA–ExtraGrad 3.20± .09 3.16± .14 3.15± .31 3.20± .02 3.19± .03 3.20± .04

Table 1: Comparison of LA–GAN with its respective baselines AltGAN and ExtraGrad (see § 5.1 for naming),
using FID (lower is better) and IS (higher is better), and best obtained scores. EMA denotes exponential moving
average, see § F. All methods use Adam, see § G for detailed description. Results are averaged over 5 runs. We
run each experiment for 500K iterations. See § H and § 5.2 for details on architectures and hyperparameters and
for discussion on the results, resp. Our overall best obtained FID scores are 12.19 on CIFAR-10 and 2.823 on
SVHN, see § I for samples of these generators. Best scores obtained for each metric and dataset are highlighted
in yellow. For each column the best score is in bold along with any score within its standard deviation reach.

Unconditional GANs Conditional GANs

SNGAN Prog.GAN NCSN WS-SVRE ExtraAdam LA-AltGAN SNGAN BigGAN
Miyato et al. Karras et al. Song & Ermon Chavdarova et al. Gidel et al. (ours) Miyato et al. Brock et al.

FID 21.7 – 25.32 16.77 16.78± .21 12.19 25.5 14.73
IS 8.22 8.80± .05 8.87 – 8.47± .10 8.78 8.60 9.22

Table 2: Summary of the recently reported best scores on CIFAR-10 and benchmark with LA–GAN, using
published results. Note that the architectures are not identical for all the methods–see § 5.2.

5 EXPERIMENTS

In this section, we empirically benchmark Lookahead–minmax–Alg. 1 for training GANs. For the
purpose of fair comparison, as an iteration we count each update of both the players, see Alg. 3.

5.1 EXPERIMENTAL SETUP

Datasets. We used the following image datasets: (i) MNIST (Lecun & Cortes, 1998), (ii) CI-
FAR-10 (Krizhevsky, 2009, §3), (iii) SVHN (Netzer et al., 2011), and (iv) ImageNet ILSVRC
2012 (Russakovsky et al., 2015), using resolution of 28×28 for MNIST, and 3×32×32 for the rest.

Metrics. We use Inception score (IS, Salimans et al., 2016) and Fréchet Inception distance
(FID, Heusel et al., 2017) as these are most commonly used metrics for image synthesis, see § H.1
for details. On datasets other than ImageNet, IS is less consistent with the sample quality (see H.1.1).

DNN architectures. For experiments on MNIST, we used the DCGAN architectures (Radford
et al., 2016), described in § H.2.1. For SVHN and CIFAR-10, we used the ResNet architectures,
replicating the setup in (Miyato et al., 2018; Chavdarova et al., 2019), described in detail in H.2.2.

Optimization methods. We use: (i) AltGan: the standard alternating GAN, (ii) ExtraGrad: the
extragradient method, as well as (iii) UnrolledGAN: (Metz et al., 2017). We combine Lookahead-
minmax with (i) and (ii), and we refer to these as LA–AltGAN and LA–ExtraGrad, respectively
or for both as LA–GAN for brevity. We denote nested LA–GAN with prefix NLA, see § G.1. All
methods in this section use Adam (Kingma & Ba, 2015). We compute Exponential Moving Average
(EMA, see def. in § F) of both the fast and slow weights–called EMA and EMA–slow, resp. See
Appendix for results of uniform iterate averaging and RAdam (Liu et al., 2020).

7

Published as a conference paper at ICLR 2021

5.2 RESULTS AND DISCUSSION

Comparison with baselines. Table 1 summarizes our comparison of combining Alg. 1 with
AltGAN and ExtraGrad. On all datasets, we observe that the iterates (column “no avg”) of LA–
AltGAN and LA–ExtraGrad perform notably better than the corresponding baselines, and using
EMA on LA–AltGAN and LA–ExtraGrad further improves the FID and IS scores obtained with
LA–AltGAN. As the performances improve after each LA–step, see Fig. 2 computing EMA solely
on the slow weights further improves the scores. It is interesting to note that on most of the datasets,
the scores of the iterates of LA–GAN (column no-avg) outperform the EMA scores of the respective
baselines. In some cases, EMA for AltGAN does not provide improvements, as the iterates diverge
relatively early. In our baseline experiments, ExtraGrad outperforms AtlGAN–while requiring twice
the computational time of the latter per iteration. The addition of Lookahead–minimax stabilizes
AtlGAN making it competitive to LA–ExtraGrad while using half of the computational time.

In Table 3 we report our results on MNIST, where–different from the rest of the datasets–the training
of the baselines is stable, to gain insights if LA–GAN still yields improved performances. The best
FID scores of the iterates (column “no avg”) are obtained with LA–GAN. Interestingly, although we
obtain that the last iterates are not LSSP (which could be due to stochasticity), from Fig. 5–which
depicts the eigenvalues of JVF, we observe that after convergence LA–GAN shows no rotations.

0 100 200
Real Part

−0.5

0.0

0.5

Im
ag

in
ar

y
Pa

rt AltGAN
LA-AltGAN

Figure 5: Eigenvalues of v′(θ,ϕ) at
100K iterations on MNIST, see § 5.2.

no avg EMA EMA-slow

AltGAN .094± .006 .031± .002 –
LA–AltGAN .053± .004 .029± .002 .032± .002

ExtraGrad .094± .013 .032± .003 –
LA–ExtraGrad .053± .005 .032± .002 .034± .001
Unrolled–GAN .077± .006 .030± .002 –

Table 3: FID (lower is better) results on MNIST, averaged over 5
runs. Each experiment is trained for 100K iterations. Note that
Unrolled–GAN is computationally more expensive: in the order
of the ratio 4 : 22–as we used 20 steps of unrolling what gave best
results. See 5.2 & H for implementation and discussion, resp.

0 1 2 3 4 5
Iteration ×105

0

5

10

15

20

FI
D

LA-AltGAN
AltGAN

(a) SVHN dataset.

0 1 2 3 4 5
Iteration ×105

15

20

25

30

35

FI
D

LA-AltGAN
AltGAN

(b) CIFAR-10 dataset.

0 1 2 3 4 5
Iteration ×105

14

16

18

20

22

24

FI
D

LA-AltGAN
AltGAN

(c) ImageNet (32× 32) dataset.

Figure 6: Improved stability of LA–AltGAN relative to its baselines on SVHN, CIFAR-10 and ImageNet, over
5 runs. The median and the individual runs are illustrated with ticker solid lines and with transparent lines,
respectively. See § 5.2 for discussion.

Benchmark on CIFAR-10 using reported results. Table 2 summarizes the recently reported
best obtained FID and IS scores on CIFAR-10. Although using the class labels–Conditional GAN
is known to improve GAN performances (Radford et al., 2016), we outperform BigGAN (Brock
et al., 2019) on CIFAR-10. Notably, our model and BigGAN have 5.1M and 158.3M parameters
in total, respectively, and we use minibatch size of 128, whereas BigGAN uses 2048 samples. The
competitive result of (Yazıcı et al., 2019) of average 12.56 FID uses ∼ 3.5 times larger model than
ours and is omitted from Table 2 as it does not use the standard metrics pipeline.

Additional memory & computational cost. Lookahead-minmax requires the same extra memory
footprint as EMA and uniform averaging (one additional set of parameters per player)—both of
which are updated each step whereas LA–GAN is updated once every k iterations.

On the choice of α and k. We fixed α = 0.5, and we experimented with several values of k–while
once selected, keeping k fixed throughout the training. We observe that all values of k improve the
baseline. Using larger k in large part depends on the stability of the base-optimizer: if it quickly
diverges, smaller k is necessary to stabilize the training. Thus we used k = 5 and k = 5000 for LA–

8

Published as a conference paper at ICLR 2021

AltGAN and LA–ExtraGrad, resp. When using larger values of k we noticed that the obtained scores
would periodically drastically improve every k iterations–after an LA step, see Fig.2. Interestingly,
complementary to the results of (Berard et al., 2020)–who locally analyze the vector field, Fig.2
confirms the presence of rotation while taking into account the used optimizer, and empirically
validates the geometric justification of Lookahead–minmax illustrated in Fig.1. The necessity of
small k for unstable baselines motivates nested LA–Minmax using two different values of k, of which
one is relatively small (the inner LA–step) and the other is larger (the outer LA–step). Intuitively, the
inner and outer LA–steps in such nested LA–GAN tackle the variance and the rotations, resp.

Stability of convergence. Fig. 6 shows that LA–GAN consistently improved the stability of its
respective baseline. Despite using 1 : 5 update ratio for G : D–known to improve stability, our
baselines always diverge (also reported by Chavdarova et al., 2019; Brock et al., 2019). On the other
hand, LA–GAN diverged only few times and notably later in the training relative to the same baseline,
see additional results in § I. The stability further improves using nested LA–steps as in Fig.2.

6 RELATED WORK

Parameter averaging. In the context of convex single-objective optimization, taking an arithmetic
average of the parameters as by Polyak & Juditsky (1992); Ruppert (1988) is well-known to yield
faster convergence for convex functions and allowing the use of larger constant step-sizes in the case
of stochastic optimization (Dieuleveut et al., 2017). It recently gained more interest in deep learning
in general (Garipov et al., 2018), in natural language processing (Merity et al., 2018), and particularly
in GANs (Yazıcı et al., 2019) where researchers report the performance of a uniform or exponential
moving average of the iterates. Such averaging as a post-processing after training is fundamentally
different from immediately applying averages during training. Lookahead as of our interest here in
spirit is closer to extrapolation methods (Korpelevich, 1976) which rely on gradients taken not at the
current iterate but at an extrapolated point for the current trajectory. For highly complex optimization
landscapes such as in deep learning, the effect of using gradients at perturbations of the current iterate
has a desirable smoothing effect which is known to help training speed and stability in the case of
non-convex single-objective optimization (Wen et al., 2018; Haruki et al., 2019).

GANs. Several proposed methods for GANs are motivated by the “recurrent dynamics”. Apart
from the already introduced works, (i) Yadav et al. (2018) use prediction steps, (ii) Daskalakis et al.
(2018) propose Optimistic Mirror Decent (OMD) (iii) Balduzzi et al. (2018) propose the Symplectic
Gradient Adjustment (SGA) (iv) Gidel et al. (2019b) propose negative momentum, (v) Xu et al.
(2020) propose closed-loop based method from control theory, among others. Besides its simplicity,
the key benefit of LA–GAN is that it handles well both the rotations of the vector field as well as
noise from stochasticity, thus performing well on real-world applications.

