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Abstract

We propose a tree-based procedure inspired by
the Monte-Carlo Tree Search that dynamically
modulates an importance-based sampling to pri-
oritize computation, while getting unbiased esti-
mates of weighted sums. We apply this generic
method to learning on very large training sets,
and to the evaluation of large-scale SVMs.

The core idea is to reformulate the estimation of
a score — whether a loss or a prediction estimate —
as an empirical expectation, and to use such a tree
whose leaves carry the samples to focus efforts
over the problematic “heavy weight” ones.

We illustrate the potential of this approach on
three problems: to improve Adaboost and a
multi-layer perceptron on 2D synthetic tasks
with several million points, to train a large-scale
convolution network on several millions defor-
mations of the CIFAR data-set, and to compute
the response of a SVM with several hundreds of
thousands of support vectors. In each case, we
show how it either cuts down computation by
more than one order of magnitude and/or allows
to get better loss estimates.

1. Introduction

Virtually every single machine learning algorithm relies
on data-based empirical expectations, either to estimate a
loss, or the response of a predictor (see the examples in
§ 3.1). The larger the data-set, the more accurate the predic-
tion, and many state-of-the-art results have been obtained
by enriching already very large sets using synthetic pertur-
bations, resulting in hundreds of millions of labelled sam-
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ples (Krizhevsky et al., 2012).

An empirical expectation takes the form of a sum of a quan-
tity evaluated on many data-points, and in practice most of
these summed terms are negligible. In training it is be-
cause most of the samples are far from the boundary be-
tween populations, and get a “trivially correct answer”, in
test it is because the prediction on a test point is modulated
only by its immediate neighbors in the training set. For ex-
ample in the case of Gaussian kernel SVM trained on large
data-sets, even though the model has very large number of
support vectors only few of them will actually matter in the
final decision score.

Despite this well known state of affairs, algorithms still
rely on an exhaustive loop through the samples. Some
approaches have been developed to prioritize samples af-
ter they have already been seen (Kalal et al., 2008; Fleuret
& Geman, 2008), or in subsets sampled uniformly (Loosli
et al., 2007), but they do not use structures given a priori
over the said samples, combining it with statistical obser-
vations made over those already observed to reject groups
without looking at them.

In some sense, the problem at hand is related to the choice
of an optimal move in a strategy game. This has been tack-
led traditionally with branch-and-bound approaches, going
down the tree of possible choices, and discarding sub-trees
that can be proven to be bad. This type of methods however
founds its limits with games of very large combinatorial
complexity. State-of-the-art performance for the game of
Go for instance is obtained with Monter-Carlo Tree Search
(Gelly et al., 2006) which at the same time samples and
optimizes the sampling over configurations.

The technique we propose, dubbed as IST for “Impor-
tance Sampling Tree”, similarly, at the same time, samples
leaves, provides a correcting factor to compensate for its
sampling bias, and optimizes inner statistical estimates to
improve sampling over time.
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2. Related works

Batch learning becomes very difficult or even infeasible
when it comes to training predictors on very large data-
sets. Therefore, sub-sampling appears to be one solution
to make it practical and it has been shown that a smart
sampling, as opposed to a uniform sampling, has an im-
pact on the performance of the final classifier. For instance
the Boosting procedures proposed by Fleuret & Geman
(2008), and Kalal et al. (2008) select samples to train a
weak learner based on their boosting weights. The clas-
sifier is thus presented with highly misclassified samples,
with a high individual weight, but also with representatives
of populations of low weighted individual samples which
have have a large cumulative weight.

Bordes et al. (2005) proposed LASVM, an online algorithm
with importance sampling to train kernel support vector
machines. They show that importance sampling reduces
the training time and also results in models which are com-
pact with fewer support vectors, while retaining equivalent
or superior accuracy compared to standard algorithms.

