IDIAP RESEARCH REPORT

%lolao

RESEARCH INSTITUTE

MULTIPLE OBJECT TRACKING USING FLOW
LINEAR PROGRAMMING

Jerome Berclaz Francois Fleuret Pascal Fua

ldiap-RR-10-2009

JUNE 2009

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T+41 2772177 11 F+4127 72177 12 info@idiap.ch www.idiap.ch

Multiple Object Tracking using Flow Linear
Programming

Jérome Berclaz!* Francois Fleuret?!
Pascal Fua!

1 CVLab, EPFL, Lausanne, Switzerland
2 Idiap Research Institute, Martigny, and EPFL, Lausanne, Switzerland

Abstract

Multi-object tracking can be achieved by detecting objects in individ-
ual frames and then linking detections across frames. Such an approach
can be made very robust to the occasional detection failure: If an object
is not detected in a frame but is in previous and following ones, a cor-
rect trajectory will nevertheless be produced. By contrast, a false-positive
detection in a few frames will be ignored. However, when dealing with a
multiple target problem, the linking step results in a difficult optimization
problem in the space of all possible families of trajectories. This is usu-
ally dealt with by sampling or greedy search based on variants of Dynamic
Programming, which can easily miss the global optimum.

In this paper, we show that reformulating that step as a constrained
flow optimization problem results in a convex problem that can be solved
using standard Linear Programming techniques. In addition, this new
approach is far simpler formally and algorithmically than existing tech-
niques and lets us demonstrate excellent performance in two very different
contexts.

1 Introduction

Multi-object tracking can be decomposed into two separate steps that address
independent issues. The first is time-independent detection, in which a pre-
diction scheme infers the number and locations of targets from the available
signal at every time step independently. It usually involves either a genera-
tive model of the signal given the target presence or a discriminative machine
learning-based algorithm. The second step relies on modeling detection errors
and target motions to link detections into the most likely trajectories.

In theory, at least, such an approach is very robust to the occasional de-
tection failure. For example, false positives are often isolated in time and can
readily be discarded. Similarly, if an object fails to be detected in a frame but is
detected in previous and following ones, a correct trajectory should nevertheless
be produced.

*supported by the Indo Swiss Joint Research Programme (ISJRP)
fsupported by the Swiss National Science Foundation under the National Centre of Com-
petence in Research (NCCR) on Interactive Multimodal Information Management (IM2).

However, while it is easy to design a statistical trajectory model with all
the necessary properties for good filtering, estimating the family of trajectories
exhibiting maximum posterior probability is NP-Complete. This has been dealt
with in the literature either by sampling and particle filtering [14] or by greedy
Dynamic Programming in which trajectories are estimated one after another [5].
None of these approaches guarantees a global optimum. A notable exception
is a recent approach [8] that relies on Linear Programming [3] to find a global
optimum but at the cost of a priori specifying the number of objects being
tracked and restricting the potential set of locations where objects can be found
to those were the detector has fired. The former is restrictive while the latter
is fine as long as the detector never produces false-negatives but may lead to
erroneous trajectories in the more realistic case where it does.

By contrast, we show that reformulating the linking step as a constrained
flow optimization problem results in a convex problem that can also be solved
using Linear Programming techniques, but without any of the above limitations
or even having to require an appearance model. The latter does of course not
mean that one should not be used if available but making it optional increases
the range of applicability of our method.

Furthermore, our approach is far simpler formally and algorithmically than
existing techniques and performs well in two difficult real-world scenarios:

e Tracking multiple balls of similar color, which is a case where an appear-
ance model would not help.

e Tracking multiple people with multiple cameras set at shoulder-level so
that there are significant occlusions.