7 CONCLUSION

Motivated by the adversarial component of games and the negative impact of noise on games, we
proposed an extension of the Lookahead algorithm to games, called “Lookahead–minmax”. On
the bilinear toy example we observe that combining Lookahead–minmax with standard gradient
methods converges, and that Lookahead–minmax copes very well with the high variance of the
gradient estimates. Exponential moving averaging of the iterates is known to help obtain improved
performances for GANs, yet it does not impact the actual iterates, hence does not stop the algorithm
from (early) divergence. Lookahead–minmax goes beyond such averaging, requires less computation
than running averages, and it is straightforward to implement. It can be applied to any optimization
method, and in practice it consistently improves the stability of its respective baseline. While we do
not aim at obtaining a new state-of-the-art result, it is remarkable that Lookahead–minmax obtains
competitive result on CIFAR–10 of 12.19 FID–outperforming the 30–times larger BigGAN.

As Lookahead–minmax uses two additional hyperparameters, future directions include developing
adaptive schemes of obtaining these coefficients throughout training, which could further speed up
the convergence of Lookahead–minmax.

9

Published as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

This work was in part done while TC and FF were affiliated with Idiap research institute. TC was
funded in part by the grant 200021-169112 from the Swiss National Science Foundation, and MP
was funded by the grant 40516.1 from the Swiss Innovation Agency. TC would like to thank Hugo
Berard for insightful discussions on the optimization landscape of GANs and sharing their code, as
well as David Balduzzi for insightful discussions on n-player differentiable games.

REFERENCES

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel.
The mechanics of n-player differentiable games. In ICML, 2018.

Hugo Berard, Gauthier Gidel, Amjad Almahairi, Pascal Vincent, and Simon Lacoste-Julien. A closer
look at the optimization landscapes of generative adversarial networks. In ICLR, 2020.

Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In ICLR, 2019.

Ronald E Bruck. On the weak convergence of an ergodic iteration for the solution of variational
inequalities for monotone operators in hilbert space. Journal of Mathematical Analysis and
Applications, 1977.

Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien. Reducing noise in
GAN training with variance reduced extragradient. In NeurIPS, 2019.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs with
optimism. In ICLR, 2018.

Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained
min-max optimization. arXiv:2009.09623, 2020.

Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimization for deep
learning. In NeurIPS, 2019.

Popov Leonid Denisovich. A modification of the arrow–hurwicz method for search of saddle points.
Mathematical Notes of the Academy of Sciences of the USSR, 28(5):845–848, 1980.

Aymeric Dieuleveut, Alain Durmus, and Francis Bach. Bridging the gap between constant step size
stochastic gradient descent and markov chains. arXiv:1707.06386, 2017.

Francisco Facchinei and Jong-Shi Pang. Finite-Dimensional Variational Inequalities and Comple-
mentarity Problems Vol I. Springer Series in Operations Research and Financial Engineering,
Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag,
2003.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gordon Wilson.
Loss surfaces, mode connectivity, and fast ensembling of DNNs. In NeurIPS, 2018.

Gauthier Gidel, Hugo Berard, Pascal Vincent, and Simon Lacoste-Julien. A variational inequality
perspective on generative adversarial nets. In ICLR, 2019a.

Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel Huang,
Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative momentum for improved game dynamics.
In AISTATS, 2019b.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, 2010.

Ian Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. arXiv:1701.00160, 2016.

10

Published as a conference paper at ICLR 2021

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Kosuke Haruki, Taiji Suzuki, Yohei Hamakawa, Takeshi Toda, Ryuji Sakai, Masahiro Ozawa, and
Mitsuhiro Kimura. Gradient Noise Convolution (GNC): Smoothing Loss Function for Distributed
Large-Batch SGD. arXiv:1906.10822, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local nash equilibrium. In NIPS, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. What is local optimality in nonconvex-nonconcave
minimax optimization? In ICML, 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. In ICLR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U. Stich. A unified
theory of decentralized SGD with changing topology and local updates. In ICML, 2020.

Galina Michailovna Korpelevich. The extragradient method for finding saddle points and other
problems. Matecon, 1976.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Master’s thesis, 2009.

Yann Lecun and Corinna Cortes. The MNIST database of handwritten digits. 1998. URL http:
//yann.lecun.com/exdb/mnist/.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In ICLR, 2020.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. In ICLR, 2018.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of GANs. In NIPS, 2017.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which Training Methods for GANs do
actually Converge? In ICML, 2018.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. In ICLR, 2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In ICLR, 2018.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and op-
timistic gradient methods for saddle point problems: Proximal point approach. arXiv:1901.08511,
2019.

Dov Monderer and Lloyd S Shapley. Potential games. Games and economic behavior, 1996.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. 2011. URL http://ufldl.
stanford.edu/housenumbers/.

Shayegan Omidshafiei, Jason Pazis, Chris Amato, Jonathan P. How, and John Vian. Deep de-
centralized multi-task multi-agent reinforcement learning under partial observability. In ICML,
2017.

11

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/

Published as a conference paper at ICLR 2021

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 1992. doi: 10.1137/0330046.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In ICLR, 2016.

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In COLT,
2013.

David Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. IJCV, 115(3):211–252, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. In NIPS, 2016.

Christopher J Shallue, Jaehoon Lee, Joe Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E
Dahl. Measuring the effects of data parallelism on neural network training. arXiv:1811.03600,
2018.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NeurIPS, pp. 11895–11907, 2019.

Sebastian U. Stich. Local SGD converges fast and communicates little. In ICLR, 2019.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. arXiv:1512.00567, 2015.

Fiez Tanner, Chasnov Benjamin, and Ratliff Lillian. Implicit learning dynamics in stackelberg games:
Equilibria characterization, convergence analysis, and empirical study. In ICML, 2020.

Ferdinand Verhulst. Nonlinear Differential Equations and Dynamical Systems. Springer-Verlag
Berlin Heidelberg, 1990.

J Von Neumann and O Morgenstern. Theory of games and economic behavior. Princeton University
Press, 1944.

J. Wang, V. Tantia, N. Ballas, and M. Rabbat. Lookahead converges to stationary points of smooth
non-convex functions. In ICASSP, 2020.

Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax optimization locally: A
follow-the-ridge approach. In ICLR, 2020.

Wei Wen, Yandan Wang, Feng Yan, Cong Xu, Chunpeng Wu, Yiran Chen, and Hai Li. Smoothout:
Smoothing out sharp minima to improve generalization in deep learning. arXiv:1805.07898, 2018.

Blake Woodworth, Kumar Kshitij Patel, and Nathan Srebro. Minibatch vs local SGD for heteroge-
neous distributed learning. arXiv, 2020a.

Blake Woodworth, Kumar Kshitij Patel, Sebastian U. Stich, Zhen Dai, Brian Bullins, H. Brendan
McMahan, Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In ICML,
2020b.

Kun Xu, Chongxuan Li, Huanshu Wei, Jun Zhu, and Bo Zhang. Understanding and stabilizing gans’
training dynamics with control theory. In ICML, 2020.

Abhay Yadav, Sohil Shah, Zheng Xu, David Jacobs, and Tom Goldstein. Stabilizing adversarial nets
with prediction methods. In ICLR, 2018.

Yasin Yazıcı, Chuan-Sheng Foo, Stefan Winkler, Kim-Hui Yap, Georgios Piliouras, and Vijay
Chandrasekhar. The unusual effectiveness of averaging in GAN training. In ICLR, 2019.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. In NeurIPS, 2019.

12

Published as a conference paper at ICLR 2021

A THEORETICAL ANALYSIS OF LOOKAHEAD FOR SINGLE OBJECTIVE
MINIMIZATION—PROOF OF THEOREM 1

In this section we give the theoretical justification for the convergence results claimed in Section 3, in
Theorem 1 and Remark 1. We consider the LA optimizer, with k SGD prediction steps, that is,

ω̃t+k = ω̃t − γ
k∑
i=1

g(ω̃t+i−1)

where g : X → R is a stochastic gradient estimator, Eg(ω) = ∇f(ω), with bounded variance
E‖g(ω)‖2 ≤ σ2. Further, we assume that f is L-smooth for a constant L ≥ 0 (but not necessar-
ily convex). We count the total number of gradient evaluations K. As is standard, we consider
as output of the algorithm a uniformly at random chosen iterate ωout (we prove convergence of
E‖∇f(ω)‖2 = ‖∇f(ωout)‖2. This matches the setting considered in (Wang et al., 2020).

Wang et al. (2020, Theorem 2) show that if the stepsize γ satisfies

αγL+ (1− α)2γ2L2k(k − 1) ≤ 1 , (1)

then the expected squared gradient norm of the LA iterates after T updates of the slow sequence, i.e.
K = kT gradient evaluations, can be bounded as

O
(

F0

αγK
+ αγLσ2 + (1− α)2γ2L2σ2(k − 1)

)
(2)

where F0 := f(ω0) − finf denotes an upper bound on the on the optimality gap. Now, departing
from Wang et al. (2020), we can directly derive the claimed bound in Theorem 1 by choosing γ
such as to minimze equation 2, while respecting the constraints given in equation 1 (two necessary
constraints are e.g. γ2 ≤ 1

(1−α)2L2k(k−1) and γ ≤ 1
αL). For this minimization with respect to

γ, see for instance (Koloskova et al., 2020, Lemma 15), where we plug in r0 = F0

α , b = αLσ2,
e = (1− α)2L2σ2(k − 1) and d = min{ 1

αL ,
1

(1−α)Lk}.

The improved result for the quadratic case follows from the observations in Woodworth et al. (2020b)
who analyze local SGD on quadratic functions (they show that linear update algorithms (such as
local SGD on quadratics) benefit from variance reduction, allowing to recover the same convergence
guarantees as single-threaded SGD. These observations also hold for non-convex quadratic functions.

We point out, that the the choice of the stepsize γ = 1√
kT

proposed in Theorem 2 in (Wang et al.,
2020) does not necessarily satisfy their constraint given in equation 1 for small values of T . Whilst
their conclusions remain valid when k is a constant (or in the limit, T →∞), the current analyses
(including our slightly improved bound) do not show that LA can in general match the performance
upper bounds of SGD when k is large. Whilst casting LA as an instance of local SGD was useful
to derive the first general convergence guarantees, we believe—in regard to recently derived lower
bounds (Woodworth et al., 2020a) that show limitations on convex functions—that this approach is
limited and more carefully designed analyses are required to derive tighter results for LA in future
works.

B PROOF OF THEOREM 3

Proof. Let F base(ω) denote the operator that an optimization method applies to the iterates
ω = (θ,ϕ). Let ω? be a stable fixed point of F base i.e. ρ(∇F base(ω?)) < 1. Then, the op-
erator of Lookahead-Minmax algorithhm FLA (when combined with F base(·)) is:

FLA(ω) = ω + α((F base)k(ω)− ω)

= (1− α)ω + α(F base)k(ω) ,

with α ∈ [0, 1] and k ∈ N, k ≥ 2.

