Multiple Object Tracking using Flow Linear Programming*

Jérome Berclaz!

Frangois Fleuret?

Pascal Fua!

I CVLab, EPFL, Lausanne, Switzerland
2 Idiap Research Institute, Martigny, Switzerland

jerome.berclaz@epfl.ch, francois.fleuret@idiap.ch, pascal.fualepfl.ch

Abstract

Multi-object tracking can be achieved by detecting objects
in individual frames and then linking detections across
frames. Such an approach can be made very robust to the
occasional detection failure: If an object is not detected in
a frame but is in previous and following ones, a correct tra-
jectory will nevertheless be produced. By contrast, a false-
positive detection in a few frames will be ignored. However,
when dealing with a multiple target problem, the linking
step results in a difficult optimization problem in the space
of all possible families of trajectories. This is usually dealt
with by sampling or greedy search based on variants of Dy-
namic Programming, which can easily miss the global opti-
mum.

In this paper, we show that reformulating that step as
a constrained flow optimization problem results in a convex
problem that can be solved using standard Linear Program-
ming techniques. In addition, this new approach is far sim-
pler formally and algorithmically than existing techniques
and yields excellent results on the PETS 2009 data set.

1 Introduction

Multi-object tracking can be decomposed into two separate
steps that address independent issues. The first is time-
independent detection, in which a prediction scheme infers
the number and locations of targets from the available signal
at every time step independently. It usually involves either
a generative model of the signal given the target presence
or a discriminative machine learning-based algorithm. The
second step relies on modeling detection errors and target
motions to link detections into the most likely trajectories.
In theory, at least, such an approach is very robust to
the occasional detection failure. For example, false posi-
tives are often isolated in time and can readily be discarded.

*This work is supported by the Indo Swiss Joint Research Programme
(ISJRP) and by the Swiss National Science Foundation under the National
Centre of Competence in Research (NCCR) on Interactive Multimodal In-
formation Management (IM2).

Similarly, if an object fails to be detected in a frame but is
detected in previous and following ones, a correct trajectory
should nevertheless be produced.

However, while it is easy to design a statistical trajectory
model with all the necessary properties for good filtering,
estimating the family of trajectories exhibiting maximum
posterior probability is NP-Complete. This has been dealt
with in the literature either by sampling and particle filter-
ing [16] or by greedy Dynamic Programming in which tra-
jectories are estimated one after another [6]. None of these
approaches guarantees a global optimum. A notable excep-
tion is a recent approach [9] that relies on Linear Program-
ming [4] to find a global optimum but at the cost of a priori
specifying the number of objects being tracked and restrict-
ing the potential set of locations where objects can be found
to those were the detector has fired. The former is restrictive
while the latter is fine as long as the detector never produces
false-negatives but may lead to erroneous trajectories in the
more realistic case where it does.

By contrast, we show that reformulating the linking step
as a constrained flow optimization problem results in a con-
vex problem that can also be solved using Linear Program-
ming techniques, but without any of the above limitations or
even having to require an appearance model. The latter does
of course not mean that one should not be used if available
but making it optional increases the range of applicability
of our method. Furthermore, our approach is far simpler
formally and algorithmically than existing techniques and
is shown to perform well on some of the difficult sequences
of the PETS 2009 data set.

For processing these sequences, we use an object detec-
tor that produces a probabilistic occupancy map, that is, a
set of probabilities of presence of objects at a discrete set
of locations at each time step independently. These proba-
bilities may of course be noisy and inaccurate. Our only as-
sumptions are that objects do not appear or disappear except
at specified entrances and exits, do not move too quickly,
and cannot share a location with another object. These as-
sumptions are minimal and generally applicable. We for-
mulate the search for a map that obeys them while being
as close as possible to the original one as a convex Linear

Programming problem. Its solution is a set of flows that
are both consistent and binary so that linking detections be-
comes trivial.

Our main contribution is therefore a generic and mathe-
matically sound multiple object tracking framework, which
only requires an occupancy map from a detector as input.
Very few parameters need to be set and the algorithm han-
dles unknown, and potentially changing, numbers of ob-
jects while naturally filtering out false positives and bridg-
ing gaps due to false negatives.

