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Abstract

On the one hand, Support Vector Machines have met with significant success in solv-
ing difficult pattern recognition problems with global features representation. On the
other hand, local features in images have shown to be suitable representations for effi-
cient object recognition. Therefore, it is natural to try to combine SVM approach with
local features representation to gain advantages on both sides. We study in this paper the
Mercer property of matching kernels which mimic classical matching algorithms used in
techniques based on points of interest. We introduce a new statistical approach of ker-
nel positiveness. We show that despite the absence of an analytical proof of the Mercer
property, we can provide bounds on the probability that the Gram matrix is actually pos-
itive definite for kernels in large class of functions, under reasonable assumptions. A few
experiments validate those on object recognition tasks.

1 Introduction

Objects recognition in variable contexts under different illuminations remains one of the
most challenging problem in computer vision and artificial intelligence. Compared to the
efficiency of human brain, algorithms have been unable so far to demonstrate competitive
performances in real usage conditions.

Among all the techniques developed during the last decades, points of interest in com-
puter vision [17, 16, 10] and support vector machines (SVMs) in statistical learning [5, 1]
have been successful in solving many real-world problems.

Points of interest based techniques combine the information provided by the responses
of local filters at several highly informative locations in the picture and their global ge-
ometric configuration. Such approaches lead to compact and invariant representations.
SVM algorithms search the optimal separating plane between positive and negative ex-
amples. It has the advantage of high generalization capacity from a few training examples.

In some sense, points of interest techniques and SVMs address two different issues.
While the formers provide a very meaningful way to represent and compare images, the
laters are able to combine several training examples into a consistent and statistically
sound view-based representation.
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A few attempts have tried recently to combine those two approaches into a common
framework by building kernels on the space of feature vector sets [4, 19, 21, 12]. While
kernels are usually defined on vector spaces, they have to deal in this new context with
features of various size where no order is defined between components. Also, since the
classical matching algorithm used in points of interest techniques are able to tackle the
occluding problem and to provide invariance to the pose, it seems highly desirable that
the used kernels mimic those matching algorithms.

The SVM problem is convex whenever the used kernel is a Mercer one. The convexity
insures the convergence of the SVM algorithm towards a unique optimum. The unique-
ness of the solution is one of the main advantages of the SVM compared to other learning
approaches such as neural networks. Unfortunately, as we will see, numerous examples
show that using matching algorithms as kernels for SVM are not in general Mercer.

Nevertheless the use of simple matching algorithms as kernels gives good results in
practice. This experimental observation leads us to consider the positiveness of the kernel
from a statistical point of view. We show that, even if kernels based on matching are
not always positive, this is likely to be true for a large class of functions. Moreover, we
propose a way to control the probability of positiveness by tuning kernel parameters in
this class. This control can be also used with advantages in many other applications where
SVM approach applies, with local and global representations as well.

In §2 we present different approaches for recognition with local features, in§3 we
present our main result of bound on the Gram matrix probability to be positive definite
and give experimental results in§4.

2 Recognition With Local Features

Let X be the space where the features are taken from (Rn for example). The dimension
of X is in general finite and fixed. In the context of recognition from images, this implies
that the used representation is global on the image. Therefore, in such a case, the design
of a kernel for object recognition is closely related to template matching. This family of
algorithms is mainly based on correlations between two images. In [3], Mercer kernels for
object recognition in images are build based on such template matching algorithms. Two
main drawbacks of template matching algorithms are known to be their computational
cost and poorly robust results in case of occlusion.

2.1 Local Feature Representations

To better tackle these difficulties, local features representation were introduced for im-
ages. The idea is, first to build a detector of particular points in images, usually called
points of interest(or key points, anchors points, salient points), and second to character-
ize each point by its local environment. This obtained set of features is the local feature
representation of an image. This kind of representations have shown to be suitable rep-
resentations of images for object recognition, see for instance [17, 10]. Indeed, the infor-
mation about images has been drastically reduced, allowing faster comparison algorithms
than using correlation based algorithms. There is many ways to locally characterize the
environment of a point. The most used feature seems to be the so-called jet, which is
the vector based on a differential characteristic’s around the point of interest. However,
following [16], SIFT feature seems to provide improvement to jet features.



