
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Multiple Object Tracking using
K-Shortest Paths Optimization

Jérôme Berclaz, François Fleuret, Engin Türetken, and Pascal Fua, Senior Member, IEEE

Abstract—Multi-object tracking can be achieved by detecting objects in individual frames and then linking detections across frames.
Such an approach can be made very robust to the occasional detection failure: If an object is not detected in a frame but is in previous
and following ones, a correct trajectory will nevertheless be produced. By contrast, a false-positive detection in a few frames will be
ignored. However, when dealing with a multiple target problem, the linking step results in a difficult optimization problem in the space of
all possible families of trajectories. This is usually dealt with by sampling or greedy search based on variants of Dynamic Programming,
which can easily miss the global optimum. In this paper, we show that reformulating that step as a constrained flow optimization results
in a convex problem. We take advantage of its particular structure to solve it using the k-shortest paths algorithm, which is very fast.
This new approach is far simpler formally and algorithmically than existing techniques and lets us demonstrate excellent performance
in two very different contexts.

Index Terms—Data association, Multi-object tracking, K-shortest paths, Linear programming

F

1 INTRODUCTION

MULTI-OBJECT tracking can be decomposed into two
separate steps that address independent issues.

The first is time-independent detection, in which a pre-
diction scheme infers the number and locations of targets
from the available signal at every time step indepen-
dently. It usually involves either a generative model of
the signal given the target presence or a discriminative
machine learning-based algorithm. The second step re-
lies on modeling detection errors and target motions to
link detections into the most likely trajectories.

In theory, at least, such an approach is very robust
to the occasional detection failure. For example, false
positives are often isolated in time and can readily be
discarded. Similarly, if an object fails to be detected in a
frame but is detected in previous and following ones, a
correct trajectory should nevertheless be produced.

However, while it is easy to design a statistical tra-
jectory model with all the necessary properties for good
filtering, estimating the family of trajectories exhibiting
maximum posterior probability is NP-Complete. This
has been dealt with in the literature either by sampling
and particle filtering [1], linking short tracks generated
using Kalman filtering [2], or by greedy Dynamic Pro-
gramming in which trajectories are estimated one after
another [3]. While effective, none of these approaches

• J. Berclaz, E. Türetken and P. Fua are with the École Polytechnique Fédérale
de Lausanne, CH-1015 Lausanne, Switzerland.
E-mail: {jerome.berclaz, engin.turetken, pascal.fua}@epfl.ch

• F. Fleuret is with the Idiap Research Institute, CH-1920 Martigny,
Switzerland, and the École Polytechnique Fédérale de Lausanne, CH-1015
Lausanne, Switzerland.
E-mail: francois.fleuret@idiap.ch

This work is supported by the Swiss National Science Foundation (SNSF)
Sinergia project Aerial Crowds and by the SNSF under the National Centre
of Competence in Research (NCCR) on Interactive Multimodal Information
Management (IM2).

guarantees a global optimum. A notable exception is
a recent approach [4] that relies on Linear Program-
ming [5] to find a global optimum with high probability,
but at the cost of a priori specifying the number of
objects being tracked and restricting the potential set
of locations where objects can be found to those where
the detector has fired. The former is restrictive while the
latter is fine as long as the detector never produces false-
negatives but may lead to erroneous trajectories in the
more realistic case where it does.

By contrast, we show that reformulating the linking
step as a constrained flow optimization results in a
convex problem that fits into a standard Linear Program-
ming framework. This formulation, however, yields a
very large system that is hardly tractable using generic
Linear Programming solvers. Therefore, we then demon-
strate that, due to its particular structure, our prob-
lem can be solved very efficiently using the k-shortest
paths algorithm [6], which yields real-time performance
on realistically-sized problems. Our method does not
present any of the limitations mentioned above, nor does
it require an appearance model. The latter does of course
not mean that one should not be used if available but
making its use optional increases the range of applica-
bility of our approach. Moreover, it is far simpler both
formally and algorithmically than existing techniques
and we will show that it performs well in two difficult
real-world scenarios:

• Tracking multiple balls of similar color, which is a
case where an appearance model would not help;

• Tracking multiple people with multiple cameras
set at shoulder-level so that there are significant
occlusions.

In both cases, we use an object detector that produces a
probabilistic occupancy map, that is, a set of probabilities

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

of presence of objects at a discrete set of locations at
each time step independently. These probabilities may
of course be noisy and inaccurate. Our only assumptions
are that objects neither appear nor disappear anywhere
but at specified entrances and exits, do not move too
quickly, and cannot share a location with another object.
These assumptions are minimal and generally applica-
ble. We formulate the search for a map that obeys them,
while being as close as possible to the original one, as
a convex Linear Programming problem. Its solution is a
set of flows that are both consistent and binary so that
linking detections becomes trivial.

Our main contribution is two-fold: First, we introduce
a generic and mathematically sound multiple object
tracking framework, which only requires an occupancy
map from a detector as input. Very few parameters
need to be set and the algorithm handles unknown, and
potentially changing, numbers of objects while naturally
filtering out false positives and bridging gaps due to
false negatives. Second, we demonstrate that this Linear
Programming problem can be solved very effectively
using the k-shortest paths algorithm [6].

2 RELATED WORK

Multiple object tracking is an intensively studied area
of research. A wide range of approaches relies on the
recursive update of tracks with the most recent detec-
tions. For instance, Kalman filtering is an efficient way
to address multi-target tracking [7], [8], [9], [10], [11]
when the number of objects remains small. It is also well
suited for real-time applications. However, when the
number of objects increases, identity switches become
more frequent and are difficult to correct, due to the
recursive nature of the method. The work of [12], which
tracks multiple humans using the mean-shift algorithm,
also suffers from the same weakness.

Particle filtering can address some of the limitations of
Kalman filtering by exploring multiple hypotheses [13],
[1], [14], [15], [16], [17]. This technique has been used to
great effect to follow multiple hockey players [18] or to
track multiple people in the ground and image planes si-
multaneously [19]. In the same spirit, [20] relies on data-
driven MCMC to recover trajectories of targets using
a batch of observations. [21] applies a Probability Hy-
pothesis Density filter to tracking multiple objects from
noisy observations, and therefore falls into this family
of algorithms. Despite their success, in our experience,
those sampling-based methods typically require careful
tuning of several meta-parameters, which reduces the
generality of systems that rely on it. Besides, they usually
look at small time windows, because their state space
grows exponentially with the number of frames.

In an attempt to increase tracking reliability, some
methods rely on a hybrid approach. Detections are first
connected into short tracks, which are then linked to-
gether using a higher-level method. For example, [2]
relies on Kalman filtering to obtain basic tracks, and then

tries to merge and split the tracks using the Hungarian
algorithm. [22] explores the hierarchical version of the
same concept, while [23] uses a variant of AdaBoost to
automatically learn the best criterion for linking low-
level tracks together. Similarly, [24] turns observations
into trajectory segments using local PCA, and then links
those segments based on their spatial proximity and
smoothness constraints. [25] relies on mean-shift or par-
ticle filtering to generate tracklets from detection results.
In a second stage, it uses MCMC data association to com-
bine the tracklets into full tracks, and to automatically
estimate the best parameters for the model. [26] uses
a motion model and nearest neighbor to build tracks
out of heads detected from a top mounted calibrated
camera. The tracks thus generated are then merged and
split into the final trajectories using heuristics based
on overlap, directions and speed. [27] proposes another
method to tracklet generation in a crowded environment,
without however going all the way to combining them
into complete tracks. It detects multiple people and cre-
ates tracklets by applying Bayesian clustering on simple
tracked image features. By contrast, [28] concentrates on
the high level task. The authors assume that a track
graph has already been produced and focus on linking
identities in the provided track graph. They formulate
the multi-object tracking as a Bayesian network inference
problem and apply this method to tracking multiple
soccer players.

This class of methods is a good compromise: The 2-
stage architecture allows them to scale efficiently, while
at the same time taking into account a wider observation
window. However, while exhibiting good results in some
situations, those methods rely on an ad-hoc mathemati-
cal formulation, which does not guarantee convergence
to a global optimum. They are therefore prone to mis-
takes such as identity switches. To improve robustness to
wrong identity assignment, research has recently focused
on linking detections over a larger time window using
various optimization schemes. For example, [29] applies
graph cuts to extract trajectories from a batch of people
detections obtained using homographic constraints on
images from multiple cameras. [30] simultaneously op-
timizes detections and tracks, coupled into a Quadratic
Boolean Problem and solved by an EM algorithm.