In both cases, we use an object detector that produces a probabilistic occupancy
map, that is, a set of probabilities of presence of objects at a discrete set of
locations at each time step independently. These probabilities may of course be
noisy and inaccurate. Our only assumptions are that objects do not appear or
disappear except at specified entrances and exits, do not move too quickly, and
cannot share a location with another object. These assumptions are minimal and
generally applicable. We formulate the search for a map that obeys them while
being as close as possible to the original one as a convex Linear Programming
problem. It solution is a set of flows that are both consistent and binary so that
linking detections becomes trivial.

Our main contribution is therefore a generic and mathematically sound mul-
tiple object tracking framework, which only requires an occupancy map from
a detector as input. Very few parameters need to be set and the algorithm
handles unknown, and potentially changing, numbers of objects while naturally
filtering out false positives and bridging gaps due to false negatives.

2 Related Work

Kalman filtering is an efficient way to address multi-target tracking [2, 10, 7, 18]
when the number of objects remains small. However, when it increases, mis-
takes become more frequent and are difficult to correct due to the recursive
nature of the method. Particle filtering can avoid this by exploring multiple
hypotheses [16, 6, 14]. It has been used to great effect to follow multiple hockey

players [12] and to track multiple people in the ground and image planes simul-
taneously [4]. However, in our experience, it typically requires careful tuning
of several metaparameters, which reduces the generality of methods that rely
on it.

Less conventional is the approach of [11], which formulates the multi-object
tracking as a Bayesian network inference problem and applies this method to
tracking multiple soccer players. They assume that a track graph has already
been produced and concentrate on linking identities in the provided track graph.

Dynamic Programming can be used to link multiple detections over time, and
therefore solve the multi-target tracking problem. Moreover, it can be extended
to enable the optimization of several trajectories simultaneously [17]. Unfortu-
nately, the computational complexity of such an approach can be prohibitive.
To overcome this limitation, [5] sequentially applies Dynamic Programming over
individual trajectories, which are assumed to be independent. While this ap-
proach greatly reduces the optimization cost, it tends to mix trajectories when
the targets are densely located. It is also quite sensitive to false negatives and
exhibits a tendency to ignore trajectories when the detection information is
not good enough. A different formulation is chosen by [13], where a directed
graph, with nodes standing for actual detections, represents the multi-frame
point correspondence problem. A greedy optimization algorithm is introduced
to efficiently solve the problem but without a guarantee to find a global opti-
mum.

By contrast, Linear Programming is an optimization method that has been
applied to find global optima and solve the data association problem on air radar
detections [15] or tackle multiple people tracking [8]. Starting from the output
of simple object detectors, this last approach builds a network graph in which
every node is an observation fully connected to future and past observations,
in much the same way as in [13]. Objects hiding each other are modeled by
specifying spatial conflicts within nodes. Occlusions are handled by introducing
a special node type and arc costs are chosen according to object appearances
and motion model. Additionally, another soft constraint helps ensuring spatial
layout consistency.

Due to its reduced state-space, this method is computationally efficient.
However, it requires a priori knowledge of the number of objects to be tracked,
which seriously limits its applicability in real life situations. Also, with a state-
space only consisting of observations, as opposed to all possible locations as
in our approach, it can not smoothly interpolate trajectories in case of false
negatives. Moreover, the choice of arc costs is rather ad-hoc and involves many
parameters, which have to be tuned for each possible application, reducing the
generality of the method. In comparison, our model is far simpler, with the
neighbourhood size being the only value that needs to be adapted.

3 Algorithm

In this section, we first formulate multi-target tracking as a discrete Linear
Programming problem. Since such a problem is NP-Complete in its discrete
version, we solve a continuous version of it, which is far easier to do. This
results in a set of flow variables that can easily be linked to provide complete
trajectories. We discuss these steps in more detail below.

3.1 Formalization

Table 1: Notation
K number of spatial locations;

T number of time steps;
I=(I',...,17) captured images;

N (k) c {1,..., K} neighborhood of location k;

zt, ; estimated number of objects moving from location i at time
t to location j at time ¢ 4 1;

t

m,; estimated number of objects at location ¢ at time ¢;

M} random variable standing for the true number of objects at
location ¢ at time t;

§ set of occupancy maps physically possible.