2.2 Point Matching Algorithms

Given two images of the same object, each image being represented by a set of local fea-
turesX andX ′, occlusion may remove several points of interest in one or in the other
image. Moreover, due to complex background, extra points appear as outliers. There-
fore, correspondences must be robustly established between the two setsX andX ′. This
task can be performed by matching algorithms. Depending on the constrains enforced
on matching (bijective, symmetric,...), different algorithms were derived (see [22] for a
partial review). Optimal matching algorithms have to face with combinatorial explosion,
and thus many matching algorithms are in practice based on heuristics.

The result of the matching algorithm is two index functionsΦ1(n) ∈ [1, ..., NX ] and
Φ2(n) ∈ [1, ..., NX ′ ] that gives the indices of theN matched pairs of feature vectors
(xΦ1(n), yΦ2(n))1≤n≤N , whereNX andNX ′ denotes the size of setsX andX ′

3 Kernels for Sets

Recent works [13, 9, 12, 21] have focused on designing Mercer kernels for different kinds
of structured features such as strings, DNA, graphs, trees, and sets.

Any Mercer kernel can be written as an inner product after mapping by a well-chosen
f function [5], i.e K(x,x′) = 〈f(x), f(x′)〉. Thus, Mercer kernels can be seen as a
measure of dissimilarity between vectorsx andx′.

3.1 Known Kernels

For local feature representations, the simplest approach is to define the global dissimilarity
between two sets of vectors as the sum over dissimilarities between all possible pairs of
vectors. The dissimilarity of a pair of vectors is obtained by a Mercer kernelk(xi,x′j).
The Summation Kernel is thus:

KS(X ,X ′) =
NX∑

i=1

NX′∑

j=1

k(xi,x′j) (1)

We may use RBF kernel fork:

k(xi,x′j) = e−
‖xi−x′j‖

2

2σ2

whereσ is the scale parameter. Although the numbersNX andNX ′ of vectors in the two
setsX andX ′ are not fixed, it can be proved thatKS is a Mercer kernel [11]. However,
the number of pairs is increasing more rapidly than the number of vectors. Thus using
KS , correct correspondences are swamped into bad correspondences.

In [21] a Mercer kernel is proposed for sets of vectors based on the concept of principal
angles between two linear subspaces. This last approach is interesting but the proposed
kernel is invariant when local feature vectorsxi are combined linearly. Thus, this kernel
does not match our practical needs. In [12], another approach is proposed where the set
is represented as a mixture of gaussian. This approach requires relatively dense sets of
vectors to be meaningful, which is difficult to achieve in practice.



3.2 Matching Kernel

A better approach to compute global dissimilarity between two sets of local feature vec-
tors extracted from two images is to take into account only dissimilarities between matched
local features. Thus, the global dissimilarity is defined by:

KM (X ,X ′) =
N∑

n=1

k(xΦ1(n),x′Φ2(n)) (2)

whereΦ1(n) ∈ {1, ..., NX }, Φ2(n) ∈ {1, ..., NX ′} denote the mappings between the two
sets of vectors, like in Sec. 2.2.N denotes the number of matched pairs of vectors, and
thus we haveN ≤ min(NX , NX ′).

The optimal mapping(Φ∗1,Φ
∗
2) is obtained as the one that maximizes the dissimilarity,

so:
(Φ∗1,Φ

∗
2) = arg max

Φ1,Φ2
KM (X ,X ′) (3)

Since the exact solution of the previous problem is time consuming, as explained in
Sec. 2.2, we better use an heuristic as matching algorithm. We have used thewinner-
take-all approach: at each step, the pair of points having the maximum dissimilarity is
matched and the associated vectors are removed to future examinations for the next steps.

We notice that in general the mapping depends on setsX andX ′, and thus, contrary
to [19], it is not easy to prove thatKM (X ,X ′) is a Mercer kernel, even when the local
kernelk is Mercer. If the assertion “themax of Mercer kernels is still a Mercer kernel”
was true, we could prove thatKM (X ,X ′) is Mercer. Unfortunately, themax of Mercer
kernels is not Mercer [2], and even not conditionally positive definite [18].