Dynamic Programming [31] can be used to link mul-
tiple detections over time, and therefore solve the multi-
target tracking problem. Moreover, it can be extended
to enable the optimization of several trajectories simul-
taneously [32]. Unfortunately, the computational com-
plexity of such an approach can be prohibitive. While
efficient for very small state-space, it does not scale to
the size of problems we generally deal with. To over-
come this limitation, in earlier work [3] we sequentially
applied Dynamic Programming over individual trajec-
tories, which were assumed independent. While this
approach greatly reduces the optimization cost, it tends
to mix trajectories when the targets are densely located.
It is also quite sensitive to false negatives and exhibits

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

a tendency to ignore trajectories when the detection
information is not good enough. A different formulation
is chosen by [33], where a directed graph, with nodes
standing for actual detections, represents the multi-frame
point correspondence problem. A greedy optimization
algorithm is introduced to efficiently solve the problem,
but without a guarantee to find a global optimum.

By contrast, Linear Programming is an optimization
method that has been applied to find global optima
and solve the data association problem for airplane
radar tracking [34] or for multiple people tracking [4].
Starting from the output of simple object detectors, this
last approach builds a network graph in which every
node is an observation fully connected to future and
past observations, in much the same way as in [33].
Occlusions among objects are modeled by specifying
spatial conflicts between nodes. Additional nodes are
created to specifically handle occluded objects. Finally,
arc costs are chosen according to object appearances and
a motion model, and soft constraints are introduced to
ensure spatial layout consistency. A relatively similar
graphical model, with nodes representing detections,
is built by [35] for multi-people tracking. The global
optimum is searched using a min-cost flow algorithm,
which exploits the specific structure of the graph to reach
the optimum faster than Linear Programming.

Due to their reduced state-space, these methods are
computationally efficient. However, [4] requires a priori
knowledge of the number of objects to be tracked, which
seriously limits its applicability in real life situations.
Also, with a state-space only consisting of observations,
as opposed to all possible locations as in our approach,
they cannot smoothly interpolate trajectories when there
are false negatives. Finally, the choice of arc costs is
ad-hoc and involves many parameters, which have to
be tuned for each possible application, reducing the
generality of the methods. By contrast, our model is
far simpler, with the neighborhood size being the only
value that needs to be adapted. We optimize over the
entire space of locations for fine trajectory interpolation,
and deal with the large resulting size of our problem by
trading standard Linear Programming optimization for a
very efficient formulation based on the k-shortest paths
algorithm.

3 ALGORITHM

In this section, we first formulate multi-target tracking
as an Integer Programming (IP) problem. Although such
a problem is NP-hard in many cases, we show that a
relaxation of it as a Linear Program yields the optimal
solution, and hence the problem is solvable in polyno-
mial time. Despite our simple and clean formulation, the
large number of variables and constraints makes it only
tractable for small areas and short sequences. Thus, in a
second step, we demonstrate how the k-shortest paths
algorithm can be used to solve this problem much more
efficiently than generic Linear Programming solvers can.

TABLE 1
Notation

K number of spatial locations;
T number of time steps;
I = (I1, . . . , IT) captured images;

N (k) ⊂ {1, . . . ,K} neighborhood of location k;
eti,j directed edge from location i at time t to location j at

time t+ 1;
f ti,j estimated number of objects moving from location i at

time t to location j at time t+ 1;
mt

i estimated number of objects at location i at time t;
Mt

i random variable standing for the true number of ob-
jects at location i at time t;

F set of occupancy maps physically possible;
H set of flows physically possible, i.e. satisfying the

constraints of Eqs. 1, 2, 3, and 4.

3.1 Formalization

We discretize the physical area of interest into K loca-
tions, and the time interval into T instants. For any loca-
tion k, let N (k) ⊂ {1, . . . ,K} denote the neighborhood
of k, that is, the locations an object located at k at time
t can reach at time t+ 1.

To model occupancy over time, let us consider a la-
beled directed graph with K T vertices, which represents
every location at every instant. Its edges correspond to
admissible object motions, which means that there is one
edge eti,j from (t, i) to (t+ 1, j) if, and only if, j ∈ N (i).
To allow objects to remain static, there is always an edge
from a location at time t to itself at time t+ 1.

Each vertex is labeled with a discrete variable mt
i

standing for the number of objects located at i at time t.
Each edge is labeled with a discrete variable f ti,j standing
for the number of objects moving from location i at time
t to location j at time t + 1, as shown in Fig. 1(a). For
instance, the fact that an object remains at location i
between times t and t+ 1 is represented by f ti,i = 1.

Given these definitions, for all t, the sum of flows
arriving at any location j is equal to mt

j , which also is
the sum of outgoing flows from location j at time t. We
must therefore have

∀t, j,
∑

i:j∈N (i)

f t−1i,j︸ ︷︷ ︸
Arriving at j at t

= mt
j =

∑
k∈N (j)

f tj,k︸ ︷︷ ︸
Leaving from j at t

. (1)

Furthermore, since a location cannot be occupied by
more than one object at a time, we can set an upper-
bound of 1 to the sum of all outgoing flows from a given
location and impose

∀k, t,
∑

j∈N (k)

f tk,j ≤ 1 . (2)

A similar constraint applies to the incoming flows, but
we do not need to explicitly state it, since it is implicitly
enforced by Eq. 1. Finally, the flows have to be non-
negative and we have

∀k, j, t, f tk,j ≥ 0 . (3)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

k + 1

k

k − 1

1

K

...
...

Po
si

ti
on

...

f t
k,kf t−1

k,k
mt

k

... ...
.........

f t−1k−1,k

f
t−1
k+

1,k
f t
k,k+1

f
t
k,k
−1

N (k)

t− 1 t+ 1 t

Time
(a) Simplified flow model

t− 1 t t+ 1

mt
k N (k)

f t−1
j:k∈N (j),k f t

k,i∈N (k)

(b) Grid flow model

Fig. 1. (a) Simplified flow model, which does not use
virtual positions. Positions are arranged on one dimension
and neighborhood is reduced to 3 positions. (b) Flow
model used for tracking objects moving on a 2D grid, such
as in pedestrian tracking. For the sake of readability, only
the flows to and from location k at time t are printed.

In general, the number of tracked objects may vary
over time, meaning that objects may appear inside the
tracking area and others may leave. Thus, the total mass
of the system changes and we must allow flows to enter
and exit the area.

We do this by introducing two additional nodes υsource
and υsink into our graph, which are linked to all the
nodes representing positions through which objects can
respectively enter or exit the area, such as doors or
borders of the camera field of view. In addition, a flow
goes from υsource to all the nodes of the first frame, and
reciprocally a flow goes from all the nodes of the last
frame to υsink. We call υsource and υsink virtual locations,
because, as opposed to the other nodes of the graph, they
do not represent any physical location. The resulting
complete graph is shown in Fig. 2.

Finally, we introduce an additional constraint that
ensures that all flows departing from υsource eventually

υsink

0

1

2

Po
si

ti
on

0 1 2
Time

υsource

Fig. 2. A complete flow system for a simple graph
consisting only of 3 positions and 3 time frames. Here,
we assume that position 0 is connected to the virtual
positions and therefore a possible entrance and exit point.
Flows to and from the virtual positions are shown as
dashed lines.

end up in υsink∑
j∈N (υsource)

f tυsource,j︸ ︷︷ ︸
Leaving υsource

=
∑

k:υsink∈N (k)

f tk,υsink︸ ︷︷ ︸
Arriving at υsink

. (4)

Let M t
i denote a random variable standing for the true

presence of an object at location i at time t. The object
detector used to process the sequence provides, for every
location i and every instant t, an estimate of the marginal
posterior probability of the presence of an object

ρti = P̂ (M t
i = 1 | It) , (5)

where It is the signal available at time t. For the multi-
camera pedestrian-tracking application described in § 4,
It denotes the series of pictures taken by all the cameras
at time t.

Let m be an occupancy map, that is a set of occupancy
variables mt

i, one for each location and for each instant.
We say that m is feasible if there exists a set of flows f tk,j
that satisfies Eqs. 1, 2, 3, and 4, and we define F the set
of feasible maps. Our goal then becomes solving

m∗ = argmax
m∈F

P̂ (M = m | I) . (6)

Assuming conditional independence of the M t
i , given

the It, the optimization problem of Eq. 6 can be re-
written as

m∗ = argmax
m∈F

log
∏
t,i

P̂ (M t
i = mt

i | It) (7)

= argmax
m∈F

∑
t,i

log P̂ (M t
i = mt

i | It)

= argmax
m∈F

∑
t,i

(1−mt
i) log P̂ (M

t
i = 0 | It)

+mt
i log P̂ (M

t
i = 1 | It) (8)

= argmax
m∈F

∑
t,i

mt
i log

P̂ (M t
i = 1 | It)

P̂ (M t
i = 0 | It)

(9)

= argmax
m∈F

∑
t,i

(
log

ρti
1− ρti

)
mt
i , (10)

where Eq. 7 is true under the assumption of conditional
independence of the M t

i given It, Eq. 8 is true because

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

mt
i is 0 or 1 according to Eq. 2, and Eq. 9 is obtained by

ignoring a term which does not depend on m. Hence,
the objective function of Eq. 10 is a linear expression of
the mt

i.

