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Abstract. In this paper, we present a new compactly supported kernel
for SVM based image recognition. This kernel which we called Geomet-
ric Compactly Supported (GCS) can be viewed as a generalization of
spherical kernels to higher dimensions. The construction of the GCS ker-
nel is based on a geometric approach using the intersection volume of
two n-dimensional balls. The compactness property of the GCS kernel
leads to a sparse Gram matrix which enhances computation efficiency by
using sparse linear algebra algorithms. Comparisons of the GCS kernel
performance, for image recognition task, with other known kernels prove
the interest of this new kernel.

1 Introduction

Support Vector Machine is one of the successful kernel methods that has been
derived from statistical learning theory. Incremental version of SVM has been
introduced in [1] allowing faster on-line learning. We focus in this paper on
how to improve the computational efficiency of SVM training using compactly
supported kernels. We propose a new compactly supported kernel. In §2, we
introduce and derive the new kernel, we named Geometric Compactly Supported
(GCS) kernel. We provide experimental results proving that GCS kernel leads to
good accuracy for image recognition task while being computationally efficient.

2 CS Kernel

A kernel ϕ(x, y) is said to be compactly supported (CS) whenever it vanishes
from a certain cut-off distance 2r between x and y.

ϕ(x, y) =

{

ϕ(x, y) if ‖x − y‖ < 2r

0 if ‖x − y‖ ≥ 2r

The main advantage of CS kernels is that their Gram matrices [ϕ(xi, xj)]i,j are
sparse. If such matrices are associated with a linear system they can be solved
efficiently using sparse linear algebra methods. Genton was the first to point
out the possible gain in efficiency provided by CS kernels with machine learning
techniques [2].
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Triangular, circular and spherical kernels, see Tab. 1 for definitions, which are
used in geostatistic applications, have been also studied in the context of machine
learning [2]. However, the use of these kernels is limited to dimensions from one
to three, since they are not positive definite for higher dimensions. Indeed, we
provide next a counterexample given in [3] proving that the triangular kernel
KT (x, y) is not positive definite for features living in � 2. Let’s take x, y ∈ � 2,
thus |x−y| is replaced by ‖x−y‖ (the L-2 norm of � 2) in definition of KT (x, y),
see Tab. 1. By choosing xi,j ∈ � 2 from a 8 × 8 square grid of spacing

√
2r, and

ci,j alternatively +1 and −1, we have:

8∑

j1,j2=1

8∑

k1,k2=1

cj1,j2ck1,k2
KT (xj1 ,j2 , xk1,k2

) = −1.6081 < 0

Therefore KT is not positive definite on � 2. A few attempts have been carried
out to derive compactly support (CS) kernels for high dimensions [2]. In [4], ex-
perimentations using a CS kernel are described proving that such kernel does not
give usually good performances in the context of non-linear regression (SVR) of
functions. Notice that just truncating positive definite kernels does not generally
lead to positive definite kernels. We now introduce a new compactly supported
kernel that can be viewed as an extension of triangular, circular and spherical
kernels to higher dimensions.

3 The GCS kernel

The derivation of the new Geometric Compactly Supported (GCS) kernel is
based on the intersection of two n-dimensional balls. Basically, we use the fact
that the intersection volume of two n-dimensional balls leads to a compactly
supported and positive definite kernel.

The properties of positiveness and compactness of the GCS kernel are pre-
sented in the following proposition.

Proposition 1. Let x and y ∈ � n, Ψn(x, y) denotes the intersection volume

of two balls having the same radius r, centered in x and y. Thus Ψn(x, y) is

compactly supported and positive definite kernel.



Proof. Intersection volume Ψn(x, y) can be written as the following integral:

Ψn(x, y) =

∫

a∈ � n

�
{‖x−a‖≤r}

�
{‖y−a‖≤r}da (1)

=

∫

a∈ � n

fa,r(x)fa,r(y)
︸ ︷︷ ︸

positive definite

da

where fa,r(z) =
�
{‖z−a‖≤r}(z). Thus, Ψn(x, y) is a positive definite kernel as a

mixture of positive definite kernels. Each time the feature point a ∈ � n is in the
intersection of the two balls of centers x and y, the function under the integral
equals to one, otherwise it equals to zero. As a consequence, the summation over
a ∈ � n gives the intersection volume of the two balls. Whenever ‖x−y‖ > 2r, the
balls intersection is empty, so Ψn(x, y) = 0. Therefore, Ψn is a CS and positive
definite kernel.
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Fig. 1. Intersection volume calculus (case n = 2).

To simplify notations, we omitted the radius hyper-parameter r in Ψn(x, y).
Next, we derive a more explicit formula for the GCS kernel which allows to
compute the kernel in a fast recursive way. The volume Vn(r) of a n-dimensional
ball with radius r can be calculated recursively as follows:

Vn(r) =

∫ r

0

Vn−1(
√

r2 − t2)dt, for n ≥ 2 (2)

Thus, a general formula of the n-dimensional ball volume can be written as
follows:

Vn(r) =







1
( n

2
)!π

n
2 rn if n is even

2
n+1
2

n!! π
n−1

2 rn if n is odd

where n!! = n(n−2)(n−4) . . . 1 is the double factorial when n is odd. The same
recursive approach as in (2) can be used for the derivation of the intersection
volume Ψn(x, y). We can see in Fig. 1 that the median plane of x and y is a
symmetric plane for the intersection volume, so Ψn(x, y) can be written, similarly

to (2), but now integrating from ‖x−y‖
2 to r rather than from 0 to r:
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r
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t

r

)2
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2

dt

= An(r)Φn(x, y)

where An(r) is only a normalization factor, which is independent of x and y.
SVM decision function is invariant to the product of any positive constant with
the kernel. Thus, in the following, we get rid of An, and we denote by Φn(x, y)
the remaining term which defines the GCS kernel KGCS(x, y).