We discretize the physical area of interest into K locations, and the time
interval into 7" instants. For any location k, let N'(k) C {1,..., K} denote the
neighbourhood of k, that is, the locations an object located at k at time ¢ can
reach at time ¢ + 1.

To model occupancy over time, let us consider a labeled directed graph
with K T vertices, which represents every location at every instant. Its edges
correspond to admissible object motions, which means that there is one edge
from (t,i) to (¢t + 1,7) if, and only if, j € N (i). To allow objects to remain
static, there is always an edge from a location at time t to itself at time ¢t + 1.

Each vertex is labeled with a discrete variable m! standing for the number of
objects located at ¢ at time ¢. Each edge is labeled with a discrete variable ff’j
standing for the number of objects moving from location 7 at time ¢ to location
7 at time t+ 1, as shown in Fig. 1. For instance, the fact that an object remains
at location i between times ¢ and ¢ + 1 is represented by ff, =1

Given these definitions, for all ¢, the sum of flows arriving at any location j
is equal to mz-, which also is the sum of outgoing flows from location j at time
t. We must therefore have

Vt7j7 Z ;,;1 :mz = Z ft,k . (1)

i:jEN(4) keN(j)
N———— N———
Arriving at j at ¢ Leaving from j at ¢

Furthermore, since a location cannot be occupied by more than one object at
a time, we can set an upper-bound of 1 to the sum of all outgoing flows from a
given location and impose

Vht, Y f; <L (2)

JEN (k)

A similar constraint applies to the incoming flows but we do not need to explic-
itly state it, since it is implicitly enforced by Eq. 1. Finally, the flows have to
be positive and we have

Vk,j,t, fi; = 0. (3)

Position
ol

k+1
K o (@) @)
t—1 t t+1
Time

Figure 1: Simplified flow model, which does not use a virtual position. Positions
are arranged on one dimension and neighborhood is reduced to 3 positions.

Let M} denote a random variable standing for the true presence of an ob-
ject at location 7 at time t. The object detector used to process the sequence
provides, for every location i and every instant ¢, an estimate of the marginal
posterior probability of the presence of an object

pi=P(M{=1|T), (4)

where I is the signal available at time ¢. For the multi-camera pedestrian-
tracking application, I* denotes the series of pictures taken by all the cameras
at time ¢.

Let m be an occupancy map, that is a set of occupancy variables m!, one
for each location and for each instant. We say that m is feasible if there exists a
set of flows ff 4 that satisfies Eqgs. 1, 2, and 3, and we define § the set of feasible
maps. Our goal then becomes Solvmg

m* = arg max PM=m]|I) . (5)

Assuming conditional independence of the M/, given the I*, the optimization

problem of Eq. 5 can be re-written as

m* arg max logH P(M! = mi|T) (6)

meg

= argmax log P(M! = m! | T
gmeg; g P(M] = mj|T')

= argmax 1—mb)log P(M! =0T
gmeg;()log P(M} = 0|T")

+mt log P(M! =1|T%) (7)
Mt =1|IY)
= 0|t

Pi t
= argma lo m;, 9
g max ; < 0g pi> : 9)

where (6) is true under the assumption of conditional independence of the M}
given I*, (7) is true because m! is 0 or 1 according to (2), and (8) is true by
ignoring a term which does not depend on m. Hence, our objective function (9)
is a linear expression of the m!.

In general, the number of tracked objects may vary with time, meaning that
objects may appear inside the tracking area and others may leave. Thus, the
total mass of the system changes and we must allow flows to enter and exit the
area.

We do this by introducing an additional virtual location v into our state
space, which is linked to all the positions through which objects can enter or
exit the area, such as doors or borders of the camera field of view.