3.2 Linear Programming Formulation
The formulation defined above translates naturally into
the Integer Program

Maximize
∑
t,i

log

(
ρti

1− ρti

) ∑
j∈N (i)

f ti,j

subject to ∀t, i, j, f ti,j ≥ 0

∀t, i,
∑

j∈N (i)

f ti,j ≤ 1

∀t, i,
∑

j∈N (i)

f ti,j −
∑

k:i∈N (k)

f t−1k,i ≤ 0

∑
j∈N (υsource)

fυsource,j −
∑

k:υsink∈N (k)

fk,υsink
≤ 0 .

(11)

In this system, the optimization is carried out with
respect to the flows f ti,j rather than the occupancies
mt
i, because there is no natural way to express the

flow continuity constraints in terms of the latter. This is
equivalent to maximizing the objective function of Eq. 10
because ∀t, j,mt

j =
∑
k∈N (j) f

t
j,k.

Note that the constraints of Eqs. 1, 2, 3, and 4 are
expressed as inequalities, to have the linear program in
canonical form. This new formulation is strictly equiva-
lent to the original one and no additional constraint is
needed. The inequalities are indeed sufficient to ensure
that no flow can ever appear or disappear within the
graph.

Under this formulation, our Integer Program can be
solved by any generic LP solver. However, due to the
very large size of our problem, this solution would
hardly be practical, as IP solving is NP-complete. The
usual workaround is to relax the integer assumption and
solve a continuous Linear Program instead, which has
polynomial-time average-case complexity. The drawback
of this method is that the Linear Program is unlikely to
converge to the optimal solution of the original IP.

In our case, however, the relaxed Linear Program
always converges towards an integer solution because
its constraint matrix exhibits a property known as total
unimodularity, as will be shown in Appendix A. As
a consequence, we could use a generic LP solver to
optimize our multi-target tracking framework. However,
this approach would only be tractable for moderately
sized problems, and does not scale to most practical
applications. Therefore, in the next section, we introduce
a more efficient optimization scheme, which takes into
account the specificity of our problem to tremendously
reduce the complexity.

3.3 K-Shortest Paths Formulation
The relaxation of the original integer problem yields
a large scale LP problem, which can be solved by

generic LP solvers, that, in general, rely on variants
of the Simplex algorithm [5] or interior point based
methods [36]. However, these algorithms do not make
use of the specific structure of our problem and have
very high worst case time complexities. In the following,
we show that this complexity can be drastically reduced
by reformulating the problem as a k shortest node-disjoint
paths problem on a directed acyclic graph (DAG).

Given a pair of nodes, namely the source υsource and
the sink υsink, in a graph G, the k-shortest paths problem
is to find the k paths {p1, . . . , pk} between these nodes,
such that the total cost of the paths is minimum. The
problem is well-studied in the network optimization
literature and the results have been widely applied in
the field of network connection routing and restoration.
There exists many variants of the algorithm, each tar-
geted at a specific problem instance 1.

In our specific case, we are interested in the partic-
ular instance where the graph is directed and paths
are both node-disjoint - i.e. two separate paths cannot
share the same node - and node-simple - i.e. a path
visits every node in the graph at most once. We use
the graph structure with a single source and a single
sink illustrated by Fig. 2. Any path between υsource
and υsink in this graph represents the flow of a single
object in the original problem along the edges of the
path. The node-disjointness constraint means that no
location can be shared between two paths, hence two
objects. This is thus equivalent to the constraint of Eq. 2.
Moreover, by only looking for paths between the source
and sink nodes, we ensure that no flow can ever be
created nor suppressed anywhere in the graph but at the
virtual locations. This enforces the constraints of Eqs. 1
and 4. Finally, the node-simple characteristic of the paths
simply stems from the fact that our graph is a DAG,
hence acyclic.

A directed edge eti,j from location i at time t to location
j at time t+ 1 is assigned the cost value

c(eti,j) = − log

(
ρti

1− ρti

)
. (12)

The cost value of the edges emanating from the source
node is set to zero to allow objects to appear at any
entrance position and at any time instant at no cost. We
formulate our problem as a minimization problem by
negating the objective function of Eq. 11.

Let H denote the set of feasible solutions of the original
LP formulation of Eq. 11, satisfying the constraints given
in Eq. 1, 2, 3, and 4. Then, the optimal solution f∗ of the
k-shortest paths problem can be written as

f∗ = argmin
f∈H

∑
t,i

c(eti,j)
∑

j∈N (i)

f ti,j , (13)

where c(eti,j) represents the cost of the edge eti,j defined
in Eq. 12. Note that any node-disjoint k paths between

1. for a complete list of references, see the online bibliography at
http://liinwww.ira.uka.de/bibliography/Theory/k-path.html

http://liinwww.ira.uka.de/bibliography/Theory/k-path.html

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

υsource and υsink with arbitrary k is in the feasible set
of solutions H. In addition, any solution in H can be
expressed as a set of k node-disjoint paths.

Let p∗i be the shortest path computed at the ith itera-
tion of the algorithm and Pl = {p∗1, . . . , p∗l } be the set of
all l shortest paths computed up to iteration l. We start
by finding the single shortest path in the graph p∗1 and
compute its total cost

cost(p∗l) =
∑

eti,j∈p∗l

c(eti,j) . (14)

We then compute iteratively the l-shortest paths for l =
2, 3, 4, . . ., and for each l, we calculate the total cost of
the shortest paths

cost(Pl) =

l∑
i=1

cost(p∗i) . (15)

At each new iteration l + 1, the total cost cost(Pl+1) is
compared to the cost at the previous iteration cost(Pl).
The optimal number of paths k∗ is obtained when the
cost of iteration k∗+1 is higher than the one of iteration
k∗. The procedure is summarized by the pseudo-code of
Algorithm 1, in Appendix B.

To compute such k-shortest paths, we use the disjoint
paths algorithm [6], which is an efficient iterative method
based on signed paths. For the sake of completeness, we
give a brief description of this algorithm in Appendix B.

The equivalence of the LP and the k-shortest paths
formulations follows from the exact procedure we use
to select an optimal k such that the objective function is
minimized. Since path costs are monotonically increas-
ing

cost(p∗i+1) ≥ cost(p∗i) ∀i , (16)

the total cost function cost(Pl) is convex with respect to l.
Therefore, the global minimum is reached when cost(p∗i)
changes sign and becomes non-negative

cost(Pk∗−1) ≥ cost(Pk∗) ≤ cost(Pk∗+1) . (17)

This is set as the stopping criterion of the algorithm, as
presented in Algorithm 1. Finally, among the set of all
consecutive values that may satisfy the above condition,
we select the smallest one to avoid erroneous splitting
of paths.

As discussed in Appendix B, the worst case complex-
ity of the algorithm is O(k(m+n · log n)), where k is the
number of objects appearing in a given time interval,
m is the number of edges and n the number of nodes
in the final transformed graph. This is more efficient
than the min-cost flow method of [35], which exhibits
a worst case complexity of O(kn2m log n). Furthermore,
due to the mostly acyclic nature of our graph, the
average complexity is almost linear with the number of
nodes, which is reflected by our experimental results in
Fig. 7(b). This is much faster than general LP solvers,
and a speed gain of up to a factor 1,000 can be expected,
as illustrated by the run time comparison in §4.10.

3.4 Batch Processing and Complexity Reduction

Processing a whole video sequence is possible but im-
practical for applications such as broadcasting, in which
the result must be supplied quickly. When dealing with
such cases, we split the sequence in batches of 100
frames, which yields good results and can be done
in real-time. This results in a constant 4-second delay
between input and output, which is nevertheless com-
patible with many applications.

To enforce temporal consistency across batches, we
add the last frame of the previously optimized batch to
the current one. We then force the flows out of every
location of this frame to sum up to the location’s value
in the previous batch

∀k ∈ {1, . . . ,K},
∑

j∈N (k)

f−1k,j = µk, (18)

where µk is the score at location k of the last frame of
the previous batch and f−1k,j is a flow from location k of
the last frame of the previous batch to location j in the
first frame of the current batch. This is implemented as
an additional constraint in our framework.

Further reducing the system’s size might be needed
for extremely large problems, to limit their time and
memory consumption. It could be achieved by pruning
the detection graph. Since most of the probabilities of
presence estimated by the detector are virtually equal to
zero, we can use this sparsity to reduce the number of
nodes to consider in the optimization, thus reducing the
computational cost.

Formally, for every position k and every frame t, we
check the maximum detection probability within a given
spatio-temporal neighborhood

max
‖j−k‖<τ1

t−τ2<u<t+τ2

ρuj . (19)

If this value is below a threshold, the location is con-
sidered not reachable by an object with any reasonable
level of probability. All flows to and from it are then
removed from the model. Applying this method would
reduce the number of variables and constraints up to an
order of magnitude. In the examples presented in this
paper, we have not found it necessary to do so.