Recently, importance sampling has been studied in the con-
text of stochastic gradient descent (SGD) algorithms (Zhao
& Zhang, 2014). Their key observation is that, though sam-
pling observations uniformly at random from the training
set results in a stochastic gradient which is an unbiased esti-
mate of the true gradient, this resulting estimator may have
high variance. In order to mitigate the convergence issue
with high variance they propose an importance sampling
scheme. Their theoretical results shows that under certain
conditions, importance sampling can improve the conver-
gence rate of SGD algorithms.

More generally a sampling approach called Monte Carlo
Tree Search (Browne et al., 2012) has gain much interest in
the past years for the tremendous improvement for games
such as Computer Go. The purpose of MCTS is to find the
optimal solution in a potential huge space organised as a
tree by sampling this tree. The tree is traversed from top
to bottom by recursively applying a multi-armed bandit on
the children of the current node until reaching a leaf. A
reward related to the optimal solution is then obtained and
the outcome is backpropagated up the the root. The next
samplings will use the accumulated statistics to prioritize
the sampling towards promising branches and eventually
find the optimal value.

Contrary to what is the core purpose of MCTS, we are not
interested in finding the best leaf or leaves, but to sample
among all the leaves, according to their weights. These
two objectives are very distinct when an important fraction
of the total weight comes from a large population of low-
weighting leaves.

3. Method

3.1. Weighted sums for prediction

Given N positive weights w,, € R4, n=1,...,Nanda
function f : {1,...,N} — RP, we are interested in the

weighted average
N
> wnf(n) @)
n=1

when N is too large to allow an exhaustive visit of the
weights. Our motivation is that we can express under that
form most of the data-driven important quantities in ma-
chine learning, such as

— The edge of a weak-learner in Adaboost
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— The gradient for training a neural network
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— The evaluation of a SVM in its dual form
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In these examples, a weight can be interpreted as the “im-
portance” of a sample, and in many practical situations, the
vast majority of them are negligible. We aim at devising an
approach — relying on a prior tree structure on the weights —
that (1) balances computation proportionally to the weights
themselves, and (2) does so by looking at a fraction of the
full family of weights, opening the way to extremely large
samples sets.

3.2. Importance sampling for Monte-carlo simulations

Given an arbitrary distribution 4 on {1, ..., N} which puts
non-zero probabilities on all the values, we can rewrite
Equation (1) as

WN

S ) f(n) = B [M(N)fa\u] )

p(n)

which we can approximate by generating Ny, ...
i.i.d ~ pu, and using the empirical expectation

B [w" f<n>] _ly ) @
| ) K & p(Ny)

7NK
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Table 1. Notation

- w, € R, positive weights we want to approximate
through sampling

=T, L C T nodes and leaves of our sample tree

— D the depth of the tree

—¢p(z), c1 () children of node x

— U minimum number of observations we impose before
biasing the 0,

— L(z) C L set of leaves of the sub-tree whose root is
-n(z) € {1,..., N} index of the weight at leaf =

— O = (0;)ze7\ ¢ probabilities to chose the right sub-tree
at each node during sampling

— po(n; x) probability to reach leaf n given that the sam-
pling passes through node =

—w(x) = 3., cr(x) Wn(y) sum of the weights of the leaves
in the sub-tree whose root is

— v(x) number of times the sampling has been through
node

— s(x) sum of the individual estimates of w(x)

—w, = s(x)/v(x) estimate of w(x)

— S(z) statistics accumulated at node

The most natural choice for p would be to use

W

uin) = TR in which case we would have our desired

property of investing the computation proportionally to the
weights, and minimize optimally the variance of our esti-
mator.

This choice makes sense if computing » ", wy, is tractable,
or so cheap to compute compared to the computation of the
f(n)s that it still provides a substantial gain. However, we
are interested in situations where not only w,, is more ex-
pensive to compute than f(n), but we also aim at scaling N
up to values far greater than the number of CPU operations
we have at our disposal.