As opposed to other flows, those originating from v are not subject to the
constraint of Eq. 1 and 2, because the virtual location v theoretically contains
all targets not present in the monitored area. Also, several objects can simul-
taneously enter or exit the area, as long as there are enough entrance points.

= argmaXE mt

meg

3.2 Optimization

For a sequence of T frames with K positions, each having N neighbors, our
optimization problem has T'K occupancy variables and TK N flow variables.
And since, for every location at every time frame there are two constraints in
addition to positivity, the variables are linked by 2T K constraints. In other
words, for a 1000-frame people tracking sequence on a grid of 1000 locations,
each with 9 neighbors, our minimization problem involves 9,000,000 variables
and 2,000,000 constraints, which is far beyond what discrete optimization algo-
rithms can handle.

This is however not true of continuous optimization schemes and treating
the m! and ft . as real-valued variables and optimizing our criterion under the
constralnts of Eqs 1, 2, and 3 yields a convex Linear Programming problem
whose global optimum can actually be computed on a standard PC. The com-
plexity can be further decreased by pruning the graph and performing batch
processing, as described in § 3.2.2.

Furthermore, we observe experimentally that solving the real-valued system
always produces Boolean values, which is not surprising: If the objective func-

tion can be increased by putting mass along certain edges, there is no reason
not to reach the constraint of Eq. (2). For instance, if false alarms generated
by the detector make two different trajectories possible, the slightest numerical

difference between the sum of the log = £i or over either one will break the sym-

metry and the global optimum will correspond to 1s over the path with highest
value and 0Os over the other.

While we can imagine pathological situations, such as targets moving at
extremely close range for a long period of time, which may lead to a non-
Boolean optimum, such cases are extremely rare in practice. After processing
all sequences shown in § 4, our system predicted a total of 26,400,000 values,
26, 375, 847 of which are in the range [0,0.01], and 24, 153 in the range [0.99, 1].
We observed no value in the interval [0.01, 0.99].

3.2.1 Flow Formulation

We optimize with respect to the ff] rather than the m! because there is no
natural way to express the flow continuity in terms of the latter. We therefore
solve the following Linear Programming problem:

Maximize Zlog(/J) Z f

FJEN(4)
under Vi,4,7, f;; >0
Vt, 4, Z f” < (10)
JEN (D)
Vg, Y = > fix-
1 EN (1) kEN(5)

In practice, we use the Simplex algorithm [3] for which standard implementa-
tions exist [9].

3.2.2 Complexity Reduction

As discussed above, the number of variables of our optimization problem is very
high and solving it directly is only practical for moderately sized grids. This
limitation can be overcome using two simple techniques.

Pruning the Graph Most of the probabilities of presence estimated by the
detector are virtually equal to zero. We can use this sparsity to reduce the num-
ber of nodes to consider in the optimization, thus reducing the computational
cost. In other words, given loose upper bounds on the speed of the objects to
track and on the maximum number of false negatives the detector can produce
successively, we can build a criterion to remove nodes of the graph which are
very unlikely to ever be occupied.

Formally, for every position k£ and every frame ¢, we check the maximum
detection probability within a given spatio-temporal neighborhood

max pj. (11)
li—kll <71
t—ra<u<t+To

If it is found to be below a threshold, the location is considered as unused
because no object could reach it with any reasonable level of probability. All
flows to and from it are then removed from the model. Applying this method
allows us to reduce the number of variables and constraints up to a factor of 10.

Batch Processing Instead of directly optimizing a whole video sequence, one
can separate it into several batches of frames and optimize over them individu-
ally. To enforce temporal consistency across batches, we add the last frame of
the previously optimized batch to the current one. We then force the flows out
of every location of this frame to sum up to the location’s value in the previous
batch

ng{la"'aK}a Z fk:;:uk7 (12)

JEN (k)

where g is the score at location k of the last frame of the previous batch and
Ix,]1 is a flow from location & of the last frame of the previous batch to location
j in the first frame of the current batch. This is implemented as an additional
constraint in our Linear Programming framework.