3.5 Algorithm Output

Estimating the f ti,j indirectly provides the mt
i values and

the feasible occupancy map m∗ of maximum posterior
probability. This data can be used as a cleaned up version
of the original occupancy map, in which most false posi-
tives and negatives have been filtered out. However, the
f ti,j themselves provide, in addition to the instantaneous
occupancy, estimates of the actual motions of objects.
From these estimated flows of objects, one can follow
the motion back in time by moving along the edges
whose f ti,j are not 0, and build the corresponding long
trajectories.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

4 RESULTS
In this section, we present results in two very different
contexts. First, we use a multi-camera setup in which the
cameras are located at shoulder level to track pedestrians
who may walk in front of each other. The frequent
occlusions between people produce noisy detections,
which our algorithm nevertheless links very reliably. As
a result, our approach was shown to compare favorably
against other state-of-the-art algorithms in the PETS 2009
evaluation [37]. Second, to highlight the fact that we
do not depend on an appearance model, we track sets
of similar-looking bouncing balls seen from above. In
both cases, we compare our results to those of our
earlier tracking method based on sequential Dynamic
Programming [3], and show that we can obtain good
results even when using a single camera.

4.1 PETS 2009 Evaluation
The results of our approach on the PETS 2009 S2/L1
multi-camera sequence have been submitted to the
Winter-PETS 2009 workshop. The results of this com-
parative evaluation are presented in [37] and illustrated
by Fig. 3. They show that, for the tracking task, our
current approach outperforms the other submitted meth-
ods. Furthermore, our earlier Dynamic Programming
based approach [3] is also shown to perform well. In
the remainder of this section, we thus use this previous
approach as the baseline, and extensively compare our
new algorithm against it.

Fig. 3. Winter-PETS 2009 [37] results comparison chart,
showing the performance of various tracking methods
on the S2/L1 sequence. The results are evaluated with
the CLEAR (MODA, MODP, MOTA and MOTP, described
below) and VACE metrics [38] (SODA, SFDA and ATA). In
the chart, our algorithm is referred to as ‘Berclazlp’ and
our earlier approach based on dynamic programming as
‘Berclazdp’. Figure courtesy of James Ferryman and Ali
Shahrokni from the University of Reading.

4.2 Test Data
Our main data set consists of a series of multi-camera
video sequences of pedestrians. The chosen locations
for data acquisition include various environments: a
crowded outdoor terrace, an indoor basketball court as
well as a very difficult dark underground passageway.
Additionally, we also perform our own detailed evalua-
tion on a sequence from the PETS 2009 [39] data set.

4.2.1 Laboratory sequence
This 3 1/2-minute outdoor sequence consists of up to
9 people appearing one after the other, and walking in
front of the cameras. It tests the ability of our algorithm
to cope with a moderately crowded environment.

4.2.2 Basketball sequence
This sequence involves 10 basketball players in a game
on half a basketball court. It is a difficult sequence with
fast moving people and many occlusions.

4.2.3 Passageway sequences
These sequences involve several people passing through
a public underground passageway. They are very chal-
lenging for several reasons. First, lighting conditions are
very poor, which is typical in real-world surveillance
situations. A large portion of the images is either under-
exposed or saturated. Second, the area covered by the
system is large, and people get very small on the far
end of the scene, making their precise localization chal-
lenging. Finally, large parts of the scene are filmed by
only two or even a single camera.

All these difficulties greatly affect the quality of the
probabilistic occupancy maps we use as input and the
detection maps can get very noisy, with some people
poorly localized or ignored over significant numbers of
frames. On these noisy sequences, if we were to detect
people by simply thresholding the maps in individual
frames, the true positive rate would drop to 70% to 80%,
thus making the linking task challenging.

4.2.4 PETS 2009 sequence
This sequence was filmed at a road corner of a university
campus and involves about 10 people. Important light
changes between the background model and the se-
quence, as well as precision issues in camera calibration
make the people detection results noisy. Moreover, the
sequence was acquired at a low frame rate of 7 fps,
which creates an additional difficulty, since people can
move significantly from one frame to the next.

4.2.5 Camera setup
In the first three pedestrian environments, the scene was
filmed by 4 DV cameras with overlapping fields of view,
each of which placed in a corner of the monitored area.
The video format is DV PAL, down-sampled to 360×288
pixels at 25 fps and the 4 video streams were synchro-
nized manually after data acquisition. The dimensions
of the four areas are summarized by Table 2.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

TABLE 2
Dimensions of the areas used for pedestrian tracking.

Scene dimensions grid size locations
Laboratory 7m×10m 30×45 1,350
Basketball 15m×14m 47×50 2,350

Passageway 12m×30m 40×100 4,000
PETS 09 18.5m×20m 56×61 3,416

The PETS 2009 sequence was filmed by seven cameras:
three dedicated video surveillance cameras and four
DV cameras. The DV cameras were placed at about 2
meters above the ground, whereas the video surveillance
cameras were located between 3 to 5 meters above it, and
significantly farther from the scene. The frame rate for all
cameras was set to 7 fps. Due to calibration imprecision,
only five out of the seven available camera views were
used for people detection.

Our second data set consists of two video sequences in
which 24 table tennis balls were thrown on the ground.
Those were filmed by a single DV camera, placed about
1.5m above the ground. The videos were cropped to a
resolution of 600×400 pixels, and the corresponding area
was discretized into a grid of 60×40 locations.

4.3 Probabilistic Occupancy Map

We used the publicly available implementation [40] of
our earlier Probabilistic Occupancy Map (POM) algo-
rithm [3] to create the detection data needed as input
by our tracker.

This method first performs binary back-
ground/foreground segmentation in all images taken
at the same time and then uses a generative model to
estimate the most likely locations of targets given the
observed foreground regions. More precisely, it relies on
a decomposition of the space of possible object positions
into a discrete grid. Then, at every time frame t, and for
every location i of the grid, it produces an estimate ρti of
the marginal posterior probability of presence of a target
at that location, given all input images captured at that
instant. POM specifically estimates the ρti such that the
resulting product law closely approximates the joint
posterior distribution, which justifies the assumption of
conditional independence in Eq. 7.

In the multi-camera setup for which POM was de-
signed, the grid of positions models the ground plane
on which people walk, and is made of square elements
of typically 30 cm × 30 cm. Correspondence between
camera and top views is ensured through camera cal-
ibration. The generative model at the heart of POM
represents people as cylinders that project to rectangles
in the images.

Note that, in our model, the resolution of the ground
grid is independent of the target’s size. If grid cells are
smaller than a target, the spatial precision of detections is
improved at the cost of increased computation time, but
the detections do not spread over several cells. In effect,
POM implicitly performs a non-maximum suppression:

The best fitted position receives a high probability while
surrounding locations are considered as empty. As a
result, POM occupancy maps are normally peaky, which
is what our linking algorithm expects.

To process the monocular sequence of bouncing balls,
we slightly modified the original POM code to represent
the balls as squares and work directly in the top view,
without having to project from oblique images into it.

4.4 Baseline

We compare our new algorithm to our previous sequen-
tial Dynamic Programming approach [3]. It involves es-
timating likely trajectories one after another in a greedy
way using a standard Dynamic Programming procedure.
The most likely trajectories are selected first and, once a
trajectory has been found, the corresponding locations
are removed from consideration. Note that the results
reported in [3] were obtained with both a motion and
an appearance model, while our results rely only on
the very weak motion model implied by the graph’s
connectivity. For a fair comparison against our new ap-
proach, the method was applied both with and without
its appearance model in the evaluation of Figs. 4 and
5. As expected, the appearance model slightly improves
Dynamic Programming’s results. In the rest of this sec-
tion we refer to our Linear Programming framework
solved using the k-shortest paths algorithm as ‘KSP’ and
to the sequential Dynamic Programming as ‘DP’.

4.5 Evaluation Metrics

To quantify our results, we manually labeled some of
the test sequences. We marked both the position of the
people and their identity, to be able to detect identity
switches. The same process was used to label the ball
sequences. Our ground truth data therefore consists of:
• two ball sequences of approximately 1,000 frames

each, labeled once every 3 frames;
• the 800-frame long PETS 2009 sequence S2/L1, la-

beled once every 5 frames;
• 4 video sequences from the passageway data set,

measuring respectively 2,500, 800, 900 and 800
frames, and labeled once every 25 frames;

• the laboratory sequence of 5,000 frames, labeled
once every 25 frames.

Our results are evaluated using the standard CLEAR
metrics: Multiple Object Detection Accuracy and Precision
(MODA and MODP), as well as Multiple Object Track-
ing Accuracy and Precision (MOTA and MOTP). The
detection precision metric (MODP) roughly gauges the
quality of the bounding box alignment, in case of correct
detection, while its accuracy counterpart (MODA) eval-
uates the relative number of false positives and missed
detections. The tracking metrics also take the identity of
detections into account: MOTP evaluates the alignment
of tracks with the ground truth, and MOTA produces
a score based on the amount of false positives, missed

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

detections, and identity switches. These metrics have
become standard for evaluation of detection and tracking
algorithms, and we refer the interested reader to [41],
[38] for more detailed descriptions and motivations.