2 Related Work

Kalman filtering is an efficient way to address multi-target
tracking [3, 12, 8, 20] when the number of objects remains
small. However, when it increases, mistakes become more
frequent and are difficult to correct due to the recursive na-
ture of the method. Particle filtering can avoid this by ex-
ploring multiple hypotheses [18, 7, 16]. It has been used
to great effect to follow multiple hockey players [14] and
to track multiple people in the ground and image planes si-
multaneously [5]. However, in our experience, it typically
requires careful tuning of several metaparameters, which re-
duces the generality of methods that rely on it.

Less conventional is the approach of [13], which formu-
lates the multi-object tracking as a Bayesian network infer-
ence problem and applies this method to tracking multiple
soccer players. They assume that a track graph has already
been produced and concentrate on linking identities in the
provided track graph.

Dynamic Programming can be used to link multiple
detections over time, and therefore solve the multi-target
tracking problem. Moreover, it can be extended to enable
the optimization of several trajectories simultaneously [19].
Unfortunately, the computational complexity of such an ap-
proach can be prohibitive. To overcome this limitation, [6]
sequentially applies Dynamic Programming over individual
trajectories, which are assumed to be independent. While
this approach greatly reduces the optimization cost, it tends
to mix trajectories when the targets are densely located. It
is also quite sensitive to false negatives and exhibits a ten-
dency to ignore trajectories when the detection information
is not good enough. A different formulation is chosen by
[15], where a directed graph, with nodes standing for actual
detections, represents the multi-frame point correspondence
problem. A greedy optimization algorithm is introduced to
efficiently solve the problem but without a guarantee to find
a global optimum.

By contrast, Linear Programming is an optimization
method that has been applied to find global optima and
solve the data association problem on air radar detec-
tions [17] or tackle multiple people tracking [9]. Starting

from the output of simple object detectors, this last ap-
proach builds a network graph in which every node is an ob-
servation fully connected to future and past observations, in
much the same way as in [15]. Objects hiding each other are
modeled by specifying spatial conflicts within nodes. Oc-
clusions are handled by introducing a special node type and
arc costs are chosen according to object appearances and
motion model. Additionally, another soft constraint helps
ensuring spatial layout consistency.

Due to its reduced state-space, this method is computa-
tionally efficient. However, it requires a priori knowledge
of the number of objects to be tracked, which seriously lim-
its its applicability in real life situations. Also, with a state-
space only consisting of observations, as opposed to all pos-
sible locations as in our approach, it can not smoothly inter-
polate trajectories in case of false negatives. Moreover, the
choice of arc costs is rather ad-hoc and involves many pa-
rameters, which have to be tuned for each possible applica-
tion, reducing the generality of the method. In comparison,
our model is far simpler, with the neighbourhood size being
the only value that needs to be adapted.

3 Algorithm

In this section, we first formulate multi-target tracking as a
discrete Linear Programming problem. Since such a prob-
lem is NP-Complete in its discrete version, we solve a con-
tinuous version of it, which is far easier to do. This results
in a set of flow variables that can easily be linked to provide
complete trajectories. We discuss these steps in more detail
below.

Table 1: Notation

number of spatial locations;

K

T number of time steps;
I=(I',...,I7) captured images;

k)

N (k) Cc{1,..., K} neighborhood of location k;

estimated number of objects moving from location
7 at time ¢ to location j at time ¢ + 1;

t
i,

mt

. estimated number of objects at location ¢ at time ¢;

M} random variable standing for the true number of
objects at location 7 at time ;

§ set of occupancy maps physically possible.

3.1 Formalization

We discretize the physical area of interest into K locations,
and the time interval into 7" instants. For any location £k, let
N (k) c {1,..., K} denote the neighborhood of k, that is,

Z‘\
k-1 ‘/'({:\11 %K\Q/x o
= >
S f A
z k ’ >0 — >0 > N(k)
- G
a. s N
k+1 o @ O]
K (@) (@) (@}
t—1 t t+1
Time

Figure 1: Simplified flow model, which does not use a vir-
tual position. Positions are arranged on one dimension and
neighborhood is reduced to 3 positions.

the locations an object located at k at time ¢ can reach at
time ¢ + 1.