3.3. Importance Sampling Tree (IST)

We propose a novel structure dubbed as Importance Sam-
pling Tree (IST), which is a binary tree carrying the weights
wy, ..., wy atits leaves, and having at each internal node
statistics about the weights in the leaves below it. Given
such a tree, we use a recursive sampling procedure that re-
sults in a sampling of the leaves, and — in a manner similar
to the MCTS — we update the estimates at the nodes every
time a sampling is done, and modulate the sampling policy
accordingly.

Let 7 be the set of tree nodes, z* € 7T the root node,
L C T the leaves. Since the leaves carry the weights
wi,...,wn, for any leaf x € L let n(z) € {1,...,N}
be the index of the weight there. Note that we will often
make a confusion between z € L and n(z), identifying a

leaf with its index.

For any internal node z € 7 \ L, let co(x),c1(x) € T be
its two child nodes. Finally let £(x) be the leaves of the
sub-tree starting at = and w(x) the sum of their weights.
Hence, in particular V z € £, w(x) = Wy (s)-

Given a family of “bifurcation probabilities”
O = (0,)semc €)0, 11T\ that is for each node
the probability to “go down on the right”, we can derive
for each node x and each leaf n a probability ue(n;x)
to reach the leaf n if we start from x and follow the 6s at
each node we meet. This probability is the product of the
probabilities of the bifurcations to go from x to n. Given
a leaf n, the pug(n;x) for all the parents = of n can be
computed in O(D).

3.3.1. ADAPTIVE SAMPLING

We could use many different policies to modulate the 6,
and bias the sampling according to what we have observed.
We propose two strategies, both based on accumulating at
every node statistics S(x) about the weights observed dur-
ing the previous sampling:

Using empirical weights — Here S(z) = (s(x),v(z))
where s(z) is the sum of the weight estimates
wp/pe(n; z), and v(x) is the number of times the sam-
pling went through x. For v(z) > 0,%(x) = s(z)/v(z) is
an unbiased estimator of w(x). We set 6,, to the ratio of the
number of leaves in the child sub-trees if we do not have
enough sampling for proper estimations, and to the ratio of
the estimations of the weights otherwise. Formally with U
a meta-parameter setting the minimum number of observa-
tions we request for biasing:

[1£(c1 ()]l
[1£(co(@))| + [|1£(e1 ()]

(e ()
w(co(x)) +w(er(x))

if v(co(z)) <U
or v(ci(z)) < T,

0, =

otherwise.
(7N

Using weight intervals — Here S(z) = (I(z),u(x)), cor-
responding to lower and upper bounds on w(z), which are
updated and getting tighter after every sampling. We define
®(x), a function of the upper bound u(z) and lower bound
I[(x) at node = and we set 6, to be
P
b __ Pa@) .
P(co(z)) + P(cr())

In the experiment section § 4.3, we compare several defini-
tions of ®.

Hence, if we need T samples, fort =1,...,7T"

1. Recursively sample a path down the tree to a leaf n?,
according to pet (. ;x*).
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2. For every node x visited on that path compute
S'+1(x) and 6L+ according to Equation (7) or (8) de-
pending on the application. All other nodes remain
unchanged.

Then, following § 3.2, we can use

N

T
> wnf )= 5 3 ). )

n=1 t=1

Note that the ©'s in that expression — and the resulting s —
are the ones that were in the tree when each sampling was
done. Also, note that the update of S and © can be delayed,
suppressed, or done in an arbitrary order if implementation
constraints impose it.

4. Experiments and results
4.1. Adaboost on a 2D synthetic problem

To get a first idea of the behavior of the IST in practice, we
use Adaboost on a simple synthetic problem. This algo-
rithm is a very good candidate since the exponential loss is
known to induce strongly unbalanced sample weights. Our
objective is to assess if the IST is able to focus the sampling
efficiently enough to cope with the divergence of the loss
that is classically observed in validation.

The synthetic task is a classification problem where the sig-
nal X is uniform in the unit square [0, 1] and the class Y’
is +1 in a disc centered in that square and —1 elsewhere.
The total sample set we consider contains 81922 points lo-
cated on a regular grid in the unit square. The binary tree
structure we use for the IST (as described in § 3.3) recur-
sively splits the = and the y axes, and has a depth of 27,
corresponding to 13 splits in each directions and one level
for the leaves.