4.6 Pedestrian Tracking Results

For pedestrians tracking, we define the graph of Fig. 1(a)
as follows: Every interior location of the ground plane at
time t is linked to its 9 direct neighbors at time t+1, as il-
lustrated by Fig. 1(b), which means that a pedestrian can
only move from one location to its immediate neighbors
in a consecutive frame. Border locations through which
access to the area is possible are connected to the virtual
locations υsource and υsink. This arrangement is consistent
with our chosen grid quantization at 25 fps. It even suits
the 7 fps PETS 2009 sequence, since the pedestrians do
not move fast. To deal with an even lower frame rate, or
faster moving objects, we could extend the neighborhood
size, as we do in §4.8 to track table tennis balls. Detection
results for all evaluated sequences are shown on Fig. 4,
and tracking results on Fig. 5.

Since both DP and KSP link POM detections together,
their precision score rarely exceeds the one of POM itself,
although it may happen that the interpolation performed
by the trackers corrects some misalignment of POM,
such as in the laboratory sequence of Fig. 4.a. However, in
both detection and tracking precision, KSP almost always
scores significantly higher than DP.

Detection accuracy varies across sequences, depend-
ing on their difficulty. The passageway sequences, for
instance, have lower accuracy than other sequences, due
to their poor image quality. So does the monocular PETS
sequence, because of the lack of precision resulting from
the use of a single camera. Despite these variations,
KSP’s detection accuracy is always higher than POM.
By accurately linking detections together, while discard-
ing isolated alarms, KSP efficiently filters the detections
results, thus decreasing both false positive and missed
detection counts. On the other hand, DP’s accuracy is
often lower than POM, because of its tendency to ignore
trajectories with missing detections. Note how the gap
between KSP and DP generally widens as POM score
gets lower, on Figs. 4 and 5. Both tracking methods deal
efficiently with good detection results, but KSP proves
much more robust than DP when the detection quality
gets worse.

Recall that the occupancy maps are KSP’s only in-
put. The algorithm does not use any other source of
information, such as the original images. Conversely, DP
maintains a color model per tracked individual learned
from images, in addition to the occupancy maps. In
other words, KSP produces better results, even though
it requires less information. This is valuable, because,
in some situations such as the ball tracking presented
below, appearance models cannot be depended upon.
Typical tracking results are illustrated by Fig. 8.

 0

 0.2

 0.4

 0.6

 0.8

 1

balls #1

balls #2

PETS 09

PETS 09

m
onocular

passagew
ay #1

passagew
ay #2

passagew
ay #3

passagew
ay #4

laboratory

POM

Sequential Dynamic Programming without appearance

Sequential Dynamic Programming

K−Shortest paths

(a) MODP

 0

 0.2

 0.4

 0.6

 0.8

 1

balls #1

balls #2

PETS 09

PETS 09

m
onocular

passagew
ay #1

passagew
ay #2

passagew
ay #3

passagew
ay #4

laboratory

POM

Sequential Dynamic Programming without appearance

Sequential Dynamic Programming

K−Shortest paths

(b) MODA

Fig. 4. Detection precision (MODP) and accuracy
(MODA) measures applied to the results of the original
detections (POM), the sequential Dynamic Programming
(DP) - with and without appearance model - and the
proposed (KSP) trackers on various sequences.

4.7 Monocular Pedestrian Results

To further emphasize the strength of our approach, we
generated the detection maps using only one of the 7
available views of the PETS data set. Although POM
still works on monocular sequences, ground plane lo-
calization is less precise: Without views from different
angles, there is a depth ambiguity when estimating
a pedestrian’s position. Also, in the monocular case,
occlusions often result in missed detection.

Under these challenging conditions, our algorithm
shows its superiority over the sequential Dynamic Pro-
gramming, even more clearly than in the multi-camera
case. This is illustrated by Figs 4 and 5. In this context,
DP’s greedy strategy often leaves people outside the grid
instead of trying to explain their very noisy detections.
By contrast, KSP’s joint optimization pays off and inter-
polates trajectories nicely. Monocular tracking results are
depicted by Fig. 9.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

 0

 0.2

 0.4

 0.6

 0.8

 1

balls #1

balls #2

PETS 09

PETS 09

m
onocular

passagew
ay #1

passagew
ay #2

passagew
ay #3

passagew
ay #4

laboratory

Sequential Dynamic Programming without appearance

Sequential Dynamic Programming

K−Shortest paths

(a) MOTP

 0

 0.2

 0.4

 0.6

 0.8

 1

balls #1

balls #2

PETS 09

PETS 09

m
onocular

passagew
ay #1

passagew
ay #2

passagew
ay #3

passagew
ay #4

laboratory

Sequential Dynamic Programming without appearance

Sequential Dynamic Programming

K−Shortest paths

(b) MOTA

Fig. 5. Tracking precision (MOTP) and accuracy (MOTA)
measures applied to the results of the sequential Dynamic
Programming (DP) - with and without appearance model
- and the proposed (KSP) trackers on various sequences.

4.8 Ball Tracking Results

Given the difference in grid scale, the balls move much
faster than pedestrians, and can cross more than one
grid location between consecutive frames. To deal with
this environment, we thus had to extend the location
neighborhood to include the next closest 49 locations,
which increases the maximum distance traveled between
consecutive frames to 3 grid locations.

Detection and tracking results for the two ball se-
quences are also illustrated on Figs 4 and 5, while screen
shots are shown on Fig. 10. Detecting ping-pong balls is
not a particularly difficult task, and thus POM’s results
are generally excellent, with very few false positives
and false negatives. Because all balls have exactly the
same appearance, DP’s color model is useless and the
comparison between the two algorithms is fair. As for
the pedestrian environment, KSP outperforms DP on
all 4 metrics. Here again, DP’s greedy strategy is a
disadvantage. Because it might be less costly to ignore
some isolated detections, DP tends to leave out too many
of them.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

M
O

D
A

artificial false positive rate (in %)

 DP
 KSP

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

M
O

D
A

artificial false negative rate (in %)

 DP
 KSP

(b)

Fig. 6. Artificially increasing the number of detection
false positives (a) and false negatives (b), expressed as a
percentage on the x-axis of the graphs.

4.9 Failure Modes
Our tracking algorithm can be mainly affected by two
elements: false detections, and missing ones. To quantify
the effect of both types of detection error, we carried out
the following experiment. We selected a 1,000-frame ex-
cerpt of the laboratory sequence showing high detection
accuracy, and added various levels of random detection
noise uniformly. We also randomly deleted detections
from the same original sequence. That way, we artifi-
cially generated controlled amounts of false positives
and false negatives. The sequences thus generated were
then processed by both DP and KSP tracking methods,
and evaluated using a known ground truth.

The results of this evaluation are presented on Fig. 6.
The graph of Fig. 6(a) shows that KSP is more sensitive
to false positives than DP. Beyond a density value, KSP
is able to readily link false detections into - seemingly -
coherent trajectories. Here, KSP’s lack of motion model
is a disadvantage over DP. Conversely, DP’s tendency to
leave out incomplete trajectories makes it more robust to
this kind of noise. The graph of Fig. 6(b) shows the effect
of missed detections. Both trackers react the same way:
Beyond a false negative rate, the remaining detections
are no longer linked together and remain unexplained.
KSP shows nevertheless a much higher robustness to
missed detections than DP does. This is consistent with
our observations on real data: On Figs. 4 and 5, the
difference between DP and KSP performance is usually
larger when POM’s occupancy maps have low accuracy.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Another problem to which our method is potentially
vulnerable is identity switch. Since we rely entirely on
detection data and do not use any appearance infor-
mation nor complex motion model, there is no way to
distinguish two trajectories intersecting. In practice, we
do not suffer much from this, because most of the time,
the objects evolve outside of each other’s neighborhood.
Moreover, the joint optimization of all trajectories pays
off in this regard, as opposed to DP’s greedy strategy.

4.10 Run time
Finally, we evaluate the speed of our new tracking
algorithm. Solving the Linear Program with standard LP
libraries [42] is slow, as evidenced by the curve labeled
LP on the graph of Fig. 7(a). Using the complexity
reduction method of §3.4 decreases the computation time
by a factor of 10, as shown by the curve labeled LP w/
compl. red. Here, we pruned the graph by a radius of
τ1 = τ2 = 3 (see Eq. 19).

By contrast, KSP is much faster: As illustrated on
Fig. 7(a), there is a considerable speed gain of a factor
100 to 1,000, compared to the generic LP solver [42]. And
the gain is still very significant when compared to the
LP solver using complexity reduction methods.

Compared to the DP algorithm, KSP is about 10 times
faster. DP suffers from having to load videos, in order to
maintain its appearance models, and from its redundant
batch processing [3]. Interestingly, when dealing with
25 fps videos, KSP can in average process a batch of
frames in less than half the time it takes to play it. This
means that for a frame rate of 25 fps or less, our tracker
can readily operate in real time.