To model occupancy over time, let us consider a labeled
directed graph with K T' vertices, which represents every
location at every instant. Its edges correspond to admissible
object motions, which means that there is one edge from
(t,i) to (t+1,7) if, and only if, 5 € N (4). To allow objects
to remain static, there is always an edge from a location at
time ¢ to itself at time ¢ 4 1.

Each vertex is labeled with a discrete variable m! stand-
ing for the number of objects located at ¢ at time ¢. Each
edge is labeled with a discrete variable ff} ; standing for the
number of objects moving from location ¢ at time ¢ to loca-
tion j at time ¢ 4 1, as shown in Fig. 1. For instance, the
fact that an object remains at location ¢ between times ¢ and
t + 1 is represented by ff, =1

Given these definitions, for all ¢, the sum of flows arriv-
ing at any location j is equal to m , which also is the sum of
outgoing flows from location j at tlme t. We must therefore

have
Vg, Y fgt=mi= Y fle (D)

P:FEN(3) kEN(5)
———

Arriving at j at t Leaving from j at t

Furthermore, since a location cannot be occupied by more
than one object at a time, we can set an upper-bound of 1
to the sum of all outgoing flows from a given location and

impose
t, Y. fh, <)
je./\f (k)

A similar constraint applies to the incoming flows but we do
not need to explicitly state it, since it is implicitly enforced
by Eq. 1. Finally, the flows have to be positive and we have

Let M} denote a random variable standing for the true
presence of an object at location ¢ at time ¢. The object
detector used to process the sequence provides, for every
location ¢ and every instant ¢, an estimate of the marginal
posterior probability of the presence of an object

pl=P(M! =11, (4)

where I? is the signal available at time t. For the multi-
camera pedestrian-tracking application, I¢ denotes the se-
ries of pictures taken by all the cameras at time ¢.

Let m be an occupancy map, that is a set of occupancy
variables mﬁ, one for each location and for each instant. We
say that m is feasible if there exists a set of flows f}; ; that
satisfies Egs. 1, 2, and 3, and we define § the set of feasible
maps. Our goal then becomes solving

m* = arg max P(M:m\I) . (5)
meg

Assuming conditional independence of the M}, given
the I?, the optimization problem of Eq. 5 can be re-written
as

m* = argmax logHP (M} =m}|T) (6)

t,e
= argmax log P(M! = m!|T!
gmegg g P(M] = mj|T')
= 1 —mt)log P —O It
argg}gfz;()log P(M} =0|T")

+m} log P(M! =11 (7)

Mt—l It
= argmax E m —O:It; (8)
Pt t
= 1 * i s 9
arg max EH <0g1_p§)mz ©

where (6) is true under the assumption of conditional inde-
pendence of the M/ given I?, (7) is true because m! is 0 or
1 according to (2), and (8) is true by ignoring a term which
does not depend on m. Hence, our objective function (9) is
a linear expression of the m!.

In general, the number of tracked objects may vary with
time, meaning that objects may appear inside the tracking
area and others may leave. Thus, the total mass of the sys-
tem changes and we must allow flows to enter and exit the
area.

We do this by introducing an additional virtual location
v into our state space, which is linked to all the positions

through which objects can enter or exit the area, such as
doors or borders of the camera field of view.

As opposed to other flows, those originating from v are
not subject to the constraint of Eq. 1 and 2, because the vir-
tual location v theoretically contains all targets not present
in the monitored area. Also, several objects can simulta-
neously enter or exit the area, as long as there are enough
entrance points.

3.2 Optimization

For a sequence of T frames with K positions, each having
N neighbors, our optimization problem has T'K occupancy
variables and T'K N flow variables. And since, for every
location at every time frame there are two constraints in ad-
dition to positivity, the variables are linked by 27K con-
straints. In other words, for a 1000-frame people tracking
sequence on a grid of 1000 locations, each with 9 neighbors,
our minimization problem involves 9,000,000 variables and
2,000,000 constraints, which is far beyond what discrete op-
timization algorithms can handle.