We consider a standard Adaboost based on the exponen-
tial loss as in Equation (2), and linear stumps. Each stump
is trained by sampling uniformly 100 directions in the 2D
plan, and optimizing exactly its bias, and its weight in the
strong predictor.

We test in our experiments three algorithms: Boost is the
baseline. It samples 1,000 samples uniformly initially, and
uses them as a standard training set for all the stumps.
Boost-U re-samples uniformly 1, 000 new training samples
for each stump. Boost-IST samples 1, 000 training samples
with the IST for each stump, and updates the IST with their
Adaboost weights. The same tree is used for all the stumps,
and not reinitialized for each.

For all variants, we also sample 1,000 samples uniformly
initially as a validation set. The results are illustrated in
Figure 1. To be consistent with the rest of the article, losses

(c) (d)

Adaboost losses (synthetic problem, 1k samples)

1010 T T T
Boost train e

Boost-U train
10° Boost-IST train
Boost validation =
Boost-U validation ==
Boost-IST validation

108

107 A E

Loss (log)

|
0 250 500 750 1000

10*

Nb of stumps

Figure 1. Adaboost on a synthetic 2D problem (see § 4.1). Im-
ages (a), (b), and (c) depict respectively the prediction obtained
with Boost, Boost-U and Boost-IST. The exponential loss be-
haves pathologically on samples at the frontier which have not
been seen during the stump optimization, which impacts both
Boost and Boost-U variants, and leads to a diverging training for
the latter. Picture (d) shows the sampling intensity with Boost-
IST. The bottom graph shows the evolution of the training and
validation losses for the three methods vs. the number of stumps

correspond to estimates on the total sample set of 226

ples, hence the initial value of ~ 6.7e7.

sam-

The Boost baseline converges in training and leads to a very
sharp and clean prediction decision, albeit only roughly ap-
proximating the proper domain, which leads to a diverging
validation loss, as the validation samples near the bound-

113

ary may be misclassified by the predictor, with an “in-
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creasingly wrong” prediction when the learning progresses.
The Boost-U re-sampling suffers strongly from the same
problem, as each re-sampled set contains points strongly
misclassified by the current strong learner, which induce
very strong sample weights and correspondingly a choice
of stumps that gets more and more inconsistent while the
process goes on. This results in diverging training and vali-
dation losses, and a pathological final strong predictor. The
Boost-IST based approach focuses on the boundary popu-
lation, and by sampling more and more intensively there,
it does not diverge and leads to a more accurate decision
rule. Remarkably, the validation loss is very well reflected
by the training one, even if the former is estimated on a
fixed sample set and the latter on one re-sampled at every
iteration.

4.2. Neural Networks

We assess experimentally in this section how IST can be
used to improve the gradient-descent procedure to train an
artificial neural network.

4.2.1. MULTI-LAYER NEURAL NETWORK ON A 2D
SYNTHETIC PROBLEM

As for the Boosting example of the previous section, we
consider a 2D synthetic problem, depicted as Figure 2(a),
where the frontier between the two classes is a oscillation
of variable frequency. This problem exhibits the difficulty
of many real-world data-sets in which the core issue is to
capture fine details of the boundary.

We train a neural network with two units as input standing
for the coordinate in the [0, 1]2 domain, two fully connected
hidden layers with 40 units each, and one output unit. The
transfer function is the hyperbolic tangent, and the weights
are initialized layer after layer so that the response of ev-
ery unit before non-linearity is centered, of standard de-
viation 0.5. We use the quadratic loss for training, and a
pure stochastic gradient descent, one sample at a time. Ev-
ery 1,000 gradient steps, we compute a validation loss and
adapt the step size.