Figure 7(b) illustrates the grid size influence on run
time of both DP and KSP. Applying POM on a 200-
frame excerpt of the laboratory sequence, we generated
occupancy grids of different resolutions, which were
then processed by the two tracking algorithms. Results
show a linear dependency on the grid size, which is
consistent with the average complexity of k-shortest
paths.

All the above experiments have been performed on
a recent Linux PC, equipped with a 2.5 GHz Intel
processor and 8 GB of memory. Tracking was applied
to a part of the laboratory sequence, in which 5 to 7
people are present. For the k-shortest path, no particular
optimization was performed, nor did we use any of the
complexity reduction methods of §3.4. The results of DP
and KSP on Fig. 7 are the average of 20 runs, plotted
with 95% confidence interval. This is barely noticeable
because the values are very peaked around the average.

Finally note that, whether solved with a generic LP
package or the k-shortest paths algorithm, our frame-
work always produces the exact same results, but KSP
allows to obtain them much faster.

5 CONCLUSION
Combining frame-by-frame detections to estimate the
most likely trajectories of an unknown number of targets,

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 500 1000 1500 2000

R
u
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Frames

 KSP
DP
LP

LP w/ compl. red.

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1000 2000 3000 4000 5000 6000

R
u
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Ground cells

 KSP
DP

(b)

Fig. 7. (a) Run time comparison between our framework
solved with a generic LP package (LP), our framework
with a pruned graph solved with a generic LP package (LP
w/ comp. red.), our framework solved with the k-shortest
paths algorithm (KSP) and our earlier Dynamic Program-
ming method (DP). Note that the y axis represents run
time and is plotted in log scale. (b) Both DP and KSP
algorithms scale almost linearly with the grid size.

including their entrances and departures to and from
the scene, is one of the most difficult components of a
multi-object tracking algorithm. We have shown that by
formalizing the motions of targets as flows along the
edges of a graph of spatio-temporal locations, we can
reduce this difficult estimation problem to a standard
Linear Programming one. By relying on the k-shortest
paths algorithm for the optimization of our problem,
we could reduce the complexity to a tiny fraction of the
one from the original LP problem, yielding an efficient
algorithm performing robust multi-object tracking in real
time on a standard computer.

The resulting algorithm is far simpler than current
state-of-the-art alternatives and its convexity ensures
that a global optimum can be found. It obtains a bet-
ter performance than a state-of-the-art method on dif-
ficult real-word applications, in spite of having access
to a more limited signal and requiring fewer meta-
parameters. Future work will focus on integrating ad-
ditional cues to our framework, such as an appearance
or a motion models, to robustly handle identities of
intersecting trajectories.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Fig. 8. Multi-camera pedestrian tracking results in various environments. Each of the first four columns shows a
different camera view. The fifth column displays the top view. The first row comes from the laboratory sequence, the
2nd from the basketball environment, the 3rd from the passageway, and the last one from PETS 2009.

Fig. 9. Monocular pedestrian tracking results, from the PETS 2009 sequence.

APPENDIX A
BOOLEAN NATURE OF THE SOLUTIONS OF THE
RELAXED LP PROBLEM
In this appendix, we prove that, in our problem, the
Relaxed Linear Program always converges to the optimal
solution of the original Integer Program. For the sake of
the proof, we rewrite Eq. 11 in matrix form as

Maximize
∑
t,i

log

(
ρti

1− ρti

) ∑
j∈N (i)

f ti,j ,

subject to f ≥ 0

C · f ≤ [1, . . . , 1, 0, . . . , 0]
T
,

(20)

where f is the vector of all possible flows, and the matrix
C is known as the constraint matrix and is depicted by
Fig. 11.

The set {x : C · x ≤ b, x ≥ 0} is known as the polytope
of feasible solutions, and the optimal solution of the LP

problem is to be found on its boundaries. In fact, except
in degenerate cases where there are multiple solutions,
only one of the vertices of the polytope represents the
optimal solution. And even in degenerate cases, at least
two of them are polytope vertices.

We use this formulation and the very specific form
of the C matrix to prove that the coordinates of those
vertices must all be either zero or one, which means the
relaxed version of our problem always converges to the
optimal solution of the original IP. We first give a couple
of theorems that state that the solutions of a LP problem
always are integer values, provided that

1) the constraint matrix exhibits the total unimodularity
property, and

2) the right hand sides of the constraints are integers.

We then show that the C matrix of Eq. 20 is indeed
totally unimodular, which in our case means that the
solutions must be either zero or one.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Fig. 10. Multiple ball tracking results. Successive screenshots are separated by 3 time frames.

A.1 Integral Nature of the Solutions

A rectangular matrix is said to be totally unimodular if
all its square submatrices have determinant 0, -1, or 1.
The following two theorems hold for such matrices, as
shown in [43] and [44] respectively.

Theorem 1: A matrix A = {aij} ∈ Zm×n is totally
unimodular if and only if for every subset R ⊆ {1, ...,m}
of rows, there exists a partition R = R1∪R2, R1∩R2 = ∅
such that

∀j = 1, ..., n
∑
i∈R1

aij −
∑
i∈R2

aij ∈ {0,−1, 1}. (21)

Theorem 2: If C is a totally unimodular matrix, then
the vertices of the polytope {x : Cx ≤ b, x ≥ 0} are
integral, that is, have integer coordinates, for any integral
vector b.
Recall that, except in degenerate cases, the solution of
our LP is one of the vertices of the polytope of feasible
solutions. Therefore, if the C matrix of Eq. 20 is totally
unimodular, the vertices of the polytope must have
coordinates either zero or one since, in addition to being
integer, they must be between zero and one.

A.2 Total Unimodularity of the Constraint Matrix

We now turn to proving that C is totally unimodular. To
this end, as depicted by Fig. 11, we split the rows of C
into two subsets U1 and U2 that respectively correspond
to the upper bound on flow and conservation of flow
constraints:

U1 : {
∑
j∈N (i) f

t
i,j ≤ 1} , ∀t, i (22)

U2 : {
∑
j∈N (i) f

t
i,j −

∑
k:i∈N (k) f

t−1
k,i ≤ 0} , ∀t, i∑

j∈N (υsource)
fυsource,j −

∑
k:υsink∈N (k) fk,υsink ≤ 0 (23)

Without loss of generality, the columns of C can be
ordered in a time-augmented fashion, such that the first
column belongs to the first time frame and the last
belongs to the last time frame T . In the sketch on Fig. 11,
two rows corresponding to two different constraints are
explicitly illustrated for a node u appearing at location j
of time frame t. The two boxes that include a sequence
of 1 and 0 correspond to the set of outgoing edges from
node u. Similarly, the box with −1 and 0 correspond
to the set of all incoming edges to the node (i.e., for a
location i at time t − 1, the corresponding entry of the
matrix for node u is −1 if j ∈ N (i) or else 0).

Fig. 11. A sketch of the constraint matrix C of the LP.

Let us also define f =
[
f11,1, . . . , f

T
K,K

]T as the vector
containing all the flow values. The non-trivial constraints
from (11), can be written in matrix format

C · f ≤ [1, . . . , 1, 0, . . . , 0]
T
. (24)

Let CR be the sub-matrix, constructed by an arbitrary
subset of rows R of the constraint matrix C. As can be
observed from the column corresponding to location j
on Fig. 11, each column of CR can have three non-zero
elements at most.

A trivial attempt is to partition the subset of rows into
two such that the first partition, R1 = U1∩R, corresponds
to the first set of nontrivial constraints (22) in the LP and
the second partition, R2 = U2 ∩ R, corresponds to the
second set (23).

Clearly, for each column of CR, there are eight different
cases to be checked in total. These cases are summarized
in Table 3 for a column j of CR.

TABLE 3
All eight possible cases for a column j as a result of the

proposed partitioning.

{aij |i ∈ R1} {aij |i ∈ R2}
∑

i∈R1
aij −

∑
i∈R2

aij
{0, ..., 0, 1} {0, ..., 0} 1
{0, ..., 0, 1} {0, ..., 0, 1} 0
{0, ..., 0, 1} {0, ..., 0,−1} 2
{0, ..., 0, 1} {0, ..., 0, 1,−1} 1
{0, ..., 0} {0, ..., 0} 0
{0, ..., 0} {0, ..., 0, 1} -1
{0, ..., 0} {0, ..., 0,−1} 1
{0, ..., 0} {0, ..., 0, 1,−1} 0

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

A quick check over the eight possible cases reveals that
the property given in Theorem 1 holds for all possible
subsets of rows and for all columns, except for those
that include a 1 in R1 and a −1 in R2 (i.e., third row in
Table 3). For each such column, the corresponding row
in R1 that includes the nonzero entry can be moved to
the second partition R2 to satisfy the property. Note that,
for all columns corresponding to the non-zero entries of
the moved row, {aij |i ∈ R1} is {0, ..., 0} and {aij |i ∈
R2} is either {0, ..., 0, 1} or {0, ..., 0, 1,−1}, and hence,
the property is satisfied.