13

Published as a conference paper at ICLR 2021

Let λ denote the eigenvalue of Jbase , ∇F base(ω?) with largest modulus, i.e.
ρ(∇F base(ω?)) = |λ|, let u be its associated eigenvector: Jbaseu = λu.

Using the fixed point property (F (ω?) = ω?), the Jacobian of Lookahead-Minmax at ω? is thus:

JLA = ∇FLA(ω?) = (1− α)I + α(Jbase)k .

By noticing that:

JLAu =((1− α)I + α(Jbase)k)u

=((1− α) + αλk)u ,

we deduce u is an eigenvector of JLA with eigenvalue 1− α+ αλk.

We know that ρ(Jbase) = max{|λbase0 |, ..., |λbasen |} < 1 (by the assumption of this theorem). To
prove Theorem 3 by contradiction, let us assume that: ρ(JLA) ≥ 1, what implies that there exist an
eigenvalue of the spectrum of JLA such that:

∃λLA ∈ Spec(JLA) s.t. |λLA| , |1− α+ α(λbase)k| ≥ 1 . (3)
As |λbase| < 1, we have |λbase|k = |(λbase)k| < 1. Furthermore, the set of points
{p ∈ C|α ∈ [0, 1], p = 1 − α + α(λbase)k} is describing a segment in the complex plane be-
tween (λbase)k and 1 + 0i (excluded from the segment). As both ends of the segment are in the unit
circle, it follows that the left hand side of the inequality of equation 3 is strictly smaller than 1. By
contradiction, this implies ρ(JLA) < 1, hence it converges linearly.

Hence, if ω? is a stable fixed point for some inner optimizer whose operator satisfies our assumption,
then ω? is a stable fixed point for Lookahead-Minmax as well.

C SOLUTIONS OF A MIN-MAX GAME

In § 2 we briefly mention the “ideal” convergence point of a 2-player games and defined LSSP–
required to follow up our result in Fig. 5. For completeness of this manuscript, in this section we
define Nash equilibria formally, and we list relevant works along this line which further question this
notion of optimality in games.

For simplicity, in this section we focus on the case when the two players aim at minimizing and
maximizing the same value function Lϕ = −Lθ := L, called zero-sum or minimax game. More
precisely:

min
θ∈Θ

max
ϕ∈Φ
L(θ,ϕ) , (ZS-G)

where L : Θ× Φ 7→ R.

Nash Equilibria. For 2-player games, ideally we would like to converge to a point called Nash
equilibrium (NE). In the context of game theory, NE is a combination of strategies from which, no
player has an incentive to deviate unilaterally. More formally, Nash equilibria for continuous games
is defined as a point (ϕ?,θ?) where:

L(ϕ?,θ) ≤ L(ϕ?,θ?) ≤ L(ϕ,θ?) . (NE)
Such points are (locally) optimal for both players with respect to their own decision variable, i.e. no
player has the incentive to unilaterally deviate from it.

Differential Nash Equilibria. In machine learning we are interested in differential games where
L is twice differentiable, in which case such NE needs to satisfy slightly stronger conditions. A point
(θ?,ϕ?) is a Differential Nash Equilibrium (DNE) of a zero-sum game iff:

||∇θL(θ?,ϕ?)|| = ||∇ϕL(θ?,ϕ?)|| = 0,

∇2
θL(θ?,ϕ?) � 0, and

∇2
ϕL(θ?,ϕ?) ≺ 0 , (DNE)

14

Published as a conference paper at ICLR 2021

where A � 0 and A ≺ 0 iff A is positive definite and negative definite, respectively. Note that the
key difference between DNE and NE is that∇2

θL(·) and ∇2
ϕL(·) for DNE are required to be definite

(instead of semidefinite).

(Differential) Stackelberg Equilibria. A recent line of works questions the choice of DNEs as a
game solution of multiple machine learning applications, including GANs (Tanner et al., 2020; Jin
et al., 2020; Wang et al., 2020). Namely, as GANs are optimized sequentially, authors argue that a so
called Stackelberg game is more suitable, which consist of a leader player and a follower. Namely,
the leader can choose her action while knowing the other player plays a best-response:

Leader: θ? = arg min
θ∈Θ

{
L(θ,ϕ) : ϕ = arg max

ϕ∈Φ
L(θ,ϕ)

}
Follower: ϕ? = arg max

ϕ∈Φ
L(θ?,ϕ)

(Stackelberg–ZS)

Briefly, such games converge to a so called Differential Stackelberg Equilibria (DSE), defined as a
point (θ?,ϕ?) where:

∇θL(θ?,ϕ?) = 0⇔ v(θ?,ϕ?) = 0 , and (4)

[∇2
θL −∇θ∇ϕL(∇2

ϕL)−1(∇θ∇ϕL)>](θ?,ϕ?) > 0 . (DSE)

Remark. (Berard et al., 2020) show that GANs do not converge to DNEs, however, these con-
vergence points often have good performances for the generator. Recent works on DSEs give a
game-theoretic interpretation of these solution concepts–which constitute a superset of DNEs. More-
over, while DNEs are not guaranteed to exist, approximate NE are guaranteed to exist (Daskalakis
et al., 2020). A more detailed discussion is out of the scope of this paper, and we encourage the
interested reader to follow up the given references.

D EXPERIMENTS ON THE BILINEAR EXAMPLE

In this section we list the details regarding our implementation of the experiments on the bilinear
example of equation SB–G that were presented in § 4.2. In particular: (i) in § D.1 we list the imple-
mentational details of the benchmarked algorithms, (ii) in § D.2 and D.4 we list the hyperparameters
used in § 4.2.1 and § 4.2.2, respectively (iii) in § D.5 we describe the choice of the x-axis of the
toy experiments presented in the paper, and finally (iv) in § D.6 we present visualizations in aim to
improve the reader’s intuition on how Lookahead-minmax works on games.

D.1 IMPLEMENTATION DETAILS

Gradient Descent Ascent (GDA). We use an alternating implementation of GDA where the players
are updated sequentially, as follows:

ϕt+1 = ϕt − η∇ϕL(θt,ϕt), θt+1 = θt + η∇θL(θt,ϕt+1) (GDA)

ExtraGrad. Our implementation of extragradient follows equation EG, with Lθ(·) = −Lϕ(·),
thus:

Extrapolation:

{
θt+ 1

2
= θt − η∇θL(θt,ϕt)

ϕt+ 1
2

= ϕt + η∇ϕL(θt,ϕt)
Update:

{
θt+1 = θt − η∇θL(θt+ 1

2
,ϕt+ 1

2
)

ϕt+1 = ϕt + η∇ϕL(θt+ 1
2
,ϕt+ 1

2
)
.

(EG–ZS)

OGDA. Optimistic Gradient Descent Ascent (Denisovich, 1980; Rakhlin & Sridharan, 2013;
Daskalakis et al., 2018) has last iterate convergence guaranties when the objective is linear for both
the min and the max player. The update rule is as follows:{

θt+1 = θt − 2η∇θL(θt,ϕt) + η∇θL(θt−1,ϕt−1)

ϕt+1 = ϕt + 2η∇ϕL(θt,ϕt)− η∇ϕL(θt−1,ϕt−1)
. (OGDA)

15

Published as a conference paper at ICLR 2021

Contrary to EG–ZS, OGDA requires one gradient computation per parameter update, and requires
storing the previously computed gradient at t− 1. Interestingly, both EG–ZS and OGDA can be
seen as an approximations of the proximal point method for min-max problem, see (Mokhtari et al.,
2019) for details.

Unroll-Y. Unrolling was introduced by Metz et al. (2017) as a way to mitigate mode col-
lapse of GANs. It consists of finding an optimal max–player ϕ? for a fixed min–player θ, i.e.
ϕ?(θ) = arg maxϕ Lϕ(θ,ϕ) through “unrolling” as follows:

ϕ0
t = ϕt, ϕm+1

t (θ) = ϕmt − η∇ϕLϕ(θt,ϕ
m
t), ϕ?t (θt) = lim

m→∞
ϕmt (θ) .

In practicem is a finite number of unrolling steps, yieldingϕmt . The min–player θt, e.g. the generator,
can be updated using the unrolled ϕmt , while the update of ϕt is unchanged:

θt+1 = θt − η∇θLθ(θt,ϕ
m
t), ϕt+1 = ϕt − η∇ϕLϕ(θt,ϕt) (UR–X)

Unroll-XY. While Metz et al. (2017) only unroll one player (the discriminator in their GAN setup),
we extended the concept of unrolling to games and for completeness also considered unrolling both
players. For the bilinear experiment we also have that Lθ(θt,ϕt) = −Lϕ(θt,ϕt).

Adam. Adam (Kingma & Ba, 2015) computes an exponentially decaying average of both past
gradients mt and squared gradients vt, for each parameter of the model as follows:

mt = β1mt−1 + (1− β1)gt (5)

vt = β2vt−1 + (1− β2)g2
t , (6)

where the hyperparameters β1, β2 ∈ [0, 1], m0 = 0, v0 = 0, and t denotes the iteration t = 1, . . . T .
mt and vt are respectively the estimates of the first and the second moments of the stochastic gradient.
To compensate the bias toward 0 due to their initialization to m0 = 0, v0 = 0, Kingma & Ba (2015)
propose to use bias-corrected estimates of these first two moments:

m̂t =
mt

1− βt1
(7)

v̂t =
vt

1− βt2
. (8)

Finally, the Adam update rule for all parameters at t-th iteration ωt can be described as:

ωt+1 = ωt − η
m̂t√
v̂t + ε

. (Adam)

Extra-Adam. Gidel et al. (2019a) adjust Adam for extragradient equation EG and obtain the
empirically motivated ExtraAdam which re-uses the same running averages of equation Adam when
computing the extrapolated point ωt+ 1

2
as well as when computing the new iterate ωt+1 (see Alg.4,

Gidel et al., 2019a). We used the provided implementation by the authors.

SVRE. Chavdarova et al. (2019) propose SVRE as a way to cope with variance in games that
may cause divergence otherwise. We used the restarted version of SVRE as used for the problem
of equation SB–G described in (Alg3, Chavdarova et al., 2019), which we describe in Alg. 2 for
completeness–where dθ and dϕ denote “variance corrected” gradient:

dϕ(θ,ϕ,θS ,ϕS) := µϕ +∇ϕLϕ(θ,ϕ,D[nd],Z[nz])−∇ϕLϕ(θS ,ϕS ,D[nd],Z[nz]) (9)

dθ(θ,ϕ,θS ,ϕS) := µθ +∇θLθ(θ,ϕ,Z[nz])−∇θLθ(θS ,ϕS ,Z[nz]) , (10)

where θS and ϕS are the snapshots and µθ and µϕ their respective gradients. D and Z denote the
finite data and noise datasets. With a probability p (fixed) before the computation of µSϕ and µSθ ,
we decide whether to restart SVRE (by using the averaged iterate as the new starting point–Alg. 2,
Line 6–ω̄t) or computing the batch snapshot at a point ωt. For consistency, we used the provided
implementation by the authors.

