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Abstract

In this paper, we show that tracking multiple people
whose paths may intersect can be formulated as a convex
global optimization problem. Our proposed framework is
designed to exploit image appearance cues to prevent iden-
tity switches. Our method is effective even when such cues
are only available at distant time intervals. This is unlike
many current approaches that depend on appearance being
exploitable from frame to frame.

We validate our approach on three multi-camera sport
and pedestrian datasets that contain long and complex se-
quences. Our algorithm perseveres identities better than
state-of-the-art algorithms while keeping similar MOTA
scores.

1. Introduction
In this paper, we address the problem of tracking multi-

ple people whose paths may intersect over long periods of
time while retaining their individual identities. We assume
that a time-independent people detector is available and pro-
vides us with probabilities of presence at various possible
spatial locations. Our task is therefore to link these detec-
tions into consistent trajectories.

A standard approach to doing this is to recursively track
from frame to frame, which may easily lead to irrecover-
able errors if a person fails to be detected in a frame or
if two detections made at different times are inappropri-
ately linked. In order to overcome this problem, the recur-
sive tracking approach can be replaced by either Dynamic
Programming [25, 8] or Linear Programming [23, 11] over
batches of frames. Both methods operate on directed graphs
whose nodes represent places where people have been de-
tected. The latter tends to be more robust than the former
but scales poorly for large problems and long batches. This
problem can be alleviated by linking detections over a few
frames into tracklets that become the graph nodes to be
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linked [20, 28, 21]. This reduces the computational com-
plexity and increases robustness but still relies on heuristics
such as introducing occlusion nodes and the proper setting
of many parameters, such as those controlling arc-costs in
the graph. By contrast, it has recently been shown [2] that
multi-object tracking could be formulated as a global op-
timization problem, which can be efficiently solved using
the K-Shortest Paths algorithm (KSP) [24]. The objective
function is convex, and controlled by only few parameters.
However, it completely ignores appearance and can produce
unwarranted identity switches in complex scenes.

In this paper, we extend the approach of [2] by using
sparse appearance information to keep track of people’s
identity, even when their paths come close to each other
or intersect. By sparse we mean that the appearance needs
only be discriminative in a very limited number of frames.
For example, in the basketball sequence of Fig. 1, all team-
mates wear the same uniform and the numbers on the back
of their shirts can only be read once in a long while. Fur-
thermore, the appearance models are most needed when the
players are bunched together. However, it is precisely then,
where they are least reliable [17]. Our algorithm can disam-
biguate such situations using the information from tempo-
rally distant frames. This is in contrast with many state-of-
the-art approaches that depend on associating appearance
models across successive frames [11, 8, 1].

We achieve this by solving a Linear Program on a layered
graph such as the one depicted by Fig. 2, which contains
several grid cells at each possible spatial location, one for
each possible identity group. It is much larger than the one
of the original approach that contains a single layer. How-
ever, by first running the KSP method [2] on this smaller
graph, we can eliminate all the nodes in which nobody is
present and run our algorithm on a much reduced layered
graph, thus making the problem tractable.

The contribution of this paper is therefore both a refor-
mulation of the identity-preserving multiple target tracking
problem in terms of finding the global maximum of a con-
vex objective function, and a practical algorithm for doing
so. We validate our new method on multiple datasets fea-
turing basketball players, soccer players, and pedestrians
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Figure 1. Representative tracking results from the three tested datasets: From left to right, Basketball, Soccer and Pedestrians.

and demonstrate a significant improvement over earlier ap-
proaches.

2. Related Work
Multiple target tracking has a long tradition, going back

many years for applications such as radar tracking [5].
These early approaches to data association usually relied
on gating and Kalman filtering, which have later made their
way into our community [4, 18, 10, 26, 14]. Because of
their recursive nature, when used to track people in crowded
scenes, they are prone to identity switches that are diffi-
cult to recover from. Particle-based approaches such as
[9, 22, 19, 13, 27, 16, 15], among many others, partially
address this issue by simultaneously exploring multiple hy-
potheses. However, they can handle only relatively small
batches of temporal frames without their state space becom-
ing unmanageably large and often require careful parameter
settings to converge.

In recent years, Dynamic and Linear Programming ap-
proaches have emerged as powerful alternatives. They op-
erate on graphs whose nodes can either be all the spatial lo-
cations where somebody could potentially be [25, 8], only
those where a detector has fired [23, 11], or short tempo-
ral sequences of consecutive detections that are very likely
to correspond to the same person [20, 28, 21]. On aver-
age, they are much more robust than the earlier methods
but typically require the careful setting of edge costs in the
graph, the introduction of special purpose nodes to handle
occlusions, and an assumption that the appearance of peo-
ple remains both unchanged and discriminative from frame
to frame. This last assumption is damaging in cases where
the lighting changes quickly or where the appearance is only
distinctive at long intervals, such as when tracking ballplay-
ers who all wear the same uniform and whose number can
only be read occasionally.