A simple counter example is now presented. We consider the matricesG1, G2 and
G3 = max(G1, G2), with eigenvaluesλi respectively, as:

G1=

2664 2 −1 −2

−1 2 3

−2 3 8

3775 λ1=

2664 0.72

1.4

9.8

3775
G2=

2664 7 4 −2

4 3 −1

−2 −1 1

3775 λ2=

2664 0.29

0.68

10.02

3775
G3=

2664 7 4 −2

4 3 3

−2 3 8

3775 λ3=

2664 −0.92

9.34

9.57

3775
G1 and G2 are two positive definite Gram matrices but theirmax (G3) is not. This
suggests that in general matching algorithms are not Mercer kernels. Indeed, we have
found other more complicated counter-examples to Mercer or conditional positiveness,
for optimal matching algorithm.

3.3 Statistical positiveness of Kernels

In [19, 2, 6] non-Mercer kernels have been used for SVM based pattern recognition.
Although performances of these kernels are good, the convergence of SVM algorithm to
the unique optimum is not insured since there is no warranty that the SVM optimization



problem is convex. We introduce next a new definition of kernel positiveness based on
a statistical approach. This definition is general enough to include usual Mercer kernels.
The advantage is that we can show that matching kernels are statistically positive definite
kernels.

We denote here byX1, . . . , X` a family of ` i.i.d random variables standing for the
training samples. We want to bound the probability that the Gram matrix(Kσ(Xi, Xj))i,j

violates the Mercer condition,σ is the tuning scale hyperparameter of the kernel. A suffi-
cient condition for the Gram matrix to be positive definite is to be diagonal dominant. We
recall, that a matrixG is called diagonal dominant when for eachi, we have:

|Gii| ≥
∑

i6=j

|Gij | (4)

Diagonal dominance condition is an easy way to enforce Mercer condition directly on
the Gram matrix. It has been used besides to derive kernels for strings [20]. In the
following, McDiarmid concentration inequality [15] is recalled and a modified version
is introduced. Many concentration inequalities can be found in the literature [14] like
Hoeffding, Bennett ones, but they are useless in our case because of too strict assumptions
with respect to independence. McDiarmid inequality will allow us to rewrite diagonal
dominance condition in a statistical point of view.

Theorem. McDiarmid inequality (1989)
X1, . . . , X` be independent random variables∈ A.
Letf : (A)` → R satisfies the bounding difference property:

sup
x1,...,x`

x′
i
∈A

∈A
|f(x1, . . . , x`)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , x`)| ≤ ci , 1 ≤ i ≤ `

Thus, the following probability is bounded by:

∀ε > 0, P {f(X1, . . . , X`)− E (f(X1, . . . , X`)) > ε} ≤ e
− 2ε2P`

i=1 c2
i

In the case of0 ≤ f(x1, . . . , x`) < m, wherem ¿ ci with a high probability but not
equal to 1, McDiarmid inequality leads to a poor bound. To solve the problem, we give
next an improvement of the McDiarmid inequality in the case of positive functionf .

Lemma. Modified McDiarmid inequality
LetM > 0 such thatP (0 ≤ f(X1, . . . , X`) ≤ M) = 1,
for 0 < η < 1, let 0 < m < M such thatP (0 ≤ f(X1, . . . , X`) < m) = η then
∀ε > 0,

P {f(X1, . . . , X`)− E (f(X1, . . . , X`)) > ε} ≤ ηe−
2ε2

`m2 + (1− η)e−
2ε2

`(M−m)2

Proof.

1{0≤f(x1,...,x`)≤M} = 1{0≤f(x1,...,x`)<m} + 1{m≤f(x1,...,x`)≤M}

the two events are disjoint and we have :

P
{
1{f(X1,...,X`)<m}

}
= η

|f(x1, . . . , x`)− f(x′1, . . . , x
′
`}| < m since0 ≤ f(x1, . . . , x`) < m

P
(
1{m≤f(X1,...,X`)≤M}

)
= 1− η

|f(x1, . . . , x`)− f(x′1, . . . , x
′
`)| ≤ M −m sincem ≤ f(x1, . . . , x`) ≤ M



We obtain the modified McDiarmid inequality by applying McDiarmid inequality on the
two terms on the right:

P{f(X1,...,X`)−E(f(X1,...,X`))>ε} = η P{f(X1,...,X`)−E(f(X1,...,X`))>ε}+

+(1−η) P{f(X1,...,X`)−E(f(X1,...,X`))>ε}

≤ ηe−
2ε2

`m2 + (1− η)e−
2ε2

`(M−m)2

Some assumptions are given on the kernel, we suppose that the kernel is constant
on the diagonal, i.e.Kσ(xi, xi) = k, a wide class of kernel verifies this assumption,
for example kernels likeKσ(x, y) = g(‖x−y‖

σ ) . In our case the matching kernel also
belongs to this class. Another assumption is that the kernel is positive and bounded, i.e.
0 ≤ Kσ(x, y) ≤ c for x, y ∈ X. Last assumption is on the asymptotic behavior of the
kernel with respect to the parameterσ, Kσ(x, y) −→

σ→0
0 for x 6= y which mean that the

kernel vanishes at infinity.

Proposition. LetKσ be a kernel, with a hyperparameterσ, satisfying the following con-
ditions: Kσ(x, x) = k, 0 ≤ Kσ(x, y) ≤ c andKσ(x, y) −→

σ→0
0.

Letpd be the probability that the Gram matrix of the kernelKσ not being diagonal dom-
inant. Xi with i = 1, . . . , ` are ` i.i.d random variables representing training samples:

pd = P




∃i0,

∑̀

j=1
j 6=i0

Kσ(Xi0 , Xj) > Kσ(Xi0 , Xi0)





for 0 < η < 1, there existsσ such that we boundpd as following:

pd ≤ `

(
η exp

{−2(k − (`− 1)eσ)2

(`− 1)m2
σ

}
+ (1− η) exp

{−2(k − (`− 1)eσ)2

(`− 1)(M −mσ)2

})
(5)

whereeσ = E (Kσ(X1, X2)), M = (`− 1)c andmσ is defined by
P (f(X1, . . . , Xn) < mσ) = η

Proof. We define the functionfi as the following

fi(x1, . . . , x`) =
∑̀

j=1
j 6=i

Kσ(xi, xj)

sinceKσ is bounded, we have0 ≤ fi(x1, . . . , x`) ≤ M, whereM = (` − 1)c. As a
consequence,fi satisfies the bounding property of modified McDiarmid inequality. The
probability that Gram matrix not being diagonal dominant can be expressed as following:



there exists a line from the Gram matrix that does not satisfy dominance condition (4).

pd = P{∃i0,
P`

j=1
j 6=i0

Kσ(Xi0 , Xj) > Kσ(Xi0 , Xi0 )}

= P{∃i0,
P`

j=1
j 6=i0

Kσ(Xi0 , Xj) > k}

≤ P`
n=1 P{P`

j=1
j 6=n

Kσ(Xn, Xj) > k} since union bound propriety

= ` P{P`
j=1
j 6=i

Kσ(Xi, Xj) > k} sinceXj are i.i.d

= `P{fi(X1,...,X`)>k}

= `P{fi(X1,...,X`)−E(fi(X1,...,X`))>k−E(fi(X1,...,X`))}

= `P{fi(X1,...,X`)−E(fi(X1,...,X`))>k−(`−1) E(Kσ(X1,X2))︸ ︷︷ ︸
eσ

}

= `P{fi(X1,...,X`)−E(fi(X1,...,X`))>εσ} (6)

whereεσ = k− (`− 1)eσ. We need to insureεσ > 0 to apply McDiarmid inequality. We
have by definitioneσ = E(Kσ(X1, X2) =

∫
Kσ(x, y)dP (x, y). As we supposed that

Kσ(x, y) −→
σ→0

0, we deduceeσ −→
σ→0

0 and thus there exists aσ such thatεσ > 0.

We consider the following interval subdivision :

1{0≤fi(x1,...,x`)≤M} = 1{0≤fi(x1,...,x`)≤mσ} + 1{mσ<fi(x1,...,x`)≤M}

For this subdivision, we now apply the modified McDiarmid inequality on equation (6)
and we thus deduce (5).