3.3 Algorithm Output

Estimating the f{ ; indirectly provides the m} values and the feasible occupancy
map m* of maximum posterior probability. This data can be used as a cleaned
up version of the original occupancy map, in which most false positives and
negatives have been filtered out.

However, the ff ; themselves provide, in addition to the instantaneous occu-
pancy, estimates of the actual motions of objects. From these estimated flows
of objects, we can follow the motion back in time by moving along the edges
whose ff] are greater than 0, and build the corresponding long trajectories.

4 Results

In this section, we present results in two very different contexts. First, we use a
multi-camera setup in which the cameras are located at shoulder level to track
pedestrians who may walk in front of each other. This produces numerous
occlusions and allows us to demonstrate the ability of our approach to deal with
them. Second, to highlight the fact that we do not depend on an appearance
model, we track sets of similar-looking bouncing balls seen from above. In both
cases, we compare our results to those of a state-of-the-art linking method based
on sequential Dynamic Programming [5].

4.1 Test Data

The first set of data we acquired consists of a multi-camera video sequence
of pedestrians. The chosen location for data acquisition is an underground
passageway leading to a train platform and corresponds to a realistic video-
surveillance environment, with all the associated shortcomings. Over the whole
recording, the sequence shows various levels of activity. We extracted the most
active segments and used them for testing.

Figure 2: The multi-camera setup we used for testing. Each image corresponds
to a different camera. The images are small and the lighting conditions far from
ideal.

The area was filmed by 4 Digital Video cameras with overlapping field of
view. The video format is DV PAL, down-sampled to 360x288 pixels at 25 fps
and the 4 video streams have been synchronized manually after data acquisi-
tion. The area covered by the system is about 12m x 30m wide and has been
discretized into a ground plane grid of 40 x 100 locations, displayed on Fig. 3.

As illustrated in the first three rows in Fig. 6, this is a very challenging
environment for several reasons. First, lighting conditions are very poor, repre-
sentative of what can be expected in a real-world surveillance application. Most
images are under-exposed, except near the exits where they often are saturated.
Second, the area covered by the system is large, which means that people can get
very small when reaching the far end, making their precise localization challeng-
ing. Third, because of the low ceiling, the cameras had to be placed relatively
low, which generates occlusions and makes localization more error-prone. Fi-
nally, large parts of the area of interest, especially near its edges, are seen by
only two or even one cameras.

All these difficulties put together greatly affect the performance of the POM
detector described below. As illustrated by Fig. 4, the detection maps are
generally very noisy, with some people wrongly located or simply ignored for
significant numbers of consecutive frames. On those sequences, the performance
of the detector is varying between 70% and 80% of correct detections. Extracting
correct paths out of this data is therefore a challenging task.

To demonstrate the ability of our algorithm to track a larger number of

Figure 3: Ground plane grid used for people tracking.

people with frequent occlusions, we also applied it to a multi-camera video
sequence featuring several people in a small 10m X 15m area, shown in the
fourth row of Fig. 6. We used the same video equipment as before.

The second set of data is a video sequence in which 24 table tennis balls were
launched across the field of view, with up to 10 appearing simultaneously on
screen. Those were filmed by a single DV camera, placed facing down about 1.5m
above the ground. The videos were cropped to a resolution of 500x300 pixels,
and the corresponding area was discretized into a grid of 50 x 30 locations.

4.2 Probabilistic Occupancy Map

For all our sequences, the detection data used as input by our tracker was
generated with the publicly available implementation [1] of the Probabilistic
Occupancy Map (POM) algorithm [5].