This limitation is entirely bypassed by a recent ap-
proach [2] that belongs to the class of those that work on
the graph of all potential locations over time and solves
the data association problem using the K-Shortest Paths al-
gorithm [24]. It completely ignores appearance, does not
require any heuristics regarding occlusion nodes, and has

a comparatively low computation complexity in the order
of O(k(m + n log n)), where n, m, and k are the num-
ber of graph nodes, edges, and trajectories. And, yet, it
has been shown to outperform many state-of-the-art meth-
ods on the PETS’09 database [7]. Its main limitation is that,
by completely ignoring appearance, it cannot prevent iden-
tity switches when people come close to each other. This is
the problem we address in this paper.

3. Algorithm
In this section, we assume that the ground plane is rep-

resented by a discrete grid and that, at each time step over
a potentially long period of time, we are given as input a
Probabilistic Occupancy Map [8] (POM) containing prob-
abilities of presence of people in each grid cell, which can
be generated by any people detector. While informative, the
resulting probability maps may contain both missed detec-
tions and false positives, especially when the scene becomes
crowded.

To infer identity-preserving trajectories from these po-
tentially noisy POMs, we first extend the formalism intro-
duced in [2] to account for individual identities, which the
original formulation did not do. This results in our multi-
target tracking problem being reformulated as an Integer
Programming problem, which can be relaxed into a Lin-
ear Program. It can be solved using standard optimization
packages but may be still very slow for long sequences. We
therefore obtain an approximated solution much faster us-
ing a two step process: We first run the K-Shortest Paths
algorithm (KSP) as in [2] to find trajectories that may in-
clude identity switches but tell us which are the grid cells
in which we can expect to find people at any given time.
We then run our Linear Program on a significantly reduced
number of grid cells, which saves both time and memory.

3.1. Formulation

As in [2], we model people’s trajectories as continuous
flows going through an area of interest. Preserving identity
means that available appearance cues should be used to as-
sign it and that the flows should not be allowed to mix, two
elements that are missing from the original formulation.
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Figure 2. Our tracking algorithm is formulated using a Direct
Acyclic Graph with a separate layer for each identity group. It
includes source and sink node that allow people to enter and exit
at selected locations, such as the boundaries of the playing field.

To this end, we discretize the ground plane into a grid
containing K cells and compute POMs at T consecutive in-
stants. We partition the total number of tracked people into
L groups and assign a separate appearance to each group.
In a constrained scene, such as a ball game, we can restrict
each group l to include at most Nl people, but in general
cases, Nl is left unbounded. The groups can be made of
individual people, in which case Nl = 1. They can also be
composed of several people that share a common appear-
ance, such as members of the same team or referees.

We introduce a directed acyclic graph (DAG) of size
K×T×L such as the one of Fig. 2, in which every node rep-
resents a location at a given time instant and for a particular
identity group. Edges between nodes represent admissible
motion between locations. Since groups cannot exchange
their identity, there are no edges linking groups, that is, no
vertical edges in Fig. 2. The resulting graph is made of dis-
connected layers, one per identity group.

Let N (k) ⊂ {1, . . . ,K} be the neighborhood of k, that
is, the locations that can be reached from k in one time in-
stant. There is an edge eli,j(t) from node i to node j if and
only if j ∈ N (i). We associate to every node of the graph a
variableml

k(t) standing for the number of people of group l
present on location k at time t. Similarly, a variable f li,j(t)
corresponds to every edge eli,j(t), and encodes the number
of people of group l moving from node i to j at time t.

We now define a set of constraints to ensure that every
flow through the graph is physically possible. First, we en-
force flow continuity by making sure that the sum of flows
arriving at one node at time t is equal to the sum of flows
leaving the same location at time t+ 1

∀t, j, l
∑

i:j∈N (i)

f li,j(t)︸ ︷︷ ︸
Arriving at j

= ml
j(t) =

∑
k∈N (j)

f lj,k(t+ 1)

︸ ︷︷ ︸
Leaving from j

. (1)

Second, our grid resolution is sufficiently fine, for a location
not be occupied by more than one person, hence

∀t, k,
∑

j∈N (k)

L∑
l=1

f lk,j(t) ≤ 1 . (2)

Third, the flows have to be positive and we have

∀k, j, t, f lk,j(t) ≥ 0 . (3)

In case we have a precise knowledge about the number of
people we track, we can use an optional constraint to ensure
that no more than the allowed number of people is present
in each group

∀t, l
K∑
k=1

ml
k(t) ≤ Nl . (4)