We compare three strategies: ANN is the baseline, using
uniform sampling in the plan, ANN-IST samples with IST
using the gradient norm as importance function, following
Equation (3) and the same tree structure we use for Boost-
ing in § 4.1. ANN-IST-L is the same but uses the loss
per sample instead of the gradient norm as the importance
function.

We benchmark the three methods through ten train/test
runs, with 3 millions gradient steps, and obtain a test error
of 2.64%(40.29%) for ANN, 0.62%(+0.14%) for ANN-
IST, and 1.58%(+£0.60%) for ANN-IST-L. The losses are
consistent with the error rates in all the runs. As shown

on Figure 2, the greater performance of ANN-IST is ex-
plained by its ability to capture the thin structure on the
left. This behavior is extremely consistent through the runs,
and ANN-IST always ranks first, ANN-IST-L second, and
ANN third.

(c) (d

Figure 2. A multi-layer neural network on a synthetic 2D problem
(see § 4.2.1). Images (a) is the binary labeling to learn, (b) is the
prediction of the baseline ANN, (c) is the prediction of ANN-IST,
and (d) is the sampling density during training with ANN-IST.

4.2.2. DEEP CONVOLUTION NETWORK ON CIFAR10

For the synthetic examples of the previous sections, we
have exploited the Euclidean structure of the problem to
build the IST. The main (potential) weakness for using it in
practice is the availability of a tree structure consistent with
the gradient norm.

‘We show in this section that this is not the case, and that a
very natural tree structure leads to consistent sampling of
training points with large gradient norms on a state-of-the-
art large-scale problem of image classification.

Our experiments replicate the training of a network' de-
signed for a Kaggle competition on the CIFARI0 data-
set (Krizhevsky & Hinton, 2009), which relies on synthetic
deformations of the original 50,000 images with transla-
tions and scalings to create a total of 1.8 millions images.

The IST for this data-set has the structure depicted on Fig-
ure 3: we first split the classes, then the images in each
class separately with a top down clustering using the image
gradient maps. That is, we recursively apply a K-means

1https ://github.com/nagadomi/kaggle-cifarlO-torch?
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Figure 3. Structure of the sample tree we use to train a CNN on the CIFAR10 data-set. The first levels of the tree split the classes
uniformly, the next levels split the images of each class according to the L? metric, until we get to individual images, from which the
tree splits synthesized images using the same “deformation tree” replicated for each single original image.

with K = 2 at each node: starting from the full set of im-
ages at the top, the set is clustered into two sub-sets, which
are themselves each clustered in two, etc. until reaching a
single image, where we then stop and create a leaf. From
that point we split the synthetically generated images by
clustering the deformations themselves so that similar de-
formations are close in the tree.

We use gradient norm as the importance for each sample in
the IST, and we update it after every step of mini-batch gra-
dient descent. We exploit the property of the matrix prod-
ucts as described in Goodfellow (2015) to compute the gra-
dient norms efficiently for the fully connected layers. For
the convolution layers we have the per-sample gradients in
the intermediate computations which we use to compute
the gradient norms.

The results are depicted on Figure 4 and show that the IST-
based sampling is able to leverage the structure of the tree
to sample training points with large gradient norm. In par-
ticular, after five epochs, the 0.75-quantile of the gradient
norm is 2.64 x 10~* with the uniform sampling, and 0.52
with the IST.

To assess the stability of the convergence of IST, we also
computed the correlation between the w after each epoch
between two randomized runs using it. The correlation
goes from —0.017 after the first epoch, to 0.9897 after 10
epochs and remains above this value after that, showing
that the two runs lead to virtually identical weight values.