By variable changing t = r sin θ, Φn(x, y) can be written as follows:

Φn(x, y) =

∫ π
2

arcsin(
‖x−y‖

2r
)

(cos θ)ndθ (3)

By integrating by part, we are able to derive a recursive computation of Φn(x, y).
For a dimension n, we define ϕn,k(x, y) as the value of Φn(x, y) at kth iteration.
As a consequence, we have Φn(x, y) = ϕn,n(x, y). We prove easily that for ‖x −
y‖ < 2r:


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k
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‖x−y‖

2r

(4)

For ‖x − y‖ ≥ 2r, ϕn,k(x, y) = 0. Notice that Φ1 on � is the triangular kernel,
Φ2 on � 2 is the circular kernel and Φ3 on � 3 is the spherical kernel. Thus, it can
be viewed as the generalization of the spherical kernel to higher dimensions. The
GCS kernel Φn is positive definite on � n as proved before. Nevertheless ϕn,k,
1 ≤ k ≤ n−1 are not positive definite kernels on � n. Indeed, the counterexample
given in beginning of §. 2, tells us that ϕ2,1, which is the triangular kernel for
data living in � 2, is not positive definite. Functions ϕn,k are only intermediaries
functions useful to compute the GCS kernel Φn recursively.

4 Complexity Reduction

One of the interest of GCS kernel is the reduction of algorithmic complexity.
Actually, we can take advantages of the Gram matrix sparsity to enhance train-
ing computation stage. Fig. 2-a shows the sparsity of the GCS Gram matrix.
Fig .2-b presents the rearrangement of the Gram matrix using a Cuthill-McKee
permutation which leads to a banded matrix [5]. Fig. 2-c presents computational
savings for the SVM training stage: it plots the complexity of the quadratic term
of the SVM dual problem with respect to the size of training sample n. The usual
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Fig. 2. (a)-(b) Symmetric reverse Cuthill-McKee permutation of sparse GCS Gram
Matrix for radius hyperparameter r = 0.4. (c) Complexity of quadratic term of the
SVM dual problem using banded matrix representation with respect to the size of
training sample.

computation leads to a quadratic complexity of O(n2), for each iteration. The
use of a sparse Gram matrix leads to a better complexity of O(nB(n)), where
B(n) < n is the bandwidth of the rearranged Gram matrix. Moreover, after
rearranging the Gram matrix, only the banded Gram matrix is kept in memory.

5 Experiments

Fig. 3. Image examples from the 6 classes used for experiments.

Figure 3 shows some images from Corel database that we used for exper-
iments. This database gathers 3200 images in 6 different classes. Images are
represented by 64-bin RGB color histogram. We compare 4 kernels namely:

Laplace kernel KLapl(x, y) = exp(− ‖xa−ya‖
σ

), Polynomial kernel KPoly(x, y) =
(1 + 〈xa · ya〉)d, KGCS defined by (4) and KCS = KGCSKLapl. The parameter a

applies a non-linear remapping of feature space which is shown to improve dras-
tically performances for image recognition task. We set a = 0.25 as in [6]. For
KGCS, we tune the radius r. For KCS, we set the radius to r = 4 such that we
obtain Gram matrix sparsity of 90%, then we tune the σ of inside KLapl. Table 2
shows that KGCS and KCS yield to similar results to KLapl which known as the
best kernel in the state of the art. Optimal radius of the GCS kernel does not
give sparse enough Gram matrices, however combined with KLapl, KCS has a
sparsity of 90%. Table 3 shows the class-confusion matrix obtained with KCS,
values on the diagonal gives the number of correctly classified images.



valid. err. test err.

KLapl 25.32±0.19 25.34±0.42

KGCS 25.19±0.30 25.07±0.64

KPoly 27.81±0.17 27.92±0.43

KCS 26.12± 0.37 25.30±0.44

Table 2. Validation and test errors comparisons for the different kernels on Corel
database.

Animals Birds Buildings Night scenes Roses Water scenes

Animals 536 104 80 69 128 99
Birds 25 62 2 17 35 24
Buildings 37 12 291 95 25 27
Night scenes 13 8 28 82 12 25
Roses 140 189 34 53 542 56
Water scenes 34 36 29 45 27 172

Table 3. Class-confusion matrix obtained for kernel KCS on Corel database.

6 Conclusion

In this paper, we have presented a new compactly supported kernel namely the
GCS kernel. The construction of this kernel is based on a geometric approach
using the intersection volume of two n-dimensional balls. Hence, the GCS kernel
can be viewed as the generalization of spherical kernels to higher dimensions. It
yields to good recognition performance when the radius is tuned similar to that
of Laplace kernel, however optimal radius does not lead to sparse Gram matrix.
To recover sparsity, we combine the GCS kernel and the Laplace kernel to obtain
an efficient kernel with a highly sparse Gram matrix of 90% of zeros.
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