Since the constraint matrix satisfies all conditions of
Theorem 1, it is therefore totally unimodular.

APPENDIX B
K-SHORTEST PATHS ALGORITHM

In this second appendix, we give a short description of
the k-shortest paths algorithm. We refer the interested
reader to [6] for further details.

Given a directed graph G = (V,E), where V is the
set of vertices and E is the set of edges, the algorithm
computes the k-shortest node-disjoint paths - hereafter
referred only as shortest paths - between υsource and υsink,
iteratively for l = 1, . . . , k, where k is fixed. Thus, at the
lth iteration, the l-shortest paths are computed by using
the l − 1 shortest paths from the previous iteration.

Let Pl be the optimal set of l paths at iteration l. The
transition from Pl to Pl+1 is based on the idea of shortest
signed paths. A signed path is a sequence of nodes and
sign-labeled edges connecting them in order, with each
edge assigned a positive label (+) if it is in the direction
of the path - that is from the source to the sink - or a
negative label (-) otherwise.

At iteration l + 1 of the algorithm, Pl+1 can be ob-
tained from Pl by augmenting it with a special kind of
signed path p∗, called interlacing of Pl, which satisfies the
following two conditions [6]:

1) An edge is common to both p∗ and Pl if and only
if it has a negative label;

2) A node is common to both p∗ and Pl if and only if
it is incident to an edge with negative label.

Note that the first condition is required to obtain
edge-disjoint paths in Pl+1, which is necessary but not
sufficient for node-disjoint paths. The second condition
complements the first one for node-disjointness by ex-
cluding those signed paths having single node overlap
with Pl.

Given a shortest edge-simple interlacing p∗ of Pl, Pl+1

can be obtained by augmentation of p∗ and Pl+1, which
is defined as adding positive labeled edges of p∗ to
Pl and removing negative labeled edges of p∗ from
Pl (See [6] for details). Fig. 12 gives an example of
such an augmentation, where the shortest path is P1 =
{(υsource, υi, υj , υsink)} and the shortest interlacing of P1

is p∗ = (υsource, υm, υj , υi, υn, υsink) with corresponding
edges labeled respectively as (+,+,−,+,+). The optimal

υj

υn

υm

+

+ +

+

υi -υsource υsink

Fig. 12. An example of interlacing and the process
of augmentation (only vertices that are in P2 is shown).
The shortest path are P1 = {(υsource, υi, υj , υsink)}. The
shortest interlacing of P1 (bold lines with corresponding
edge labels) is p∗ = (υsource, υm, υj , υi, υn, υsink). Aug-
mentation of P1 and p∗ gives the optimal pair of paths
P2 = {(υsource, υm, υj , υsink), (υsourceυi, υn, υsink)}.

pair of paths is obtained by augmenting P1 and p∗ as
P2 = {(υsource, υm, υj , υsink), (υsource, υi, υn, υsink)}.

Interlacings in the original graph G correspond one-
to-one to node-simple directed paths in an extended
graph Gl = (Vl, El) at iteration l of the algorithm, which
can be obtained by a two-phase transformation from G,
as specified in Table 4. The first phase addresses the
above-described two conditions for being an interlacing
since the node-disjointness criteria is relaxed to arc-
disjointness. On the other hand, the second phase rep-
resents a transformation from signed paths to directed
unsigned paths. Therefore, the shortest interlacings in G
are equivalent to the shortest node-simple directed paths
in Gl. In addition, the cost of an interlacing in G is the
same as the cost of the corresponding directed path in
Gl. Fig. 13 illustrates an example of this transformation
for two nodes.

TABLE 4
Graph Transformation Phases [6]

• Split every node υi in Pl, except υsource and υsink into two
nodes, namely υ

′
i and υ

′′
i . Assign all input, resp. output,

edges of υi to υ
′
i , resp. υ

′′
i . Add a directed auxiliary edge

of zero cost from υ
′
i to υ

′′
i .

• Reverse the direction and algebraic sign of cost for each
edge in Pl, including auxiliary edges.

An additional edge cost transformation can be applied
to Gl with possibly negative edge costs to obtain a
canonic equivalent graph Gcl with non-negative edge
costs. The added benefit of this transformation is the
reduction in the complexity of the shortest path com-
putation at each iteration. Let the cost value for an edge
ei,j ∈ El between nodes vi ∈ Vl and vj ∈ Vl be ci,j , then
Gl is transformed using the following equation [6]

c′i,j = ci,j + si − sj ∀ei,j ∈ El , (25)

where sn represents the cost of the shortest path from
the source node υsource to node vn. In other words, at
the lth iteration, Gl is cost transformed to Gcl by using
the shortest path costs of nodes in Gcl−1. Note that with

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

ci,j cj,lck,i υjυi

(a)

υ
′
i υ

′′
i υ

′
j υ

′′
j −cj,l−ci,j 00−ck,i

(b)

Fig. 13. The two-phase graph transformation. (a) Two
nodes υi and υj in the original graph. Bold lines (with edge
costs c.,.) represent the arc of a shortest path incident to
these two nodes. (b) The same part of the graph after the
transformation.

this transformation, cost values for all paths between the
source and the sink nodes change by the same constant
factor, and hence, path ordering, in terms of the cost
values, remains the same.

A summary of the complete algorithm is given
in Algorithm 1 in pseudo-code. The function
efficient_shortest_path implements a shortest
path algorithm that is specifically designed for non-
negative edge costs. In our implementation, we used
Dijkstra’s single source shortest paths algorithm [45]
to compute the shortest path trees at each iteration.
However, since the initial graph is a DAG, the first tree
is computed in linear time by using a topological sort
of its vertices [46].

The worst case complexity of the algorithm is O(k(m+
n · log n)), where k is the number of objects appearing in
a given time interval, m is the number of edges and n
is the number of nodes in the final transformed graph.
However, given the fact that we start with a DAG and
that only very few cycles are introduced later by the
interlacings, the shortest path algorithm performs effi-
ciently and the average time complexity of our algorithm
is almost linear with n.

ACKNOWLEDGMENTS

The authors would like to thank Ali Shahrokni, Anna
Ellis and James Ferryman from the University of Reading
for evaluating their results against the PETS 2009 ground
truth.

REFERENCES
[1] J. Giebel, D. Gavrila, and C. Schnorr, “A Bayesian Framework

for Multi-Cue 3D Object Tracking,” in European Conference on
Computer Vision, 2004.

[2] A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and H. Wensheng,
“Multi-Object Tracking Through Simultaneous Long Occlusions
and Split-Merge Conditions,” in Conference on Computer Vision and
Pattern Recognition, June 2006, pp. 666–673.

[3] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multi-Camera
People Tracking With a Probabilistic Occupancy Map,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 2, pp. 267–282, February 2008.

Algorithm 1: K-shortest paths algorithm for the tracking
problem

input : a set of probabilistic occupancy maps
output: a set of k paths between υsource and υsink
Construct the initial graph G, with edge costs from Eq. 121

p∗1 ← generic_shortest_path (G, υsource, υsink)2

P1 ← {p∗1}3

for l← 1 to lmax do4

if l 6= 1 then5

if cost(Pl) ≥ cost(Pl−1) then6

return Pl−1 = {p∗1, . . . , p∗l−1}7

end8

end9

Gl ← extend_graph (G) /* as in Table 4 */10

Gc
l ← transform_edge_cost (Gl) /* Eq. 25 */11

p∗l+1 ← efficient_shortest_path (Gc
l , υsource ,12

υsink)
p∗ ← interlacing (Pl) /* corres. to p∗l+1 */13

Pl+1 ← Pl ∪ p∗ /* i.e. augm. of Pl and p∗ */14

end15

[4] H. Jiang, S. Fels, and J. Little, “A Linear Programming Approach
for Multiple Object Tracking,” in Conference on Computer Vision
and Pattern Recognition, 2007, pp. 744–750.

[5] G. B. Dantzig, Linear Programming and Extensions. Princeton
University Press, 1963.

[6] J. W. Suurballe, “Disjoint Paths in a Network,” Networks, vol. 4,
pp. 125–145, 1974.

[7] J. Black, T. Ellis, and P. Rosin, “Multi-View Image Surveillance
and Tracking,” in IEEE Workshop on Motion and Video Computing,
2002.

[8] A. Mittal and L. Davis, “M2tracker: a Multi-View Approach to
Segmenting and Tracking People in a Cluttered Scene,” Computer
Vision and Image Understanding, vol. 51(3), pp. 189–203, 2003.

[9] S. Iwase and H. Saito, “Parallel Tracking of All Soccer Players
by Integrating Detected Positions in Multiple View Images,” in
International Conference on Pattern Recognition, August 2004, pp.
751–754.