4.3. Non-linear SVM Prediction

The prediction cost of non-linear SVM grows linearly with
the number of support vectors which in turn grows lin-
early with the number of training points (Steinwart &
Christmann, 2008). Thus prediction using non-linear SVM
trained on large data-sets is prohibitively expensive. As
noted in § 1 for non-linear SVMs such as Gaussian kernel

4
=)

Z 08 -
iz
=2 Uniepoch 1 ++
£ 07 Uniepoch3 = = =
Uni epoch 5 =—
0.6 ISTepoch 1 +++ |
ISTepoch3 = = =
IST epoch 5 —
0.5 L e —
0.1 1 10

Gradient norm

Figure 4. Gradient norms of the sampled training points on three
different epochs. This plot shows that as the training progresses
(1) most of the examples get a small gradient norm, and a small
proportion of “hard” examples appears, with greater gradient
norm, and (2) the sampling based on IST (red curves) is always
better than uniform (blue curves), and improves in time, as re-
flected by the increasing gap between the curves.

SVM, the support vectors which are far way from the test
point contribute very little to the decision function. We ex-
ploit this fact to do very fast prediction of Gaussian SVM
with IST.

4.3.1. BUILDING THE TREE

We first organize the support vectors in a binary tree that
reflects the Euclidian distance between the points. We per-
form a top down clustering of the support vectors as we
did in § 4.2.2 for the images. The resulting tree is a binary
tree, whose leaves are the individual support vectors and
whose internal nodes carries the centroid corresponding to
the clusters made of all the support vectors below. In addi-
tion, each node carries the radius of the cluster (that is the
largest distance between the centroid and the points in that
cluster, which is O at a leaf).
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Our objective is to estimate the predictor response on a test
sample without computing the full inner products between
the test samples and the support vectors. We propose to use
a weighted sampling based on the bounds we have on the
total weights of the support vector below each node. Us-
ing the triangle inequality, we can derive a bound on the
weights below that node: given a test sample z, the cen-
troid w of a cluster of radius p, we have

e‘“*<”z_°“”+”)2 < k(zn,2) < 677|”Z7wuip|2ﬂ (10
-~ —_
B Bu

and since we consider the «,, positive (the sign is carried
by f(n) = yn, see Equation 4)

BiY an <> ank(zn,2) < Buy an (11

—_———
Lower bound (z) due to Upper bound u(x)

cluster of centroid w

The tree is traversed using policy of Equation (8). At each
node, the bounds of both children are queried and the sam-
pling goes on until reaching a leaf. Querying a bound re-
quires the computation of one inner product with the cor-
responding centroid (i.e. ||z — w]|), but only once as the
computation can be reused later. At a leaf, we have the
true value o, k(z,, z) of the weight. The bounds from the
leaf up to the root can now be updated according to the true
weight: the upper (resp. lower) bound u(z) (resp. I(z))
will now be u(co(z))+u(eq (x)) (resp. I(co(x))+1(c1(x))).
The bounds are thus tighter and in future iteration, the sam-
pling will be based on better bounds. Asymptotically, the
sampling is performed on exact bounds, that is on the sum
of the weights below. In the case of Gaussian kernel, some
upper bounds are drastically reduced after a few samplings
which cause many parts of the branches not to be sampled
again.

While this policy requires to compute inner products with
the centroids as well as with the true support vectors in
the leaves, the products can be cached once computed and
re-accessed when required, without further computation.
The true number of inner products for N support vectors
of dimension M is O(N M) whereas for IST, when sam-
pling 7" times, the number of inner products is at most
O(T M logy N). logy N is the depth of the tree (the num-
ber of centroids visited when performing one sampling).
This is an upper bound since many computation can be
reused.

4.3.2. DEFINING THE PROBABILITY OF BIFURCATION

We investigate three strategies to define 6, (i.e. the prob-
ability to “go down on the right”, or to select child
c1(x)). To simplify notations, we call ug (resp. lp)
the upper (resp. lower) bound of child 0 of node x
(i.e. ug = u(co(x))).