This is however not true of continuous optimization
schemes and treating the m} and ff; as real-valued vari-
ables and optimizing our criterion under the constraints of
Egs. 1, 2, and 3 yields a convex Linear Programming prob-
lem whose global optimum can actually be computed on a
standard PC. The complexity can be further decreased by
pruning the graph and performing batch processing, as de-
scribed in § 3.2.2.

Furthermore, we observe experimentally that solving the
real-valued system always produces Boolean values, which
is not surprising: If the objective function can be increased
by putting mass along certain edges, there is no reason not
to reach the constraint of Eq. (2). For instance, if false
alarms generated by the detector make two different trajec-
tories possible, the slightest numerical difference between

the sum of the log —2i+ over either one will break the sym-

1— t
metry and the global optlmum will correspond to 1s over
the path with highest value and Os over the other.

While we can imagine pathological situations, such as
targets moving at extremely close range for a long period
of time, which may lead to a non-Boolean optimum, such
cases are extremely rare in practice. After processing all
sequences shown in § 4, our system predicted a total of
26,400,000 values, 26,375,847 of which are in the range
[0,0.01], and 24, 153 in the range [0.99, 1]. We observed no
value in the interval [0.01, 0.99].

3.2.1 Flow Formulation

We optimize with respect to the f; ; rather than the m/ be-
cause there is no natural way to express the flow continuity

in terms of the latter. We therefore solve the following Lin-
ear Programming problem:
2) X7

Maximize Z log (

JEN ()
under Vt, 0J, fi;j 20
. 10
Vtaza Z ff,j — ()
JEN (1)
(DY > fiw
1:JEN () keN(5)

In practice, we use the Simplex algorithm [4] for which
standard implementations exist [11].

3.2.2 Complexity Reduction

As discussed above, the number of variables of our opti-
mization problem is very high and solving it directly is only
practical for moderately sized grids. This limitation can be
overcome using two simple techniques.

Pruning the Graph Most of the probabilities of presence
estimated by the detector are virtually equal to zero. We can
use this sparsity to reduce the number of nodes to consider
in the optimization, thus reducing the computational cost.
In other words, given loose upper bounds on the speed of the
objects to track and on the maximum number of false neg-
atives the detector can produce successively, we can build a
criterion to remove nodes of the graph which are very un-
likely to ever be occupied.

Formally, for every position k and every frame ¢, we
check the maximum detection probability within a given
spatio-temporal neighborhood

max pe. (11)
li—kll<m
t—ro<u<t+Te

If it is found to be below a threshold, the location is con-
sidered as unused because no object could reach it with any
reasonable level of probability. All flows to and from it are
then removed from the model. Applying this method allows
us to reduce the number of variables and constraints up to a
factor of 10.

Batch Processing Instead of directly optimizing a whole
video sequence, one can separate it into several batches of
frames and optimize over them individually. To enforce
temporal consistency across batches, we add the last frame
of the previously optimized batch to the current one. We
then force the flows out of every location of this frame to
sum up to the location’s value in the previous batch

GKYOD D Fed = e (12)

JEN(K)

vk e {1,..

where p; is the score at location £ of the last frame of the
previous batch and f;- Jl is a flow from location & of the last
frame of the previous batch to location j in the first frame
of the current batch. This is implemented as an additional
constraint in our Linear Programming framework.

3.3 Algorithm Output

Estimating the f} ; indirectly provides the m} values and the
feasible occupancy map m* of maximum posterior proba-
bility. This data can be used as a cleaned up version of the
original occupancy map, in which most false positives and
negatives have been filtered out.

However, the fﬁ j themselves provide, in addition to the
instantaneous occupancy, estimates of the actual motions
of objects. From these estimated flows of objects, we can
follow the motion back in time by moving along the edges
whose f{ ; are greater than 0, and build the corresponding
long trajectories.

4 Results

To demonstrate the effectiveness of our algorithm for
people-tracking purposes, we use video sequences from the
PETS 2009 data set. We rely on the Probabilistic Occu-
pancy Map (POM) algorithm [6], which we briefly describe
in § 4.2, to compute the required detections. We compare
our results to those of our earlier approach using sequential
Dynamic Programming [6], first in the multi-camera con-
text, and then using only one camera.