[10] M. Xu, J. Orwell, and G. Jones, “Tracking Football Players With
Multiple Cameras,” in International Conference on Image Processing,
October 2004, pp. 2909–2912.

[11] D. R. Magee, “Tracking multiple vehicles using foreground, back-
ground and motion models,” Image and Vision Computing, vol. 22,
no. 2, pp. 143–155, February 2004.

[12] B. Wu and R. Nevatia, “Tracking of Multiple, Partially Occluded
Humans Based on Static Body Part Detection,” in Conference on
Computer Vision and Pattern Recognition, June 2006, pp. 951–958.

[13] J. Vermaak, A. Doucet, and P. Perez, “Maintaining Multimodality
Through Mixture Tracking,” in International Conference on Com-
puter Vision, October 2003, pp. 1110–1116.

[14] K. Smith, D. Gatica-Perez, and J.-M. Odobez, “Using Particles to
Track Varying Numbers of Interacting People,” in Conference on
Computer Vision and Pattern Recognition, 2005.

[15] Z. Khan, T. Balch, and F. Dellaert, “Mcmc-Based Particle Filtering
for Tracking a Variable Number of Interacting Targets,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 27,
no. 11, pp. 1805–1918, 2005.

[16] C. Yang, R. Duraiswami, and L. Davis, “Fast multiple object track-
ing via a hierarchical particle filter,” in International Conference on
Computer Vision, 2005.

[17] T. Mauthner, M. Donoser, and H. Bischof, “Robust Tracking of
Spatial Related Components,” in International Conference on Pattern
Recognition, 2008.

[18] K. Okuma, A. Taleghani, N. de Freitas, J. Little, and D. Lowe,
“A Boosted Particle Filter: Multitarget Detection and Tracking,”
in European Conference on Computer Vision, May 2004.

[19] W. Du and J. Piater, “Multi-Camera People Tracking by Collab-
orative Particle Filters and Principal Axis-Based Integration,” in
Asian Conference on Computer Vision, 2007, pp. 365–374.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

[20] Q. Yu, G. Medioni, and I. Cohen, “Multiple Target Tracking Using
Spatio-Temporal Markov Chain Monte Carlo Data Association,”
in International Conference on Computer Vision, 2007.

[21] E. Maggio, M. Taj, and A. Cavallaro, “Efficient Multi-Target Visual
Tracking Using Random Finite Sets,” IEEE Transactions On Circuits
And Systems For Video Technology, vol. 18, no. 8, pp. 1016–1027,
August 2008.

[22] C. Huang, B. Wu, and R. Nevatia, “Robust Object Tracking by
Hierarchical Association of Detection Responses,” in European
Conference on Computer Vision, 2008, pp. 788–801.

[23] Y. Li, C. Huang, and R. Nevatia, “Learning to Associate: Hybrid-
boosted Multi-Target Tracker for Crowded Scene,” in Conference
on Computer Vision and Pattern Recognition, June 2009.

[24] C. Beleznai, B. Frühstück, and H. Bischof, “Multiple Object
Tracking Using Local Pca,” in International Conference on Image
Processing, 2006.

[25] W. Ge and R. T. Collins, “Multi-target data association by track-
lets with unsupervised parameter estimation,” in British Machine
Vision Conference, September 2008.

[26] R. Eshel and Y. Moses, “Homography Based Multiple Camera De-
tection and Tracking of People in a Dense Crowd,” in Conference
on Computer Vision and Pattern Recognition, 2008.

[27] G. J. Brostow and R. Cipolla, “Unsupervised Bayesian Detection
of Independent Motion in Crowds,” in Conference on Computer
Vision and Pattern Recognition, 2006, pp. 594–601.

[28] P. Nillius, J. Sullivan, and S. Carlsson, “Multi-Target Tracking -
Linking Identities Using Bayesian Network Inference,” in Confer-
ence on Computer Vision and Pattern Recognition, 2006, pp. 2187–
2194.

[29] S. Khan and M. Shah, “Tracking Multiple Occluding People by
Localizing on Multiple Scene Planes,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 3, pp. 505–519, March
2009.

[30] B. Leibe, K. Schindler, and L. V. Gool, “Coupled Detection and
Trajectory Estimation for Multi-Object Tracking,” in International
Conference on Computer Vision, October 2007.

[31] R. E. Bellman, Dynamic Programming. Princeton University Press,
1957.

[32] J. Wolf, A. Viterbi, and G. Dixon, “Finding the Best Set of K
Paths Through a Trellis With Application to Multitarget Tracking,”
Aerospace and Electronic Systems, IEEE Transactions on, vol. 25, no. 2,
pp. 287–296, March 1989.

[33] K. Shafique and M. Shah, “A Noniterative Greedy Algorithm for
Multiframe Point Correspondence,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 1, pp. 51–65, January
2005.

[34] P. P. A. Storms and F. C. R. Spieksma, “An Lp-Based Algorithm for
the Data Association Problem in Multitarget Tracking,” Computers
& Operations Research, vol. 30, no. 7, pp. 1067–1085, June 2003.

[35] L. Zhang, Y. Li, and R. Nevatia, “Global Data Association for
Multi-Object Tracking Using Network Flows,” in Conference on
Computer Vision and Pattern Recognition, 2008.

[36] N. Karmarkar, “A new polynomial time algorithm for linear
programming,” Combinatorica, vol. 4, pp. 373–395, 1984.

[37] A. Ellis, A. Shahrokni, and J. Ferryman, “Pets 2009 and winter-
pets 2009 results: A combined evaluation,” in Twelfth IEEE In-
ternational Workshop on Performance Evaluation of Tracking and
Surveillance, Snowbird, December 2009.

[38] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garo-
folo, M. Boonstra, V. Korzhova, and J. Zhang, “Framework for
performance evaluation of face, text, and vehicle detection and
tracking in video: Data, metrics, and protocol,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 319–
336, February 2009.

[39] “Eleventh ieee international workshop on performance evaluation
of tracking and surveillance,” http://pets2009.net.

[40] J. Berclaz, F. Fleuret, and P. Fua, “Pom: Probabilistic occupancy
map,” 2007, http://cvlab.epfl.ch/software/pom/index.php.

[41] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object
tracking performance: The clear mot metrics,” EURASIP Journal
on Image and Video Processing, vol. 2008, 2008.

[42] A. Makhorin, “Glpk- gnu linear programming kit,” 2008, http:
//www.gnu.org/software/glpk/.

[43] A. Ghouila-Houri, “Caractérisation Des Matrices Totalement
Unimodulaires,” Comptes Rendus Hebdomadaires des Séances de
l’Académie des Sciences, vol. 254, pp. 1192–1194, 1962.

[44] A. J. Hoffman and J. B. Kruskal, “Integral Boundary Points of
Convex Polyhedra,” in Linear Inequalities and Related Systems.
Princeton University Press, 1956, pp. 223–246.

[45] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[46] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. The MIT Press, 2001.

Jérôme Berclaz received a MS degree in Com-
munication Systems in 2004 and a PhD in Com-
puter Vision in 2010 from EPFL (Swiss Fed-
eral Institute of Technology). He is now a post-
doctoral researcher at the Computer Vision Lab-
oratory and the Signal Processing Laboratory
from EPFL. His main research interest is Com-
puter Vision .

François Fleuret received the PhD degree in
probability from the University of Paris VI in
2000, and the habilitation degree in Applied
Mathematics from the University of Paris XIII in
2006. He holds a Senior Researcher position at
the Idiap Research Institute in Switzerland. Prior
to that, he held positions at the University of
Chicago, at the French Institut de Recherche en
Informatique et en Automatique (INRIA), and at
the École Polytechnique Fédérale de Lausanne
(EPFL). His main research interests are at the

interface between statistical methods and algorithmic, centered on the
development of algorithmically efficient machine learning techniques.

Engin Türetken received the BSc and the MSc
degrees in Electrical and Electronics Engineer-
ing from Middle East Technical University in
2005 and 2008, respectively. He is currently a
PhD student in the school of Computer and
Communication Sciences at Swiss Federal Insti-
tute of Technology (EPFL). His research inter-
ests include computer vision, graph theory and
combinatorial optimization.

Pascal Fua received an engineering degree
from Ecole Polytechnique, Paris, in 1984 and
the Ph.D. degree in Computer Science from the
University of Orsay in 1989. He joined EPFL
(Swiss Federal Institute of Technology) in 1996
where he is now a Professor in the School of
Computer and Communication Science. Before
that, he worked at SRI International and at IN-
RIA Sophia-Antipolis as a Computer Scientist.
His research interests include shape modeling
and motion recovery from images, analysis of

microscopy images, and Augmented Reality. He has (co)authored over
150 publications in refereed journals and conferences. He has been an
associate editor of IEEE journal Transactions for Pattern Analysis and
Machine Intelligence and has often been a program committee member,
area chair, and program chair of major vision conferences.

http://pets2009.net
http://cvlab.epfl.ch/software/pom/index.php
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