Mean bound (mean) — We define the score of a node to be
the mean of the upper and lower bounds.

w@)+l@) o hw
x

‘bl' = S =
(z) 2 lo+u +1L+uw

12)

Max bound (max) — We simply use the upper bound to
bias the sampling.
Uy

b(z) = 0, =
(z) = u(x) so 6, —

13)

Close bound (c1lose) — We call O, () the indicator func-
tion of the overlap between the bound interval of both chil-
dren of node z:

OU(‘r) = ]lmin[uo(:r),ul(m)]Zmax[lo(cz),ll(m)] (14)
At node z, the probability 6, to select child 1 is defined by
0.5 ifO,(x) =1

0, = #{%(z) if Oy(2) = 0and ug(x) < li(x) (15)
5 hn if Ou(z) = 0and ug(z) > li(2)

The close bound is illustrated in the supplementary ma-
terial. This strategy is less aggressive than the other two
because as long as the bounds of both children overlap, the
sampling is uniform. And when they no longer overlap, the
bounds used to compute P are the closest to each other.

4.3.3. SVM EXPERIMENT ON A SYNTHETIC PROBLEM

To get an idea of the behaviour of the IST policy for SVM
evaluation with a Gaussian kernel, we use a synthetic syn-
thetic problem, a 10 x 10 checkerboard. The data-set is
a 2-class problem made of 2D-Gaussian clouds of points
centred at each integer coordinate (from 0 to 9) and of stan-
dard deviation 0.3 alternating classes.

Three parameters are involved in the IST SVM evaluation:
C and +, the usual SVM parameters and 7', the number of
samplings with replacement that are performed in the eval-
uation. We chose these parameters through cross validation
such that the validation accuracy and the actual number of
kernel computation are Pareto optimal (see supplementary
material for details).

The results are illustrated on the top plot of Figure 5. The
exact method is the usual SVM policy (Equation 4). For
the sampling methods, we vary the number of samplings T’
to do the estimation of the SVM prediction from 10 to
100, 000.

4.3.4. SVM EXPERIMENT ON REAL DATA

We applied this IST method to the Gaussian kernel SVM
trained on the Covertype data-set (Bache & Lichman). It
contains 522,910 samples of dimension 54 for training
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and 58, 102 for testing. As in Collobert et al. (2002) we
consider the binary classification problem (class 2 versus
6 others). We carefully selected the parameters through
cross-validation to train the model which in the end con-
tains 105, 492 support vectors. The bottom plot of Figure 5
shows the test accuracy versus the average number of inner
products performed during sampling. The exact computa-
tion of the SVM decision (see Equation (4)) yields an error
rate of 1.765% and requires 105, 492 inner products.

We have also tried the IST method on other data-sets such
as webspam or a9a but the computation cost of IST was
greater than for the default policy (i.e. evaluating all the
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Figure 5. Test error vs. average number of inner products for the
synthetic problem (top) and for the Covertype data-set (bottom) —
Each point corresponds to a fixed number of samplings to estimate
the prediction value. The greater the number of samplings, the
better the estimate. IST methods reach top accuracy with less
inner product computations. For the Covertype data-set (bottom),
the exact point performs all the computations and reaches 1.765%
error rate. For the sampling methods, the number of samplings is
varied from 1, 000 to 300,000. For this particular data-set, the
distribution of kernel responses is so skewed that IST requires
very few inner products and reaches low error, while the uniform
approach never reaches good estimates.

dot products), because not only IST required to compute
many of the inner products with the support vector but also
almost all of the inner products with the centroids which
lead to twice as many computations.

The Covertype data-set has this property that at test time,
only very few support vectors matter in the decision (~100
out of the 100, 000 support vectors) which makes the clus-
tering and the sampling very efficient. As demonstrated
by Jose et al. (2013) or Hsieh et al. (2014), this data-set is
prone to huge gain in prediction.

5. Conclusion

‘We have presented a novel approach to cope with very large
data-sets. Instead of sampling uniformly, or designing a
priori a sampling scheme, our strategy adaptively modu-
lates the sampling according to data it has sampled previ-
ously. Because it compensates the sampling bias at any
time, estimation of the empirical quantities of interest is
done at the same time the sampling is improved. Experi-
ments show that this technique can be used both for learn-
ing and at test time, and cuts down drastically the number
of samples required for a certain level of accuracy.