4.1 Test Data

We test our algorithm on the multi-camera sequence S2-
L1 from the PETS 2009 data set. In this video, 7 cameras
observe several pedestrians under various angles. Among
the cameras, 4 of them are located relatively close to the
scene, and at roughly the height of people’s heads. The 3
remaining cameras are located further from the monitored
area and about 4-5m above the ground, giving a wide angle
view of the situation. The frame rate for all cameras is about
7 fps.

The area monitored by our system is the 18mx20m rect-
angle shown in Fig. 2. This space is discretized into 55
x 61 = 3,355 locations. Correspondences between camera
views and the grid is ensured through camera calibration.
We adapt our graph flow to the pedestrian tracking frame-
work as follows: Every interior location of the ground plane
at time ¢ is linked to its 9 direct neighbors at time ¢ 4 1, as
illustrated in Fig. 3, which means that a pedestrian can only
move from one location to its immediate neighbors between
consecutive frames. As explained in §3.1, border locations
through which access to the area is possible are connected

Figure 2: Ground plane grid used for pedestrian detection.

to the virtual location v. Despite the slow frame rate of the
data set, this simple model is sufficient to obtain accurate
tracking. Should we deal with even lower frame rates, we
could easily modify this model to connect every location
with its 25 closest neighbors, or more if needed.

4.2 Probabilistic Occupancy Map

For this evaluation, the detection data used as input by our
tracker is generated with the publicly available implemen-
tation [1] of our Probabilistic Occupancy Map (POM) algo-
rithm [6].

It first performs binary background/foreground segmen-
tation in all images taken at the same time and then uses a
generative model to estimate the most likely locations of tar-
gets given the observed foreground regions. More precisely,
it relies on a decomposition of the space of possible object
positions into a discrete grid. Then, at every time frame ¢,
and for every location ¢ of the grid, it produces an estimate
p! of the marginal posterior probability of presence of a tar-
get at that location, given all input images captured at that
instant. POM specifically estimates the p! such that the re-
sulting product law closely approximates the joint posterior
distribution, which justifies the assumption of conditional
independence in Eq. 6.

The generative model at the heart of POM represents
people as cylinders that project to rectangles in the images.
An evaluation of the POM detection algorithm against the
PETS 2009 dataset can be found in [2].

4.3 Baseline

To provide a baseline for comparison, we use our earlier se-
quential Dynamic Programming approach [6]. It involves

Figure 3: Flow model for the pedestrian tracking applica-
tion. Here, we plot flows arriving to and departing from
location k at time ¢.

estimating likely trajectories one after another in a greedy
way using a standard Dynamic Programming procedure.
The most likely trajectories are selected first and, once a
trajectory has been found, the corresponding locations are
removed from consideration. Note that the results reported
in [6] were obtained with both a motion and an appearance
model while our results rely only on the very weak motion
model implied by the graph’s connectivity. In the rest of
this section we refer to our Linear Programming method as
‘LP’ and to the sequential Dynamic Programming as ‘DP’.

4.4 Multi Camera Results

To evaluate our algorithm and to compare it to the base-
line, we first ran the POM detector on the sequence S2-L1.
Due to some observed inaccuracies in the camera calibra-
tion data, we only used 5 of the 7 available views to per-
form detection. This first step generated a probabilistic oc-
cupancy map for every frame of the sequence.

The detection results were then fed to both the DP and
LP algorithms, which produced individual trajectories. Ex-
amples of LP tracking results are displayed in Fig. 7. The
tracking results of both methods have been evaluated with
the CLEAR metrics [10] for detection and tracking, respec-
tively shown on Fig. 4 and 5.

Note that we used our own implementation of the
CLEAR metrics. We followed the description of [10] as
closely as possible, but there might be some minor differ-
ences. We also generated our own ground truth for the
test sequence. There might therefore be small discrepancies
with the official PETS 09 results.