16

Published as a conference paper at ICLR 2021

Algorithm 2 Pseudocode for Restarted SVRE.

1: Input: Stopping time T , learning rates ηθ, ηϕ, losses Lθ and Lϕ, probability of restart p, dataset
D, noise dataset Z , with |D| = |Z| = n.

2: Initialize: ϕ, θ, t = 0 . t is for the online average computation.
3: for e = 0 to T−1 do
4: Draw restart ∼ B(p). . Check if we restart the algorithm.
5: if restart and e > 0 then
6: ϕ← ϕ̄, θ ← θ̄ and t = 1
7: end if
8: ϕS ← ϕ and µSϕ ← 1

|D|
∑n
i=1∇ϕL

ϕ
i (θ,ϕS)

9: θS ← θ and µSθ ← 1
|Z|
∑n
i=1∇θLθi (θS ,ϕS)

10: N ∼ Geom
(
1/n

)
. Length of the epoch.

11: for i = 0 to N−1 do
12: Sample iθ ∼ πθ, iϕ ∼ πϕ, do extrapolation:
13: ϕ̃← ϕ− ηθdϕ(θ,ϕ,θS ,ϕS) , θ̃ ← θ − ηϕdθ(θ,ϕ,θS ,ϕS) . equation 9

and equation 10
14: Sample iθ ∼ πθ, iϕ ∼ πϕ, do update:
15: ϕ← ϕ− ηθdϕ(θ̃, ϕ̃,θS ,ϕS) , θ ← θ − ηϕdθ(θ̃, ϕ̃,θS ,ϕS) . equation 9

and equation 10
16: θ̄ ← t

t+1 θ̄ + 1
t+1θ and ϕ̄← t

t+1 ϕ̄+ 1
t+1ϕ . Online computation of the average.

17: t← t+ 1 . Increment t for the online average computation.
18: end for
19: end for
20: Output: θ,ϕ

D.2 HYPERPARAMETERS USED FOR THE FULL-BATCH SETTING

Optimal α. In the full-batch bilinear problem, it is possible to derive the optimal α parameter for a
small enough η. Given the optimum ω?, the current iterate ω, and the “previous” iterate ωP before k
steps, let x = ωP + α(ω − ωP) be the next iterate selected to be on the interpolated line between
ωP and ω. We aim at finding x (or in effect α) that is closest to ω?. For an infinitesimally small
learning rate, a GDA iterate would revolve around ω?, hence ‖ω − ω?‖ = ‖ωP − ω?‖ = r. The
shortest distance between x and ω? would be according to:

r2 = ‖ωP − x‖2 + ‖x− ω?‖2 = ‖ω − x‖2 + ‖x− ω?‖2

Hence the optimal x, for any k, would be obtained for ‖ω − x‖ = ‖ωP − x‖, which is given for
α = 0.5.

In the case of larger learning rate, for which the GDA iterates diverge, we would have
‖ωP − ω?‖ = r1 < ‖ω − ω?‖ = r2 as we are diverging. Hence the optimal x would follow
‖ωP − x‖ < ‖ω − x‖, which is given for α < 0.5. In Fig. 3 we indeed observe LA-GDA with
α = 0.4 converging faster than with α = 0.5.

Hyperparameters. Unless otherwise specified the learning rate used is fixed to η = 0.3. For both
Unroll-Y and Unroll-XY, we use 6 unrolling steps. When combining Lookahead-minmax with GDA
or Extragradient, we use a k of 6 and and α of 0.5 unless otherwise emphasized.

D.3 PERFORMANCE OF EMA-ITERATES IN THE STOCHASTIC SETTING

For the identical experiment presented in § 4.2.2 in this section we depict the corresponding perfor-
mance of the EMA iterates, of Adam, Extra-Adam, Extragradient and LA-GDA. The hyperparameters
used are the same and shown in § D.4, we use β = 0.999 for EMA. In Fig. 7 we report the distance
to the optimum as a function of the number of passes for each method. We observe the high variance
of the stochastic bilinear is preventing the convergence of Adam, Extra-Adam and Extragradient,

17

Published as a conference paper at ICLR 2021

when the batch size B is small, despite computing an exponential moving average of the iterates over
20k iterations.

0 20000

full-batch

0

10

20

30

40

D
ist

an
ce

to
th

e
op

tim
um

0 20000

B = 64

0

10

20

30

40

0 20000

B = 16

0

10

20

30

40

0 20000

B = 1

0

10

20

30

40

EMA–Adam EMA–Extra-Adam EMA–Extragradient EMA–LA-GDA

Number of passes

Figure 7: Distance to the optimum as a function of the number of passes, for Adam, Extra-Adam, Extragradient,
and LA-GAN, all combined with EMA (β = 0.999). For small batch sizes, the high variance of the problem is
preventing convergence for all methods but Lookahead-Minmax.

D.4 HYPERPARAMETERS USED FOR THE STOCHASTIC SETTING

The hyperparameters used in the stochastic bilinear experiment of equation SB–G are listed in Table 4.
We tuned the hyperparameters of each method independently, for each batch-size. We tried η ranging
from 0.005 to 1. When for all values of η the method diverges, we set η = 0.005 in Fig. 4. To tune
the first moment estimate of Adam β1, we consider values ranging from −1 to 1, as Gidel et al.
reported that negative β1 can help in practice. We used α ∈ {0.3, 0.5} and k ∈ [5, 3000].

Batch-size Parameter Adam Extra-Adam Extragradient LA-GDA SVRE

full-batch

η 0.005 0.02 0.8 0.2 -
Adam β1 −0.9 −0.6 - - -

Lookahead k - - - 15 -
Lookahead α - - - 0.3 -

64

η 0.005 0.01 0.005 0.005 -
Adam β1 −0.6 −0.2 - - -

Lookahead k - - - 450 -
Lookahead α - - - 0.3 -

16

η 0.005 0.005 0.005 0.01 -
Adam β1 −0.3 0.0 - - -

Lookahead k - - - 1500 -
Lookahead α - - - 0.3 -

1

η 0.005 0.005 0.005 0.05 0.1
Adam β1 0.0 0.0 - - -

Lookahead k - - - 2450 -
Lookahead α - - - 0.3 -

restart probability p - - - - 0.1

Table 4: List of hyperparameters used in Figure 4. η denotes the learning rate, β1 is defined in equation 5, and α
and k in Alg. 1.

Fig. 8 depicts the final performance of Lookahead–minmax, using different values of k. Note that,
the choice of plotting the distance to the optimum at a particular final iteration is causing the frequent
oscillations of the depicted performances, since the iterate gets closer to the optimum only after the
“backtracking” step. Besides the misleading oscillations, one can notice the trend of how the choice
of k affects the final distance to the optimum. Interestingly, the case of B = 16 in Fig. 8 captures the

18

Published as a conference paper at ICLR 2021

0 2000 4000 6000 8000 10000
k

0

5

10

15

20

25

30

Fi
na

ld
ist

an
ce

to
th

e
op

tim
um

η = 0.05, B = 1
η = 0.01, B = 16

Figure 8: Sensitivity of LA-GDA to the value of the hyperparameter k in Alg. 1 for two combinations of batch
sizes and η. The y-axis is the distance to the optimum at 20000 passes. The jolting of the curves is due to the
final value being affected by how close it is to the last equation LA step, i.e. lines 10 and 11 of Alg. 1.

periodicity of the rotating vector field, what sheds light on future directions in finding methods with
adaptive k.

D.5 NUMBER OF PASSES

In our toy experiments, as x-axis we use the “number of passes” as in (Chavdarova et al., 2019), so as
to account for the different computation complexity of the optimization methods being compared.
The number of passes is different from the number of iterations, where the former denotes one cycle
of forward and backward passes, and alternatively, it can be called “gradient queries”. More precisely,
using parameter updates as the x-axis could be misleading as for example extragradient uses extra
passes (gradient queries) per one parameter update. Number of passes is thus a good indicator of the
computation complexity, as wall-clock time measurements–which depend on the concurrent overhead
of the machine at the time of running, can be relatively more noisy.

D.6 ILLUSTRATIONS OF GAN OPTIMIZATION WITH LOOKAHEAD

In Fig. 9 we consider a 2D bilinear game minx maxy x · y, and we illustrate the convergence of
Lookahead–Minmax. Interestingly, Lookahead makes use of the rotations of the game vector field
caused by the adversarial component of the game. Although standard-GDA diverges with all three
shown learning rates, Lookahead–minmax converges. Moreover, we see Lookahead–minmax with
larger learning rate of η = 0.4 (and fixed k and α) in fact converges faster then the case η = 0.1,
what indicates that Lookahead–minmax is also sensitive to the value of η, besides that it introduces
additional hyperparameters k and α

E EXPERIMENTS ON QUADRATIC FUNCTIONS

In this section we run experiments on the following 2D quadratic zero-sum problems:

L(x, y) = −3x2 + 4xy − y2 (QP-1)

L(x, y) = x2 + 5xy − y2 (QP-2)

E.1 EXPERIMENTS ON EQUATION QP-1

In Fig. 10, we compare GDA, LA-GDA, ExtraGrad, and LA-ExtraGrad on the problem defined by
equation QP-1. One can show that the spectral radius for the Jacobian of the GDA operator is always

19

Published as a conference paper at ICLR 2021

−2 0 2
x

−3

−2

−1

0

1

2

y

η = 0.1, α = 0.5, k = 5

−2 0 2
x

−3

−2

−1

0

1

2

y

η = 0.4, α = 0.5, k = 5

−2 0 2
x

−3

−2

−1

0

1

2

y

η = 1.5, α = 0.5, k = 5

−10
−8
−6
−4
−2
0
2
4
6
8

Figure 9: Illustration of Lookahead-minmax on the bilinear game minx maxy x · y, for different values of the
learning rate η ∈ {0.1, 0.4, 1.5}, with fixed k = 5 and α = 0.5. The trajectory of the iterates is depicted with
green line, whereas the the interpolated line between (ωt, ω̃t,k), t = 1, . . . , T , k ∈ R with ωt = (θt,ϕt) is
shown with dashed red line. The transparent lines depict the level curves of the loss function, and ω? = (0.0).
See § D.6 for discussion.

larger than one when considering a single step size η shared by both players x and y. Therefore,
we tune each method by performing a grid search over individual step sizes for each player ηx and
ηy . We pick the pair (ηx, ηy) which gives the smallest spectral radius. From Fig. 10 we observe that
Lookahead-Minmax provides good performances.