This method first performs binary background/foreground segmentation in
all images taken at the same time and then uses a generative model to estimate
the most likely locations of targets given the observed foreground regions. More
precisely, it relies on a decomposition of the space of possible object positions
into a discrete grid. Then, at every time frame ¢, and for every location 7 of the
grid, it produces an estimate p! of the marginal posterior probability of presence
of a target at that location, given all input images captured at that instant.
POM specifically estimates the p! such that the resulting product law closely
approximates the joint posterior distribution, which justifies the assumption of
conditional independence in Eq. 6.

In the multi-camera setup for which POM was designed, the grid of posi-
tions models the ground plane on which people walk, and is made of square
elements of typically 30 cm x 30 cm, as illustrated by Fig. 3. Correspondences
between camera and top views is ensured through camera calibration. The gen-
erative model at the heart of POM represents people as cylinders that project
to rectangles in the images.

To process the single-camera sequence of bouncing balls, we slightly modified
the original POM code to represent the balls as squares and work directly in
the top view, without having to project from oblique images into it.

10

POM

POM + LP

t+1 t+2 t+3 t+4 t+5

Figure 4: Original probabilistic occupancy maps for 7 consecutive frames of a
pedestrian sequence (upper row) compared to the output of our Linear Program-
ming algorithm (lower row). The darker the color, the higher the probability of
presence. Note that the POM maps are extremely noisy, as evidenced by the
fact that the number of probability peaks and their locations vary wildly. By
contrast, only one peak remains in the LP output, and it moves slowly, which
is consistent with the motion of a person over 1/4th of a second.

4.3 Baseline

To provide a baseline for comparison, we implemented the sequential Dynamic
Programming approach of [5]. It involves estimating likely trajectories one after
another in a greedy way using a standard Dynamic Programming procedure.
The most likely trajectories are selected first and, once a trajectory has been
found, the corresponding locations are removed from consideration. Note that
the results reported in [5] were obtained with both a motion and an appearance
model while our results rely only on the very weak motion model implied by
the graph’s connectivity. In the rest of this section we refer to our Linear
Programming method as ‘LP’ and to the sequential Dynamic Programming as
‘DP”.

4.4 Pedestrian Tracking Results

For pedestrians tracking we define the graph of Fig. 1 as follows: Every interior
location of the ground plane at time ¢ is linked to its 9 direct neighbors at time
t+ 1, which means that a pedestrian can move at most from one location to its
immediate neighbors between frames. Border locations through which access to
the area is possible are connected to the virtual location v. This arrangement
is consistent with our chosen grid quantization at 25 fps.

To quantify our results, we manually labeled some of the test sequences. We
proceeded by localizing people on the ground plane once every 25 frames. We
not only marked their position, but also their identity, in order to assess how
well the tracker follows people without switching their identities. We split this
ground truth data into three sequences from the passageway data set:

e Seq. 1: A 2,500-frame sequence with 6 people, including one riding a
bicycle;

11

t+6

e Seq. 2: A 1,000-frame sequence with 5 people, 4 of whom are walking
side-by-side;

e Seq. 3: A 1,000-frame sequence with 4 people, one of whom is running.

In all three sequences, some of the people enter and exit the field of view at
different times. We perform the LP optimization on a standard PC with 4
Gigabits of RAM, which is not particularly large anymore. The average run time
is around one hour per 500-frame batch on the large grid of Fig. 3 containing
about 4000 locations.

We measure the performance of both DP and LP methods using two metrics.
The first one, plotted on Fig. 5, is expressed in terms of true positive and false
positive rates. A true positive is counted when the tracker retrieves an object
with its correct identity. This means that if two identities are switched, this
generates two false positives - 2 objects are found at the wrong place - and two
false negatives - the same 2 objects are not found at their correct location. The
second metric focuses on trajectories and is displayed in Table 2. A ground
truth trajectory is judged good, if the tracker associates the same person to it
for at least 80% of the time. It is called mixed, when explained at least 80% of
the time, but with identity switches. Finally, a trajectory is considered as lost
if 20% or more of its locations are left unexplained.