Both detection and tracking precision metrics (MODP
and MOTP) roughly gauge the quality of the bounding box

O pom
[0 Sequential Dynamic Programming

Linear Programmin
(YN W Linear Pr ogrammin 0 4

06

04 e

[e R

MODP MODA

Figure 4: Detection precision and accuracy measures ap-
plied to the results of the original detection (POM) as well
as the sequential Dynamic Programming and the proposed
Linear Programming based trackers.

alignment, in the cases of correct detection. Since our
method uses a ground plane grid with a finite precision of
about 30cm, there is always some residual error in the align-
ment with the ground truth, which prevents us to score arbi-
trarily high. This shows up in the graph of Fig. 4, in which
we see no significant difference between the original POM
detections and LP. However, in both detection and tracking
precision, LP achieves significantly higher scores than DP.

The detection accuracy metrics (MODA) evaluates the
relative number of false positive and missed detections.
Note that DP is lower than POM, because it tends to ignore
trajectories for which some detections were missed. It thus
produces more missed detections. By contrast, LP receives
a higher score than POM and DP. By accurately linking de-
tections together, while discarding isolated alarms, the LP
efficiently filters the detections results, effectively decreas-
ing both the false positives and missed detections counts.

Finally, the tracking accuracy measure (MOTA) is very
similar to the detection one (MODA), with the exception
that it also takes identity switches into account. Not sur-
prisingly, LP scores again higher than DP.

Please recall that LP just used POM occupancy maps,
whereas DP also looked at the original images and main-
tained a color model per tracked individual. In other words,
LP produces better results, even though it requires less in-
formation. This is potentially valuable, because, in some
situations, appearance models cannot be depended upon.

4.5 Monocular Results

To further emphasize the strength of the Linear Program-
ming approach, we generated the detection maps using only
one of the 7 available views. Although POM still works on
monocular sequences, it is intrinsically less precise in the
ground plane localization. Without several views from dif-
ferent angles, there is an inherent depth ambiguity when es-

1 T

[Sequential Dynamic Programming
M Linear Programming

MOTP MOTA

Figure 5: Tracking precision and accuracy measures applied
to the results the sequential Dynamic Programming and the
proposed Linear Programming based trackers.

1 T T

[0 Sequential Dynamic Programming
[Linear Progranming

B [.

MODP MODA MOTP MOTA

Figure 6: Performance of the DP and LP algorithms on de-
tections generated from a monocular video.

timating a pedestrian’s position, especially when the back-
ground subtraction blobs are noisy or incomplete. Also, in
the monocular case, occlusions often result in missed detec-
tion.

In these challenging conditions, the Linear Programming
method shows its superiority over the sequential Dynamic
Programming one, even more clearly than in the multi-
camera case. This is illustrated by Fig. 6. In this context,
DP’s greedy strategy often prefers leaving people outside
the grid rather than trying to explain the very noisy detec-
tions. By contrast, LP’s joint optimization pays off and in-
terpolate trajectories nicely. Some monocular tracking re-
sults are shown in the last row of Fig. 7.

5 Conclusion

Combining frame-by-frame detections to estimate the most
likely trajectories of an unknown number of targets, includ-
ing their entrances and departures to and from the scene, is
one of the most difficult component of a multi-object track-
ing algorithm. We have shown that by formalizing the mo-

tions of targets as flows along the edges of a graph of spatio-
temporal locations, we can reduce this difficult estimation
problem to a standard Linear Programming one. The re-
sulting algorithm is far simpler than current state-of-the-art
alternatives and its convexity ensures that a global optimum
can be found. It results in better performance than a state-
of-the-art method on the difficult PETS 2009 data set, in
spite of having access to a more limited signal and requir-
ing fewer meta-parameters.

Our approach moves the burden to the optimization
scheme and the number of variables we have to handle in
our approach prevents us from exploiting its full potential.
The ability to handle very fine spatial resolutions and long
time sequences jointly would further increase the appeal of
the method.

We are therefore now investigating the optimization
scheme itself. We have so far used a standard optimizer
that does not exploit the specificity of our problem, which
is why the processing is slow. However, the optimization
could be made much less costly by performing it directly in
the subspace spanned by maps that conserve mass instead of
introducing mass conservation as a constraint. Other tech-
niques based on hierarchical partitioning of the graph may
also provide alternative ways to very significantly reduce
the computational cost.