0 20 40 60 80 100
Number of passes

10−146

10−126

10−106

10−86

10−66

10−46

10−26

10−6

D
ist

an
ce

to
th

e
op

tim
um

GDA
LA-GDA
ExtraGrad
LA-ExtraGrad

Figure 10: Convergence of GDA, LA-GDA, ExtraGrad, and LA-ExtraGrad on equation QP-1.

E.2 EXPERIMENTS ON EQUATION QP-2

In Fig. 11, we compare GDA, LA-GDA, ExtraGrad, and LA-ExtraGrad on the problem defined
by equation QP-2. This problem is better conditioned than equation QP-1 and one can show
the spectral radius for the Jacobian of GDA and EG are smaller than one , for some step size η
shared by both players. In order to find the best hyperparameters for each method, we perform a
grid search on the different hyperparameters and pick the set giving the smallest spectral radius.
The results are corroborating our previous analysis as we observe a faster convergence when using
Lookahead-Minmax.

20

Published as a conference paper at ICLR 2021

0 20 40 60 80 100
Number of passes

10−185

10−160

10−135

10−110

10−85

10−60

10−35

10−10

D
ist

an
ce

to
th

e
op

tim
um

GDA
LA-GDA
ExtraGrad
LA-ExtraGrad

Figure 11: Convergence of GDA, LA-GDA, ExtraGrad, and LA-ExtraGrad on equation QP-2.

F PARAMETER AVERAGING

Polyak parameter averaging was shown to give fastest convergence rates among all stochastic
gradient algorithms for convex functions, by minimizing the asymptotic variance induced by the
algorithm (Polyak & Juditsky, 1992). This, so called Ruppet–Polyak averaging, is computed as the
arithmetic average of the parameters:

θ̃RP =
1

T

T∑
t=1

θ(t) , T ≥ 1 . (RP–Avg)

In the context of games, weighted averaging was proposed by Bruck (1977) as follows:

θ̃
(T)
WA =

∑T
t=1 ρ

(t)θ(t)∑T
t=1 ρ

(t)
. (W–Avg)

Eq. equation W–Avg can be computed efficiently online as: θ(t)
WA = (1− γ(t))θ

(t−1)
WA + γ(t)θ(t) with

γ ∈ [0, 1]. With γ = 1
t we obtain the Uniform Moving Averages (UMA) whose performance is

reported in our experiments in § 5 and is computed as follows:

θtUMA = (1− 1

t
)θ

(t−1)
UMA +

1

t
θ(t) , t = 1, . . . , T . (UMA)

Analogously, we compute the Exponential Moving Averages (EMA) in an online fashion using
γ = 1− β < 1, as follows:

θtEMA = βθ
(t−1)
EMA + (1− β)θ(t) , t = 1, . . . , T . (EMA)

In our experiments, following related works (Yazıcı et al., 2019; Gidel et al., 2019a; Chavdarova et al.,
2019), we fix β = 0.9999 for computing equation EMA on all the fast weights and when computing
it on the slow weights in the experiments with small k (e.g. when k = 5). The remaining case of
computing equation EMA on the slow weights of the experiments that use large k produce only few
slow weight iterates, thus using such large β = 0.9999 results in largely weighting the parameters at
initialization. We used fixed β = 0.8 for those cases.

21

Published as a conference paper at ICLR 2021

G DETAILS ON THE LOOKAHEAD–MINMAX ALGORITHM AND ALTERNATIVES

As Lookahead uses iterates generated by an inner optimizer we also refer it is a meta-optimizer or
wrapper. In the main paper we provide a general pseudocode that can be applied to any optimization
method.

Alg. 3 reformulates the general Alg. 1 when combined with GDA, by replacing the inner fast-weight
loop by a modulo operation of k–to clearly demonstrate to the reader the negligible modification for
LA–MM of the source code of the base-optimizer. Note that instead of the notation of fast weights
θ̃, ϕ̃ we use snapshot networks θS ,ϕS (past iterates) to denote the slow weights, and the parameters
θ,ϕ for the fast weights. Alg. 3 also covers the possibility of using different update ratio r ∈ Z
for the two players. For a fair comparison, all our empirical LA–GAN results use the convention
of Alg. 3, i.e. as one step we count one update of both players (rather than one update of the slow
weights–as it is t in Alg. 1).

Algorithm 3 Alternative formulation of Lookahead–Minmax (equivalent to Alg. 1& GDA)
1: Input: Stopping time T , learning rates ηθ, ηϕ, initial weights θ, ϕ, lookahead hyperparameters
k and α, losses Lθ, Lϕ, update ratio r, real–data distribution pd, noise–data distribution pz .

2: θS ,ϕS ← θ,ϕ (store snapshots)
3: for t ∈ 1, . . . , T do
4: for i ∈ 1, . . . , r do
5: x ∼ pd, z ∼ pz
6: ϕ = ϕ− ηϕ∇ϕLϕ(θ,ϕ,x, z) (update ϕ r times)
7: end for
8: z ∼ pz
9: θ = θ − ηθ∇θLθ(θ,ϕ, z) (update θ once)

10: if t%k == 0 then
11: ϕ = ϕS + αϕ(ϕ−ϕS) (backtracking on interpolated line ϕS , ϕ)
12: θ = θS + αθ(θ − θS) (backtracking on interpolated line θS , θ)
13: θS ,ϕS ← θ,ϕ (update snapshots)
14: end if
15: end for
16: Output: θS , ϕS

Alg. 5 shows in detail how Lookahead–minmax can be combined with Adam equation Adam. Alg. 4
shows in detail how Lookahead–minmax can be combined with Extragradient. By combining equa-
tion Adam with Alg. 4 (analogous to Alg. 5), one could implement the LA–ExtraGrad–Adam
algorithm, used in our experiments on MNIST, CIFAR-10, SVHN and ImageNet. A basic pytorch
implementation of Lookahead-Minmax, including computing EMA on the slow weights, is provided
in Listing. 1.

22

Published as a conference paper at ICLR 2021

from collections import defaultdict
import torch
import copy

class Lookahead(torch.optim.Optimizer):

def __init__(self, optimizer, alpha=0.5):
self.optimizer = optimizer
self.alpha = alpha
self.param_groups = self.optimizer.param_groups
self.state = defaultdict(dict)

def lookahead_step(self):
for group in self.param_groups:
for fast in group["params"]:
param_state = self.state[fast]
if "slow_params" not in param_state:

param_state["slow_params"] = torch.zeros_like(fast.data)
param_state["slow_params"].copy_(fast.data)

slow = param_state["slow_params"]
slow <- slow+alpha*(fast-slow)
slow += (fast.data - slow) * self.alpha
fast.data.copy_(slow)

def step(self, closure=None):
loss = self.optimizer.step(closure)
return loss

def update_ema_gen(G, G_ema, beta_ema=0.9999):
l_param = list(G.parameters())
l_ema_param = list(G_ema.parameters())
for i in range(len(l_param)):

with torch.no_grad():
l_ema_param[i].data.copy_(l_ema_param[i].data.mul(beta_ema)

.add(l_param[i].data.mul(1-beta_ema)))

def train(G, D, optimizerD, optimizerG, data_sampler, noise_sampler,
iterations=100, lookahead_k=5, beta_ema=0.9999,
lookahead_alpha=0.5):

Wrapping the optimizers with the lookahead optimizer
optimizerD = Lookahead(optimizerD, alpha=lookahead_alpha)
optimizerG = Lookahead(optimizerG, alpha=lookahead_alpha)

G_ema = None

for i in range(iterations):
Update discriminator and generator
discriminator_step(D, optimizerD, data_sampler, noise_sampler)
generator_step(G, optimizerG, noise_sampler)

if (i+1) % lookahead_k == 0: # Joint lookahead update
optimizerG.lookahead_step()
optimizerD.lookahead_step()
if G_ema is None:
G_ema = copy.deepcopy(G)

else:
Update EMA on the slow weights
update_ema_gen(G, G_ema, beta_ema=beta_ema)

return G_ema

Listing 1: Implementation of Lookahead-minmax in Pytorch. Also includes the computation of EMA on the
slow weights.

23

Published as a conference paper at ICLR 2021

Unroll-GAN Vs. Lookahead–Minmax (LA–MM). LAGAN differs from UnrolledGAN (and
approximated UnrolledGAN which does not backprop through the unrolled steps) as it: (i) does not
fix one player to update the other player k times. (ii) at each step t, it does not take gradient at future
iterate t+ k to apply this gradient at the current iterate t (as extragradient does too). (iii) contrary
to UnrolledGAN, LA–MM uses point on a line between two iterates, closeness to which is controlled
with parameter α, hence deals with rotations in a different way. Note that LA–MM can be applied to
UnrolledGAN, however the heavy computational cost associated to UnrolledGAN prevented us from
running this experiment (see note in Table 3 for computational comparison).

Algorithm 4 Lookahead–Minmax combined with Extragradient (equivalent to Alg. 1 & EG)
1: Input: Stopping time T , learning rates ηθ, ηϕ, initial weights θ, ϕ, lookahead hyperparameters
k and α, losses Lθ, Lϕ, update ratio r, real–data distribution pd, noise–data distribution pz .

2: θS ,ϕS ← θ,ϕ (store snapshots)
3: for t ∈ 1, . . . , T do
4: ϕextra ← ϕ
5: for i ∈ 1, . . . , r do
6: x ∼ pd, z ∼ pz
7: ϕextra = ϕextra − ηϕ∇ϕextraLϕ(θ,ϕextra,x, z) (Compute the extrapolated ϕ)
8: end for
9: z ∼ pz

10: θextra = θ − ηθ∇θLθ(θ,ϕ, z) (Compute the extrapolated θ)
11: for i ∈ 1, . . . , r do
12: x ∼ pd, z ∼ pz
13: ϕ = ϕ− ηϕ∇ϕLϕ(θextra,ϕ,x, z) (update ϕ r times)
14: end for
15: z ∼ pz
16: θ = θ − ηθ∇θLθ(θ,ϕextra, z) (update θ once)
17: if t%k == 0 then
18: ϕ = ϕS + αϕ(ϕ−ϕS) (backtracking on interpolated line ϕS , ϕ)
19: θ = θS + αθ(θ − θS) (backtracking on interpolated line θS , θ)
20: θS ,ϕS ← θ,ϕ (update snapshots)
21: end if
22: end for
23: Output: θS , ϕS

24

Published as a conference paper at ICLR 2021

Algorithm 5 Lookahead–Minmax (Alg. 1) combined with Adam as inner optimizer.
1: Input: Stopping time T , learning rates ηθ, ηϕ, initial weights θ, ϕ, lookahead hyperparameters
k and α, losses Lθ, Lϕ, update ratio r, real–data distribution pd, noise–data distribution pz ,
Adam parametersmϕ,vϕ,mθ,vθ, β1, β2.