As evidenced on Fig. 5.a, LP produces increased true positive rates for every
test sequence, with almost no impact on the false positive rate. Table 2.a also
shows the superior performance of LP in the quality of the trajectories extracted.
These results are all the more significant that the LP method makes far fewer
assumptions than the DP one, which relies on an appearance model that must
remain constant over time and is therefore vulnerable to appearance changes,
such as those caused by lighting changes. It is also much simpler from an
algorithmic point of view. Examples of LP tracking results are depicted in
Fig. 6 by overlaying rectangles representing detections over the original images.

4.5 Ball Tracking Results

Since the balls move much faster than pedestrians, we handle them by simply
extending the size of the location’s neighborhood in the graph of Fig. 1. For
this experiment, we allow a ball to travel as far as 4 locations between two
consecutive frames, thus defining a location’s neighborhood to be its 81 closest
neighbors. As for the pedestrians, border locations are connected to the virtual
location v that allows entrances and exits.

Ground truth was generated for two balls sequences of about 1000 frames
each in the same manner as for the pedestrians data set. Because of the balls’
higher speed, one in every 3 frames was labeled.

The results of both DP and LP methods according to the two metrics defined
above are shown in Fig. 5.b and Table 2.b. Since the balls all have the same
appearance, we turned off the appearance model in the DP implementation. In
both test sequences, LP produces more true positives and fewer false positives,
while yielding an even more striking improvement in terms of trajectories. Some
LP balls tracking results are depicted in the last row of Fig. 6

12

0.4

True positive rate

02|

DP

LP

>POE DO

1
1e-05

1
0.0001

False positive rate

(a) pedestrians

True positive rate

0.001

|
O
0.8 | i
[
06 | (0] 4
0.4 | e
0.2 DP O [
Q
L H
Il Il .
0.0001 0.001 0.01
False positive rate
(b) balls

Figure 5: True positive vs. false positive rates. Each graph represents error rates
obtained using Dynamic Programming (DP) in white, and Linear Programming
(LP) in black. Different shapes correspond to different sequences. (a) shows
results for pedestrian tracking and (b) for ball tracking. Note that LP results
are always further up than the corresponding DP ones and, except in one case,

to the left.

Seq. 1 Seq. 2 Seq. 3
DP LP DP LP DP LP
good |4/13 8/13|5/6 6/6|4/5 5/5
mixed | 1/13 0/13|0/6 0/6|0/5 0/5
lost | 8/13 5/13|1/6 0/6|1/5 0/5
(a) Sequences with pedestrians
Seq. 1 Seq. 2
DP LP DP LP
good | 33 /40 39 /40| 50/72 64/72
mixed | 3/40 1/40 | 8/72 372
lost | 4/40 0/40 |14/72 572

(b) Sequences with balls

Table 2: Comparison of the trajectories extracted by the Dynamic Programming
(DP) and Linear Programming (LP) methods on both pedestrians (a) and balls

(b) video sequences.

13

Figure 6: Examples of tracking results by the Linear Programming approach.
Each one of the first 4 rows shows the images taken by all 4 cameras at the same
time. The first 3 rows are from the underground passageway data set and the
4th from our second pedestrian data set. The last row shows tracking results on
a sequence with multiple balls, with only one in every three frames displayed.

14

5 Conclusion

Combining frame-by-frame detections to estimate the most likely trajectories
of an unknown number of targets, including their entrances and departures to
and from the scene, is one of the most difficult component of a multi-object
tracking algorithm. We have shown that by formalizing the motions of targets
as flows along the edges of a graph of spatio-temporal locations, we can reduce
this difficult estimation problem to a standard Linear Programming one. The
resulting algorithm is far simpler than current state-of-the-art alternatives and
its convexity ensures that a global optimum can be found. It results in better
performance than a state-of-the-art method on difficult real-word applications,
in spite of having access to a more limited signal and requiring fewer meta-
parameters.