Two key elements remain to be investigated thoroughly.
The first is the construction of the tree itself. In our ex-
periments on real data, it was constructed with a recursive
partitioning based on the Euclidean metric. The rationale
behind this strategy is that “close samples” should be “sim-
ilarly weighted”. This makes sense in the SVM experi-
ments, since the Euclidean metric is directly related to the
structure of the predictor response, but it is an unsatisfac-
tory proxy for the CNN.

The second point is the sampling procedure. We have pro-
posed two strategies, one using empirical weight estimates,
the other exact bounds on the said weights. The latter is
exact but can be used only with a strong prior information
about these bounds (e.g. geometrical information consis-
tent with the weight distribution), which is not the case for
very large training sets. What is missing in our approach
is a bandit-type use of a confidence interval on the esti-
mate. For instance based on the Heeffding’s inequality, to
get something similar to the UCB policy used in MCTS.
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1. An illustration of the close policy

Figure 1 illustrates the close policy. When the bounds
of child 0 and child 1 of a node overlap, the probability
of bifurcation is 0.5. As soon as they no longer overlap,
the score of the child with higher bounds is its lower one,
and the score of the child with smaller bounds is its upper
bound.

This policy explores more the tree and this is why it is
slower in the end.

C 0% T Kernels #SV  Acc. Time (s)
0.1 50 100000 26524 7981 83.95 130.08078
0.5 50 100000 229.703 6213 83.95 125.11008
0.5 15 100000 357.499 4480 84.15 122.91283
0.5 10 100000 437.615 4185 84.25 122.89537

1 5 100000 620.246 3691 84.45 122.06775

5 5 100000 559.196 3217 83.95 120.50157
0.1 20 20000 369.676 7220 84.55 26.14553
0.1 5 20000 766.475 5758 84.75 25.972519
0.1 10 20000 513.464 6203 84.75 25.817479
0.5 50 20000 214.318 6213 83.95 25.072426
05 10 20000 396.372 4185 84.25 24.709539
0.1 50 10000 238.635 7981 83.95 13.116903
0.5 20 10000 279.822 4788 83.95 12.406951
0.1 5 5000 673.641 5758 84.15 6.62012
0.1 20 5000 337.403 7220 84.55 6.594196
0.1 10 5000 459.707 6203 84.75 6.57555

2 20 5000 235904 3836 83.95 6.076082
0.1 5 2000 610.77 5758 84.15 2.746622
0.1 20 2000 314.86 7220 84.55 2.691372
0.1 15 2000 353.546 6766 84.75 2.674636
0.1 5 1000 562.106 5758 84.75 1.451517
0.1 10 1000 395.427 6203 84.25 1.392765
0.1 20 1000 298.203 7220 84.35 1.377687
05 15 1000 264.911 4480 84.05 1.30869
0.1 20 500 280.077 7220 84.15 0.736825
0.1 15 500 310.606 6766 84.45 0.729109
0.1 10 200 326.765 6203 84.65 0.347478
0.1 15 200 281.025 6766 83.95 0.334733

[ 0.1 20 100 234961 7220 84.75 0.197346 ]

0.1 15 50 227.658 6766 84.15 0.128896

Table 1. Cross validation to choose parameters C' and «y. T" can be

reduced for speed-up or increased for accuracy.
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Figure 1. Nllustration of the close policy

2. Checkerboard synthetic problem

The checkerboard data-set 2 is a 2-class problem made of
2D-Gaussian clouds of points centred at each integer coor-
dinate (from 0 to 10) and of standard deviation 0.3 alternat-
ing classes.

Three parameters are involved in the IST SVM evaluation:
C and ~, the usual SVM parameters and 7', the number of
samplings with replacement that are performed in the eval-
uation. We chose these parameters through cross validation
such that the validation accuracy and the actual number of
kernel computation are Pareto optimal (see Table 1).
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Figure 2. The 10 x 10 checkerboard toy problem — It is made of
2D-Gaussian clouds centered at each integer coordinate and of
standard deviation 0.3 alternating classes.