2: θS ,ϕS ← θ,ϕ (store snapshots)
3: mϕ,vϕ,mθ,vθ ← 0, 0, 0, 0 (initialize first and second moments for Adam)
4: for t ∈ 1, . . . , T do
5: for i ∈ 1, . . . , r do
6: x ∼ pd, z ∼ pz
7: gϕ ← ∇ϕLϕ(θ,ϕ,x, z)
8: mϕ = β1m

ϕ + (1− β1)gϕ

9: vϕ = β2v
ϕ + (1− β2)(gϕ)2

10: m̂ϕ = mϕ

1−β((t−1)×r+i)
1

11: v̂ϕ = vϕ

1−β((t−1)×r+i)
2

12: ϕ = ϕ− ηϕ m̂ϕ
√
v̂ϕ+ε

(update ϕ r times)
13: end for
14: z ∼ pz
15: gθ ← ∇θLθ(θ,ϕ,x, z)
16: mθ = β1m

θ + (1− β1)gθ

17: vθ = β2v
θ + (1− β2)(gθ)2

18: m̂θ = mθ

1−βt
1

19: v̂θ = vθ

1−βt
2

20: θ = θ − ηθ m̂θ
√
v̂θ+ε

(update θ once)
21: if t%k == 0 then
22: ϕ = ϕS + αϕ(ϕ−ϕS) (backtracking on interpolated line ϕS , ϕ)
23: θ = θS + αθ(θ − θS) (backtracking on interpolated line θS , θ)
24: θS ,ϕS ← θ,ϕ (update snapshots)
25: end if
26: end for
27: Output: θS , ϕS

G.1 NESTED LOOKAHEAD–MINMAX

In our experiments we explored the effect of different values of k. On one hand, we observed that less
stable baselines such as Alt-GAN tend to perform better using small k (e.g. k = 5) when combined
with Lookahead–Minmax, as it seems to be the necessary to prevent early divergence (what in turn
achieves better iterate and EMA performances). On the other hand, we observed that stable baselines
combined with Lookahead–Minmax with large k (e.g. k = 10000) tend to take better advantage of
the rotational behavior of games, as indicated by the notable improvement after each LA-step, see
Fig. 2 and Fig. 12.

This motivates combination of both a small "slow" ks and a large "super slow" kss, as shown in Alg.
6. In this so called “nested” Lookahead–minimax version–denoted with NLA prefix, we store two
copies of the each player, one corresponding to the traditional slow weights updated every ks, and
another for the so called "super slow" weights updated every kss. When computing EMA on the
slow weights for NLA–GAN methods we use the super-slow weights as they correspond to the best
performing iterates. However, better results could be obtain by computing EMA on the slow weights
as EMA performs best with larger β parameter and averaging over many iterates (whereas we obtain
relatively small number of super–slow weights). We empirically find Nested Lookahead–minimax to
be more stable than its non-nested counterpart, see Fig.13.

25

Published as a conference paper at ICLR 2021

0 1 2 3 4 5
Iteration ×105

6.0

6.5

7.0

7.5

8.0

IS

Fast weights
Slow weights

Figure 12: IS (higher is better) of LA–GAN on ImageNet with relatively large k = 10000. The backtracking
step is significantly improving the model’s performance every 10000 iterations. This shows how a large k can
take advantage of the rotating gradient vector field.

0 1 2 3 4 5
Iteration ×105

14

16

18

20

22

24

26

FI
D

LA-ExtraGrad
NLA-ExtraGrad
ExtraGrad

Figure 13: LA-ExtraGrad, NLA-ExtraGrad and Extragrad models trained on ImageNet. For LA-Extragrad
(k = 5000), the lighter and darker colors represent the fast and slow weights respectively. For NLA-ExtraGrad
(ks = 5, kss = 5000), the lighter and darker colors represent the fast and super-slow weights respectively. In
our experiments on ImageNet, while LA-ExtraGrad is more stable than ExtraGrad, it still has a tendency to
diverge early. Using Alg. 6 we notice a clear improvement in stability.

G.2 ALTERNATING–LOOKAHEAD–MINMAX

Lookahead Vs. Lookahead–minmax. Note how Alg. 1 differs from applying Lookahead to both
the players separately. The obvious difference is for the case r 6= 1, as the backtracking is done at
different number of updates of ϕ and θ. The key difference is in fact that after applying equation LA
to one of the players, we do not use the resulting interpolated point to update the parameters of the
other player–a version we refer to as “Alternating–Lookahead”, see § G. Instead, equation LA is
applied to both the players at the same time, which we found that outperforms the former. Unless
otherwise emphasized, we focus on the “joint” version, as described in Alg. 1.

For completeness, in this section we consider an alternative implementation of Lookahead-minmax,
which naively applies equation LA on each player separately, which we refer to as “alternating–
lookahead”. This in turn uses a “backtracked” iterate to update the opponent, rather than performing
the “backtracking” step at the same time for both the players. In other words, the fact that line 9 of
Alg. 7 is executed before updating θ in line 14, and vice versa, does not allow for Lookahead to help
deal with the rotations typical for games.

26

Published as a conference paper at ICLR 2021

Algorithm 6 Pseudocode of Nested Lookahead–Minmax.
1: Input: Stopping time T , learning rates ηθ, ηϕ, initial weights θ, ϕ, lookahead hyperparameters
ks, kss and α, losses Lθ , Lϕ, update ratio r, real–data distribution pd, noise–data distribution pz .

2: (θs,θss,ϕs,ϕss)← (θ,θ,ϕ,ϕ) (store copies for slow and super-slow)
3: for t ∈ 1, . . . , T do
4: for i ∈ 1, . . . , r do
5: x ∼ pd, z ∼ pz
6: ϕ← ϕ− ηϕ∇ϕLϕ(θ,ϕ,x, z) (update ϕ r times)
7: end for
8: z ∼ pz
9: θ ← θ − ηθ∇θLθ(θ,ϕ, z) (update θ once)

10: if t%ks == 0 then
11: ϕ← ϕs + αϕ(ϕ−ϕs) (backtracking on interpolated line ϕs, ϕ)
12: θ ← θs + αθ(θ − θs) (backtracking on interpolated line θs, θ)
13: (θs,ϕs)← (θ,ϕ) (update slow checkpoints)
14: end if
15: if t%kss == 0 then
16: ϕ← ϕss + αϕ(ϕ−ϕss) (backtracking on interpolated line ϕss, ϕ)
17: θ ← θss + αθ(θ − θss) (backtracking on interpolated line θss, θ)
18: (θss,ϕss)← (θ,ϕ) (update super-slow checkpoints)
19: (θs,ϕs)← (θ,ϕ) (update slow checkpoints)
20: end if
21: end for
22: Output: θss, ϕss

Algorithm 7 Alternating Lookahead-minmax pseudocode.
1: Input: Stopping time T , learning rates ηθ, ηϕ, initial weights θ, ϕ, kθ, kϕ, αθ, αϕ, losses Lθ,
Lϕ, update ratio r, real–data distribution pd, noise–data distribution pz .

2: θ̃ ← θ (store copy)
3: ϕ̃← ϕ
4: for t ∈ 0, . . . , T − 1 do
5: for i ∈ 1, . . . , r do
6: x ∼ pd, z ∼ pz
7: ϕ← ϕ− ηϕ∇ϕLϕ(θ,ϕ,x, z) (update ϕ k times)
8: if (t ∗ r + i)%kϕ == 0 then
9: ϕ← ϕ̃+ αϕ(ϕ− ϕ̃) (backtracking on line ϕ̃, ϕ)

10: ϕ̃← ϕ
11: end if
12: end for
13: z ∼ pz
14: θ ← θ − ηθ∇θLθ(θ,ϕ, z) (update θ once)
15: if t%kθ == 0 then
16: θ ← θ̃ + αθ(θ − θ̃) (backtracking on line θ̃, θ)
17: θ̃ ← θ
18: end if
19: end for
20: Output: θ, ϕ

On SVHN and CIFAR-10, the joint Lookahead-minmax consistently gave us the best results, as can
be seen in Figure 14 and 15. On MNIST, the alternating and joint implementations worked equally
well, see Figure 15.

27

Published as a conference paper at ICLR 2021

0 250000 500000
Iteration

15.0

17.5

20.0

22.5

25.0

27.5

30.0

FI
D

Alt-LA-AltGAN
Joint-LA-AltGAN

(a) LA–AltGAN.

0 150000 300000
Iteration

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

FI
D

Joint-LA-ExtraGrad (k = 5000)
Joint-LA-ExtraGrad (k = 1000)
Alt-LA-ExtraGrad (k = 1000)

(b) LA–ExtraGrad.

Figure 14: Comparison between different extensions of Lookahead to games on CIFAR-10. We use prefix joint
and alt to denote Alg. 1 and Alg. 7, respectively of which the former is the one presented in the main paper. We
can see some significant improvements in FID when using the joint implementation, for both LA-AltGAN (left)
and LA-ExtraGrad (right).

0 250000 500000
Iteration

2

4

6

8

10

12

FI
D

Alt-LA-AltGAN
Joint-LA-AltGAN

(a) SVHN dataset.

0 20000 40000 60000 80000 100000
Iteration

10−1

100

101

FI
D

AltGan
Alt-LA-AltGan
Unrolled-GAN
ExtraGrad

(b) MNIST dataset.

Figure 15: (a): Comparison of the joint Lookahead-minmax implementation (Joint prefix, see Algorithm 1)
and the alternating Lookahead-minmax implementation (Alt prefix, see Algorithm 7) on the SVHN dataset.
(b): Results obtained with the different methods introduced in §5 as well as an alternating implementation
of Lookahead-minmax, on the MNIST dataset. Each curve is obtained averaged over 5 runs. The results of
the alternating implementation differ very little from the joint implementation, the curve for Alt-LA-AltGAN
matches results in Table 1.

28

Published as a conference paper at ICLR 2021

Figure 16: Samples from our generator model with the highest IS score. We can clearly see some unrealistic
artefacts. We observed that the IS metric does not penalize these artefacts, whereas FID does penalize them.

H DETAILS ON THE IMPLEMENTATION

For our experiments, we used the PyTorch2 deep learning framework. For experiments on CIFAR-10
and SVHN, we compute the FID and IS metrics using the provided implementations in Tensorflow3

for consistency with related works. For experiments on ImageNet we use a faster-running PyTorch
implementation4 of FID and IS by (Brock et al., 2019) which allows for more frequent evaluation.

H.1 METRICS

We provide more details about the metrics enumerated in § 5. Both FID and IS use: (i) the Inception
v3 network (Szegedy et al., 2015) that has been trained on the ImageNet dataset consisting of ∼1
million RGB images of 1000 classes, C = 1000. (ii) a sample of m generated images x ∼ pg,
where usually m = 50000.