Our approach moves the burden to the optimization scheme and the number
of variables we have to handle in our approach prevents us from exploiting its
full potential. The ability to handle very fine spatial resolutions and long time
sequences jointly would further increase the appeal of the method.

We are therefore now investigating the optimization scheme itself. We have
so far used a standard optimizer that does not exploit the specificities of our
problem, which is why the processing is slow. However, the optimization could
be made much less costly by performing it directly in the subspace spanned
by maps that conserve mass instead of introducing mass conservation as a con-
straint. Other techniques based on hierarchical partitioning of the graph may
also provide alternative ways to very significantly reduce the computational
cost.

References

[1] J. Berclaz, F. Fleuret, and P. Fua. Pom: Probabilistic occupancy map, 2007.
http://cvlab.epfl.ch/software/pom/index.php.

[2] J. Black, T.J. Ellis, and P. Rosin. Multi-view image surveillance and tracking. In
IEEE Workshop on Motion and Video Computing, 2002.

[3] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, NJ, 1963.

[4] Wei Du and Justus Piater. Multi-camera people tracking by collaborative particle
filters and principal axis-based integration. In Asian Conference on Computer
Vision, pages 365-374, 2007.

[5] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multi-Camera People Tracking
with a Probabilistic Occupancy Map. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30(2):267-282, February 2008.

[6] J. Giebel, D.M. Gavrila, and C. Schnorr. A bayesian framework for multi-cue
3d object tracking. In Proceedings of European Conference on Computer Vision,
2004.

[7] S. Iwase and H. Saito. Parallel tracking of all soccer players by integrating de-
tected positions in multiple view images. In International Conference on Pattern
Recognition, volume 4, pages 751-754, August 2004.

[8] Hao Jiang, Sidney Fels, and James J. Little. A linear programming approach
for multiple object tracking. In Conference on Computer Vision and Pattern
Recognition, pages 744-750, 2007.

15

[9]

(10]

(13]

(14]

(15]

(16]

A. Makhorin. Glpk- gnu linear programming kit, 2008. http://www.gnu.org/
software/glpk/.

A. Mittal and L. Davis. M2tracker: A multi-view approach to segmenting and
tracking people in a cluttered scene. International Journal of Computer Vision,
51(3):189-203, 2003.

Peter Nillius, Josephine Sullivan, and Stefan Carlsson. Multi-target tracking -
linking identities using bayesian network inference. In Conference on Computer
Vision and Pattern Recognition, volume 2, pages 2187-2194, 2006.

K. Okuma, A. Taleghani, N. de Freitas, J.J. Little, and D.G. Lowe. A boosted
particle filter: multitarget detection and tracking. In ECCYV, Prague, Czech
Republic, May 2004.

Khurram Shafique and Mubarak Shah. A noniterative greedy algorithm for mul-
tiframe point correspondence. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 27(1):51-65, January 2005.

K. Smith, D. Gatica-Perez, and J.-M. Odobez. Using particles to track varying
numbers of interacting people. In Conference on Computer Vision and Pattern
Recognition, 2005.

P. P. A. Storms and F. C. R. Spieksma. An Ip-based algorithm for the data
association problem in multitarget tracking. Computers & Operations Research,
30(7):1067-1085, June 2003.

J. Vermaak, A. Doucet, and P. Perez. Maintaining multimodality through mixture
tracking. In International Conference on Computer Vision, volume 2, pages 1110—
1116, October 2003.

J.K. Wolf, A.M. Viterbi, and G.S. Dixon. Finding the best set of k paths through a
trellis with application to multitarget tracking. Aerospace and Electronic Systems,
IEEE Transactions on, 25(2):287-296, Mars 1989.

Ming Xu, J. Orwell, and G. Jones. Tracking football players with multiple cam-
eras. In International Conference on Image Processing, volume 5, pages 2909—
2912, October 2004.

16