The confidence termη can be chosen close to one to insure that second term of the
bound (5) is very small.
For a givenη, we choosemσ > 0 such thatη = P {fi(X1, . . . , Xn) < mσ}.
We chooseσ as small as needed to insure the first term of (5) to be small enough. This is
always possible. Indeed, Markov inequalities implies that
1− η = P {fi(X1, . . . , Xn) > mσ} ≤ (`− 1) eσ

mσ
, so we obtain thatmσ ≤ (`− 1) eσ

1−η .
As shown previously,eσ −→

σ→0
0, thusmσ −→

σ→0
0, therefore the first term of (5) goes to

0. As a consequence, it is possible to enforce kernel positiveness with high probability
by tuning kernel hyperparameters. If the obtained Gram matrix has a too large diagonal,
generalization performance of the SVM classifier can be poor, but we can use a technique
presented in [8, 7] that solve such problem.
It is known that theL2-SVM soft margin is equivalent to adding a ridge to the Gram
matrix [5]. Thus such regularization forces the Gram-matrix towards diagonal dominant
ones.

4 Results

The database used in our experiments (see Fig. 4) contains about 165 images of 128× 128
pixels obtained by encrusting complex background images to original images of the same
object which are taken from COIL-100 Database to generate positive samples. Similarly,
negative samples are obtained by a random choice of objects images of the COIL-100
Database.



Points of interest are extracted with Harris detector. As the background contains edges,
textures etc, many outliers points are extracted, so we enforce point repartition to be al-
most uniform. For that, the image is divided in sub-windows and a threshold on the
number of points per sub-window is set-up. The performance criterion is the recognition
error. It is estimated by cross-validation procedure: a proportion of images are chosen
randomly for training, the remaining images are used for testing. This operation is re-
peated several times to obtain statistically reliable results. Matching based kernels gives
good performances for points of interest representation. Tab. 1 presents comparison of the
matching kernel (KM , (2)) with summation kernel (KS , (1)) . Recognition error is about
3 % forKM with a configuration of 90 points per image. Comparison of matching kernel
with global representation is summarized in Tab. 2, k-NN denotes k-Nearest Neighbor-
hood classifier fork = 2, KH denotes SVM classifier. k-NN andKH are used both with
global Color Histogram features.KM leads to the smallest recognition error with 4.23%.
The tuning hyperparameter is chosen to be the scale factorσ in (2) of local kernelk.

Although matching based kernel leads to a good performance, the Mercer condition
in not usually insured. Fig. 2 presents ranked eigenvalues of the Gram matrix for different
values ofσ. For σ = 100, there exists negative eigenvalues of the Gram matrix, this
means that matching kernel is not positive definite in general. By decreasing the scaleσ,
eigenvalues become always positive. Fig. 3-a shows the variation of the recognition error
with respect tolog10(σ). The optimal value obtained by cross-validation isσ∗ = 10−3

which corresponds to a positive definite Gram matrix (positive eigenvalues). Fig. 3-b
represents the bound of probabilitypd (5) in a logarithmic scale with respect tolog10(σ).
The probability confidence is set asη = 1 − 10−6. For the optimal choice ofσ, the
bound is very poor and useless. Forσ = 10−4, which corresponds to a recognition error
of 8%, we havepd ≤ 10−3. We can say for these values that Gram matrix is diagonally
dominant almost sure and so it is positive definite one. By choosingσ = 10−4 we loose
almost 5 % of recognition error which is not too much compared to the obtained warranty
of convergence of the SVM algorithm to unique solution.

Figure 1: COIL-100 database with encrusted backgrounds, first raw: negative examples,
second raw: positive examples.

Kernel Rec. Error
KS 23.49%
KM 9.58%

Kernel Rec. Error
KS 15.51 %
KM 3.08%

(a) (b)

Table 1: Local feature Kernels comparison, (a): 50 pts/image, (b): 90 pts/image
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Figure 3: (a) Recognition error with respect toσ, (b) bound onpd with respect toσ

Methods k-NN KH KM

Rec. Error 7.42 % 6.58 % 4.23%

Table 2: Global features ( k-NN,KH , 64 bins) vs Local feature (KM , 70 pts/image)

5 Conclusion

We have presented in this paper the use of matching kernels for SVMs in the context of
object recognition. Despite the absence of an analytical proof of the Mercer property for
such a kernel and the actual existence of counter examples, we have shown that we can
choose kernel hyperparameter such that its Gram matrix is nevertheless positive definite
with a very high probability. This criterion can be also used with advantages in many
other applications where SVM approach applies, with local and global representations as
well.
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