H.1.1 INCEPTION SCORE

Given an image x, IS uses the softmax output of the Inception network p(y|x) which represents the
probability that x is of class ci, i ∈ 1 . . . C, i.e., p(y|x) ∈ [0, 1]C . It then computes the marginal class
distribution p(y) =

∫
x
p(y|x)pg(x). IS measures the Kullback–Leibler divergence DKL between

the predicted conditional label distribution p(y|x) and the marginal class distribution p(y). More
precisely, it is computed as follows:

IS(G) = exp
(
Ex∼pg [DKL(p(y|x)||p(y))]

)
= exp

(1

m

m∑
i=1

C∑
c=1

p(yc|xi) log
p(yc|xi)
p(yc)

)
. (11)

It aims at estimating (i) if the samples look realistic i.e., p(y|x) should have low entropy, and (ii) if
the samples are diverse (from different ImageNet classes) i.e., p(y) should have high entropy. As
these are combined using the Kullback–Leibler divergence, the higher the score is, the better the
performance. Note that the range of IS scores at convergence varies across datasets, as the Inception
network is pretrained on the ImageNet classes. For example, we obtain low IS values on the SVHN
dataset as a large fraction of classes are numbers, which typically do not appear in the ImageNet
dataset. Since MNIST has greyscale images, we used a classifier trained on this dataset and used
m = 5000. For CIFAR-10 and SVHN, we used the original implementation5 of IS in TensorFlow,
and m = 50000.

As the Inception Score considers the classes as predicted by the Inception network, it can be prone
not to penalize visual artefacts as long as those do not alter the predicted class distribution. In Fig. 16
we show some images generated by our best model according to IS. Those images exhibit some
visible unrealistic artifacts, while enough of the image is left for us to recognise a potential image
label. For this reason we consider that the Fréchet Inception Distance is a more reliable estimator of
image quality. However, we reported IS for completeness.

2https://pytorch.org/
3https://www.tensorflow.org/
4https://github.com/ajbrock/BigGAN-PyTorch
5https://github.com/openai/improved-gan/

29

https://pytorch.org/
https://www.tensorflow.org/
https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/openai/improved-gan/

Published as a conference paper at ICLR 2021

Generator
Input: z ∈ R128 ∼ N (0, I)

transposed conv. (ker: 3×3, 128→ 512; stride: 1)
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 512→ 256, stride: 2)

Batch Normalization
ReLU

transposed conv. (ker: 4×4, 256→ 128, stride: 2)
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 128→ 1, stride: 2, pad: 1)

Tanh(·)

Discriminator
Input: x ∈ R1×28×28

conv. (ker: 4×4, 1→ 64; stride: 2; pad:1)
LeakyReLU (negative slope: 0.2)

conv. (ker: 4×4, 64→ 128; stride: 2; pad:1)
Batch Normalization

LeakyReLU (negative slope: 0.2)
conv. (ker: 4×4, 128→ 256; stride: 2; pad:1)

Batch Normalization
LeakyReLU (negative slope: 0.2)

conv. (ker: 3×3, 256→ 1; stride: 1)
Sigmoid(·)

Table 5: DCGAN architectures (Radford et al., 2016) used for experiments on MNIST. We use ker and pad to
denote kernel and padding for the (transposed) convolution layers, respectively. With h×w we denote the kernel
size. With cin → yout we denote the number of channels of the input and output, for (transposed) convolution
layers.

H.1.2 FRÉCHET INCEPTION DISTANCE

Contrary to IS, FID aims at comparing the synthetic samples x ∼ pg with those of the training dataset
x ∼ pd in a feature space. The samples are embedded using the first several layers of the Inception
network. Assuming pg and pd are multivariate normal distributions, it then estimates the meansmg

andmd and covariances Cg and Cd, respectively for pg and pd in that feature space. Finally, FID is
computed as:

DFID(pd, pg) ≈ d2((md, Cd), (mg, Cg)) = ‖md −mg‖22 + Tr(Cd + Cg − 2(CdCg)
1
2), (12)

where d2 denotes the Fréchet Distance. Note that as this metric is a distance, the lower it is, the
better the performance. We used the original implementation of FID6 in Tensorflow, along with the
provided statistics of the datasets.

H.2 ARCHITECTURES & HYPERPARAMETERS

Description of the architectures. We describe the models we used in the empirical evaluation of
Lookahead-minmax by listing the layers they consist of, as adopted in GAN works, e.g. (Miyato
et al., 2018). With “conv.” we denote a convolutional layer and “transposed conv” a transposed
convolution layer (Radford et al., 2016). The models use Batch Normalization (Ioffe & Szegedy,
2015) and Spectral Normalization layers (Miyato et al., 2018).

H.2.1 ARCHITECTURES FOR EXPERIMENTS ON MNIST

For experiments on the MNIST dataset, we used the DCGAN architectures (Radford et al., 2016),
listed in Table 5, and the parameters of the models are initialized using PyTorch default initialization.
For experiments on this dataset, we used the non saturating GAN loss as proposed (Goodfellow et al.,
2014):

LD = Ex∼pd log(D(x)) + Ez∼pz log(D(G(z))) (13)
LG = Ez∼pz log(D(G(z))), (14)

where pd and pz denote the data and the latent distributions (the latter to be predefined).

H.2.2 RESNET ARCHITECTURES FOR IMAGENET, CIFAR-10 AND SVHN

We replicate the experimental setup described for CIFAR-10 and SVHN in (Miyato et al., 2018;
Chavdarova et al., 2019), as listed in Table 7. This setup uses the hinge version of the adversarial
non-saturating loss, see (Miyato et al., 2018). As a reference, our ResNet architectures for CIFAR-10
have approximately 85 layers–in total for G and D, including the non linearity and the normalization
layers.

6https://github.com/bioinf-jku/TTUR

30

https://github.com/bioinf-jku/TTUR

Published as a conference paper at ICLR 2021

G–ResBlock
Bypass:

Upsample(×2)
Feedforward:

Batch Normalization
ReLU

Upsample(×2)
conv. (ker: 3×3, 256→ 256; stride: 1; pad: 1)

Batch Normalization
ReLU

conv. (ker: 3×3, 256→ 256; stride: 1; pad: 1)

D–ResBlock (`–th block)
Bypass:

[AvgPool (ker:2×2)], if ` = 1
conv. (ker: 1×1, 3`=1/128` 6=1 → 128; stride: 1)

Spectral Normalization
[AvgPool (ker:2×2, stride:2)], if ` 6= 1

Feedforward:
[ReLU], if ` 6= 1

conv. (ker: 3×3, 3`=1/128` 6=1 → 128; stride: 1; pad: 1)
Spectral Normalization

ReLU
conv. (ker: 3×3, 128→ 128; stride: 1; pad: 1)

Spectral Normalization
AvgPool (ker:2×2)

Table 6: ResNet blocks used for the ResNet architectures (see Table 7), for the Generator (left) and the
Discriminator (right). Each ResNet block contains skip connection (bypass), and a sequence of convolutional
layers, normalization, and the ReLU non–linearity. The skip connection of the ResNet blocks for the Generator
(left) upsamples the input using a factor of 2 (we use the default PyTorch upsampling algorithm–nearest
neighbor), whose output is then added to the one obtained from the ResNet block listed above. For clarity we
list the layers sequentially, however, note that the bypass layers operate in parallel with the layers denoted as
“feedforward” (He et al., 2016). The ResNet block for the Discriminator (right) differs if it is the first block in the
network (following the input to the Discriminator), ` = 1, or a subsequent one, ` > 1, so as to avoid performing
the ReLU non–linearity immediate on the input.

Generator Discriminator

Input: z ∈ R128 ∼ N (0, I) Input: x ∈ R3×32×32

Linear(128→ 4096) D–ResBlock
G–ResBlock D–ResBlock
G–ResBlock D–ResBlock
G–ResBlock D–ResBlock

Batch Normalization ReLU
ReLU AvgPool (ker:8×8)

conv. (ker: 3×3, 256→ 3; stride: 1; pad:1) Linear(128→ 1)
Tanh(·) Spectral Normalization

Table 7: Deep ResNet architectures used for experiments on ImageNet, SVHN and CIFAR-10, where G–
ResBlock and D–ResBlock for the Generator (left) and the Discriminator (right), respectively, are described in
Table 6. The models’ parameters are initialized using the Xavier initialization (Glorot & Bengio, 2010). For
ImageNet experiments, the generator’s input is of dimension 512 instead of 128.

31

Published as a conference paper at ICLR 2021

H.2.3 UNROLLING IMPLEMENTATION

In Section D.1 we explained how we implemented unrolling for our full-batch bilinear experiments.
Here we describe our implementation for our MNIST and CIFAR-10 experiments.

Unrolling is computationally intensive, which can become a problem for large architectures. The
computation of ∇ϕLϕ(θmt ,ϕt), with m unrolling steps, requires the computation of higher order
derivatives which comes with a ×m memory footprint and a significant slowdown. Due to limited
memory, one can only backpropagate through the last unrolled step, bypassing the computation
of higher order derivatives. We empirically see the gradient is small for those derivatives. In this
approximate version, unrolling can be seen as of the same family as extragradient, computing its
extrapolated points using more than a single step. We tested both true and approximate unrolling
on MNIST, with a number of unrolling steps ranging from 5 to 20. The full unrolling that performs
the backpropagation on the unrolled discriminator was implemented using the Higher7 library. On
CIFAR-10 we only experimented with approximate unrolling over 5 to 10 steps due to the large
memory footprint of the ResNet architectures used for the generator and discriminator, making the
other approach infeasible given our resources.

H.2.4 HYPERPARAMETERS USED ON MNIST

Table 8 lists the hyperparameters that we used for our experiments on the MNIST dataset.

Table 8: Hyperparameters used on MNIST.

Parameter AltGAN LA-AltGAN ExtraGrad LA-ExtraGrad Unrolled-GAN
ηG 0.001 0.001 0.001 0.001 0.001
ηD 0.001 0.001 0.001 0.001 0.001

Adam β1 0.05 0.05 0.05 0.05 0.05
Batch-size 50 50 50 50 50

Update ratio r 1 1 1 1 1
Lookahead k - 1000 - 1000 -
Lookahead α - 0.5 - 0.5 -

Unrolling steps - - - - 20

H.2.5 HYPERPARAMETERS USED ON SVHN

Table 9: Hyperparameters used on SVHN.

Parameter AltGAN LA-AltGAN ExtraGrad LA-ExtraGrad
ηG 0.0002 0.0002 0.0002 0.0002
ηD 0.0002 0.0002 0.0002 0.0002

Adam β1 0.0 0.0 0.0 0.0
Batch-size 128 128 128 128

Update ratio r 5 5 5 5
Lookahead k - 5 - 5000
Lookahead α - 0.5 - 0.5

Table 9 lists the hyperparameters used for experiments on SVHN. These values were selected for
each algorithm independently after tuning the hyperparameters for the baseline.