References

[1] J. Berclaz, F. Fleuret, and P. Fua. Pom: Probabilis-
tic occupancy map, 2007. http://cvlab.epfl.ch/
software/pom/index.php.

[2] J. Berclaz, A. Shahrokni, F. Fleuret, J. Ferryman, and P. Fua.
Evaluation of probabilistic occupancy map people detection
for surveillance systems. In IEEE International Workshop on
Performance Evaluation of Tracking and Surveillance, pages

55-62, June 2009.

[3] J. Black, T. Ellis, and P. Rosin. Multi-view image surveil-
lance and tracking. In IEEE Workshop on Motion and Video
Computing, 2002.

[4] G.B.Dantzig. Linear Programming and Extensions. Prince-
ton University Press, Princeton, NJ, 1963.

[5] W.Du andJ. Piater. Multi-camera people tracking by collab-
orative particle filters and principal axis-based integration. In
ACCYV, pages 365-374, 2007.

[6] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multi-
Camera People Tracking with a Probabilistic Occupancy
Map. TPAMI, 30(2):267-282, February 2008.

[7] J. Giebel, D. Gavrila, and C. Schnorr. A bayesian framework
for multi-cue 3d object tracking. In ECCV, 2004.

[8] S.Iwase and H. Saito. Parallel tracking of all soccer players
by integrating detected positions in multiple view images. In
ICPR, volume 4, pages 751-754, August 2004.

Figure 7: Some results of our LP-based tracker on a PETS 2009 sequence. Each of the three first rows shows a different
time frame of the sequence. The first four columns display multi-camera tracking results in four of the five available camera
views. The right-most column represents the corresponding detections on the ground plane. The last row shows four result
frames in the monocular context. Since the people identities are color coded, this figure is best viewed in color.

(9]

(10]

(11]

[12]

[13]

(14]

H. Jiang, S. Fels, and J. Little. A linear programming ap-
proach for multiple object tracking. In CVPR, pages 744—
750, 2007.

R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar,
J. Garofolo, M. Boonstra, V. Korzhova, and J. Zhang. Frame-
work for performance evaluation of face, text, and vehicle
detection and tracking in video: Data, metrics, and protocol.
TPAMI, 31(2), February 2009.

A. Makhorin. Glpk- gnu linear programming kit, 2008.
http://www.gnu.org/software/glpk/.

A. Mittal and L. Davis. M2tracker: A multi-view approach
to segmenting and tracking people in a cluttered scene. IJCV,
51(3):189-203, 2003.

P. Nillius, J. Sullivan, and S. Carlsson. Multi-target track-
ing - linking identities using bayesian network inference. In
CVPR, volume 2, pages 2187-2194, 2006.

K. Okuma, A. Taleghani, N. de Freitas, J. Little, and
D. Lowe. A boosted particle filter: multitarget detection and
tracking. In ECCV, Prague, Czech Republic, May 2004.

[15]

[16]

(17]

(18]

(19]

[20]

K. Shafique and M. Shah. A noniterative greedy algorithm
for multiframe point correspondence. TPAMI, 27(1):51-65,
January 2005.

K. Smith, D. Gatica-Perez, and J.-M. Odobez. Using par-
ticles to track varying numbers of interacting people. In
CVPR, 2005.

P. P. A. Storms and F. C. R. Spieksma. An Ip-based algo-
rithm for the data association problem in multitarget track-
ing. Computers & Operations Research, 30(7):1067-1085,
June 2003.

J. Vermaak, A. Doucet, and P. Perez. Maintaining mul-
timodality through mixture tracking. In ICCV, volume 2,
pages 1110-1116, October 2003.

J. Wolf, A. Viterbi, and G. Dixon. Finding the best set of k
paths through a trellis with application to multitarget track-
ing. Aerospace and Electronic Systems, IEEE Transactions
on, 25(2):287-296, Mars 1989.

M. Xu, J. Orwell, and G. Jones. Tracking football players
with multiple cameras. In ICIP, volume 5, pages 2909-2912,
October 2004.