7https://github.com/facebookresearch/higher

32

https://github.com/facebookresearch/higher

Published as a conference paper at ICLR 2021

H.2.6 HYPERPARAMETERS USED ON CIFAR-10

Table 10: Hyperparameters that we used for our experiments on CIFAR-10.

Parameter AltGAN LA-AltGAN ExtraGrad LA-ExtraGrad Unrolled-GAN
ηG 0.0002 0.0002 0.0002 0.0002 0.0002
ηD 0.0002 0.0002 0.0002 0.0002 0.0002

Adam β1 0.0 0.0 0.0 0.0 0.0
Batch-size 128 128 128 128 128

Update ratio r 5 5 5 5 5
Lookahead k - 5 - 5000 -
Lookahead α - 0.5 - 0.5 -

Unrolling steps - - - - 5

The reported results on CIFAR-10 were obtained using the hyperparameters listed in Table 10. These
values were selected for each algorithm independently after tuning the hyperparameters. For the
baseline methods we selected the hyperparameters giving the best performances. Consistent with
the results reported by related works, we also observed that using larger ratio of updates of the
discriminator and the generator improves the stability of the baseline, and we used r = 5. We
observed that using learning rate decay delays the divergence, but does not improve the best FID
scores, hence we did not use it in our reported models.

H.2.7 HYPERPARAMETERS USED ON IMAGENEET

Table 11: Hyperparameters used for our AltGAN experiments on ImageNet.

Parameter AltGAN LA-AltGAN DLA-AltGAN
ηG 0.0002 0.0002 0.0002
ηD 0.0002 0.0002 0.0002

Adam β1 0.0 0.0 0.0
Batch-size 256 256 256

Update ratio r 5 5 5
Lookahead k - 5 5
Lookahead k′ - - 10000
Lookahead α - 0.5 0.5

Unrolling steps - - -

Table 12: Hyperparameters used for our ExtraGrad experiments on ImageNet.

Parameter ExtraGrad LA-ExtraGrad DLA-ExtraGrad
ηG 0.0002 0.0002 0.0002
ηD 0.0002 0.0002 0.0002

Adam β1 0.0 0.0 0.0
Batch-size 256 256 256

Update ratio r 5 5 5
Lookahead k - 5 5
Lookahead k′ - - 5000
Lookahead α - 0.5 0.5

Unrolling steps - - -

The reported results on ImageNet were obtained using the hyperparameters listed in Tables 11 and
12.

33

Published as a conference paper at ICLR 2021

I ADDITIONAL EXPERIMENTAL RESULTS

In Fig. 6 we compared the stability of LA–AltGAN methods against their AltGAN baselines on
both the CIFAR-10 and SVHN datasets. Analogously, in Fig. 17 we report the comparison between
LA–ExtraGrad and ExtraGrad over the iterations. We observe that the experiments on SVHN with
ExtraGrad are more stable than those of CIFAR-10. Interestingly, we observe that: (i) LA–ExtraGra-
dient improves both the stability and the performance of the baseline on CIFAR-10, see Fig. 17a, and
(ii) when the stability of the baseline is relatively good as on the SVHN dataset, LA–Extragradient
still improves its performances, see Fig. 17b.

For completeness to Fig. 5 in Fig 18 we report the respective eigenvalue analyses on MNIST, that are
summarized in the main paper.

0 250000 500000
Iteration

15

20

25

30

35

FI
D

LA-ExtraGrad
ExtraGrad

(a) CIFAR-10 dataset.

0 250000 500000
Iteration

0

5

10

15

FI
D

LA-ExtraGrad
ExtraGrad

(b) SVHN dataset.

Figure 17: Improved stability of LA–ExtraGrad relative to its ExtraGrad baseline on SVHN and CIFAR-10,
over 5 runs. The median and the individual runs are illustrated with ticker solid lines and with transparent lines,
respectively. See § I and H for discussion and details on the implementation, resp.

I.1 COMPLETE BASELINE COMPARISON

In § 5.2 we omitted uniform averaging of the iterates for clarity of the presented results–selected as it
down-performs the exponential moving average in our experiments. In this section, for completeness
we report the uniform averaging results. Table 13 lists these results, including experiments using the
RAdam (Kingma & Ba, 2015) optimizer instead of Adam.

0 2 4 6 8 10 12 14 16 18 20
Top-20 Eigenvalues

0

−20

−40M
ag

ni
tu

de

AltGAN
LA-AltGAN

(a) Generator.

0 2 4 6 8 10 12 14 16 18 20
Top-20 Eigenvalues

0

100

200

M
ag

ni
tu

de

AltGAN
LA-AltGAN

(b) Discriminator.

0 100 200
Real Part

−0.5

0.0

0.5

Im
ag

in
ar

y
Pa

rt AltGAN
LA-AltGAN

(c) Eigenvalues of v′(θ,ϕ).

Figure 18: Analysis on MNIST at 100K iterations. Fig. 18a & 18b: Largest 20 eigenvalues of the Hessian of
the generator and the discriminator. Fig. 18c: Eigenvalues of the Jacobian of JVF, indicating no rotations at the
point of convergence of LA–AltGAN (see § 2).

34

Published as a conference paper at ICLR 2021

CIFAR-10 Fréchet Inception distance Inception score

Method no avg uniform avg EMA no avg uniform avg EMA

AltGAN–R 23.27± 1.65 19.81± 2.58 17.82± 1.31 7.32.± .30 8.14± .20 7.99± .13
LA–AltGAN–R 17.31± .58 16.68± 1.45 16.68± 1.45 7.81± .09 8.61± .08 8.13± .07
ExtraGrad–R 19.15± 1.13 16.17± .63 15.40± .94 7.59± .13 8.55± .05 8.05± .15
LA–ExtraGrad–R 15.38± .76 14.75± .61 14.99± .66 7.93± .05 8.51± .08 8.01± .09
AltGAN–A 21.37± 1.60 19.25± 1.72 16.92± 1.16 7.41± .16 8.23± .17 8.03± .13
LA–AltGAN–A 16.74± .46 15.02± .81 13.98± .47 8.05± .43 8.45± .32 8.19± .05
ExtraGrad–A 18.49± .99 16.22± 1.59 15.47± 1.82 7.61± .07 8.46± .08 8.05± .09
LA–ExtraGrad–A 15.25± .30 14.95± .44 14.68± .30 7.99± .03 8.13± .18 8.04± .04
Unrolled–GAN–A 21.04± 1.08 18.25± 1.60 17.51± 1.08 7.43± .07 8.26± .15 7.88± .12

SVHN
AltGAN–A 7.84± 1.21 10.83± 3.20 6.83± 2.88 3.10± .09 3.12± .14 3.19± .09
LA–AltGAN–A 3.87± .09 10.84± 1.04 3.28± .09 3.16± .02 3.38± .09 3.22± .08
ExtraGrad–A 4.08± .11 8.89± 1.07 3.22± .09 3.21± .02 3.21± .04 3.16± .02
LA–ExtraGrad–A 3.20± .09 7.66± 1.54 3.16± .14 3.20± .02 3.32± .13 3.19± .03

MNIST
AltGAN–A .094± .006 .167± .033 .031± .002 8.92± .01 8.88± .02 8.99± .01
LA–AltGAN–A .053± .004 .176± .024 .029± .002 8.93± .01 8.92± .01 8.96± .02
ExtraGrad–A .094± .013 .182± .024 .032± .003 8.90± .01 8.88± .03 8.98± .01
LA–ExtraGrad–A .053± .005 .180± .024 .032± .002 8.91± .01 8.92± .02 8.95± .01
Unrolled–GAN–A .077± .006 .224± .016 .030± .002 8.91± .02 8.91± .02 8.99± .01

Table 13: Comparison of the LA-GAN optimizer with its respective baselines AltGAN and ExtraGrad (see § 5.1
for naming), using FID (lower is better) and IS (higher is better). EMA denotes exponential moving average
(with fixed β = 0.9999, see § F). With suffix –R and –A we denote that we use RAdam (Liu et al., 2020) and
Adam (Kingma & Ba, 2015) optimizer, respectively. Results are averaged over 5 runs. We run each experiment
on MNIST for 100K iterations, and for 500K iterations for the rest of the datasets. See § H and § 5.2 for details
on architectures and hyperparameters and for discussion on the results, resp.

I.2 SAMPLES OF LA–GAN GENERATORS

In this section we show random samples of the generators of our LAGAN experiments trained on
ImageNet, CIFAR-10 and SVHN.

The samples in Fig. 19 are generated by our best performing LA-AltGAN models trained on CIFAR-
10. Similarly, Fig. 20 & 21 depict such samples of generators trained on ImageNet and SVHN,
respectively.

35

Published as a conference paper at ICLR 2021

Figure 19: Samples generated by our best performing trained generator on CIFAR-10, using LA-AltGAN and
exponential moving average (EMA) on the slow weights. The obtained FID score is 12.193.

36

Published as a conference paper at ICLR 2021

Figure 20: Images generated by our best model trained on 32×32 ImageNet, obtained with LA-AltGAN and
EMA of the slow weights, yielding FID of 12.44.

37

Published as a conference paper at ICLR 2021

Figure 21: Images generated by one of our best LA-ExtraGrad & EMA model (FID of 2.94) trained on SVHN.

38

	Introduction
	Background
	Lookahead for single objective
	Lookahead for minmax objectives
	The General Lookahead-Minmax algorithm and its convergence
	Motivating example: the bilinear game
	The full-batch setting
	The stochastic setting

	Experiments
	Experimental setup
	Results and Discussion

	Related work
	Conclusion
	Theoretical Analysis of Lookahead for Single Objective Minimization—Proof of Theorem 1
	Proof of Theorem 3
	Solutions of a min-max game
	Experiments on the bilinear example
	Implementation details
	Hyperparameters used for the full-batch setting
	Performance of EMA-iterates in the stochastic setting
	Hyperparameters used for the stochastic setting
	Number of passes
	Illustrations of GAN optimization with lookahead

	Experiments on quadratic functions
	Experiments on equation QP-1
	Experiments on equation QP-2

	Parameter averaging
	Details on the Lookahead–minmax algorithm and alternatives
	Nested Lookahead–Minmax
	Alternating–Lookahead–Minmax

	Details on the implementation
	Metrics
	Inception Score
	Fréchet Inception Distance

	Architectures & Hyperparameters
	Architectures for experiments on MNIST
	ResNet architectures for ImageNet, Cifar-10 and SVHN
	Unrolling implementation
	Hyperparameters used on MNIST
	Hyperparameters used on SVHN
	Hyperparameters used on CIFAR-10
	Hyperparameters used on ImageNeet

	Additional experimental results
	Complete baseline comparison
	Samples of LA–GAN Generators