Our model as described so far can only handle a fixed
number of people. In practice, however, this number is
likely to vary over time. We therefore introduce a source
and a sink nodes, υsource and υsink. The source node is con-
nected to every node from the first frame and the sink to
every node from the last frame, as shown in Fig. 2. Addi-
tionally, both nodes are connected to all the locations sus-
ceptible to act as entry or exit points, throughout the whole
sequence. This last part is not illustrated in Fig. 2 to avoid
overloading the graph. The source and sink nodes are also
subject to a constraint that enforces all the flows starting in
υsource to end in υsink∑

j∈N (υsource)

fυsource,j =
∑

k:υsink∈N (k)

fk,υsink . (5)

3.2. Linear Program

Let us now assume that we have access to a person de-
tector that estimates the probability of presence of someone
at every position k

ρk(t) = P̂ (Xk(t) = 1 | I) , (6)

where Xk(t) is a random variable standing for the true oc-
cupancy of location k at time t, and I represents the input
images. Let us furthermore assume that we can compute an
appearance model and that we use it to estimate

ϕlk(t) = P̂ (Qk(t) = l |I, Xk(t) = 1) , (7)

the probability that the identity of a person occupying lo-
cation k at time t is l, given that the location is indeed oc-
cupied. Here, Qk(t) is a random variable standing for the
true identity group of a person in location k at time t. Let
there be L identity groups, hence Qk(t) ∈ {1, . . . , L}. The
appearance model can rely on various cues, such as color



similarity or shirt numbers of sports players. In Section 4.2,
we describe in details the ones we use for different datasets.

Since we are seeking a set of physically possible trajecto-
ries that best explain the observed image evidence, we look
for

m∗ = argmax
m∈F

P (X = x,Q = q | I) , (8)

where m is a set of occupancy maps and F is the space of
occupancy maps satisfying constraints from Eqs. 1 to 5.

As shown in the appendix supplied as supplementary
material, Eq. 8 can be expressed as a function of ρi(t) and
ϕli(t) as

m∗ = argmax
m∈F

∑
t,k,l

ml
k(t) log

(
ρk(t)ϕ

l
k(t)L

1− ρk(t)

)
. (9)

Note that when no appearance information is available, we
set ∀l, ϕlk(t) = 1

L and the appearance term cancels the L
coefficient in the objective function. In this case, this sim-
plifies to the original one of [2]. This property makes it pos-
sible to process sparse appearance information, such as shirt
numbers that can be read only once in a while. The spatial
extent of trajectories is mostly based on the occupancy in-
formation, while the sparse appearance places a trajectory
in the correct identity group and avoids switches at inter-
sections.

Maximizing the criterion of Eq. 9 under the constraints
of Eqs. 1 to 5 can be formulated as an Integer Program,
which is optimized with respect to the flows f li,j(t)

maximize
∑
t,i,l

log

(
ρi(t)ϕ

l
i(t)L

1− ρi(t)

) ∑
j∈N (i)

f li,j(t)

subject to ∀t, i,
∑

j∈N (i)

L∑
l=1

f li,j(t) ≤ 1

∀t, l, i,
∑

j∈N (i)

f li,j(t)−
∑

k:i∈N (k)

f lk,i(t− 1) ≤ 0

∑
j∈N (υsource)

fυsource,j −
∑

k:υsink∈N (k)

fk,υsink
≤ 0

∀t, l,
K∑
i=1

∑
j∈N (i)

f li,j(t) ≤ Nl

∀t, l, i, j, f li,j(t) ≥ 0 .

(10)

3.3. Optimization

The large number of variables and constraints of our for-
mulation results in too large a problem to be directly han-
dled by regular solvers for real-life cases such as those pre-
sented in Section 4. However, a simple way to bring the
computational complexity down is to remove unnecessary
nodes from the graph.

Figure 3. The LP solver might produce non-integer values when
two or more people intersect. In this example, our tracking algo-
rithm assigns non-integer values for the identities of the two soccer
players at two adjacent locations. After the intersection, the algo-
rithm recovers and assigns again integer value to each identity.

To this end, we first run the earlier K-Shortest Paths
(KSP) algorithm [2], which is very efficient but ignores ap-
pearance and is therefore more prone to identity switches.
This lets us eliminate all the grid cells in which nobody was
found. We do this everywhere except at locations where
trajectories come close to each other, which we define as
being within three grid cells from each other. At these lo-
cations, we include all grid cells connecting both trajecto-
ries. The reason behind this is that KSP produces trajecto-
ries with very good spatial accuracy, except at places where
people meet and separate. There, it may erroneously link
bits of trajectories belonging to different individuals and ig-
nore the grid cells through which the true trajectories pass.
By adding the additional grid cells, we give our algorithm
the degrees of freedom it requires to avoid such mistakes
by using image evidence. In our experiments, the pruning
reduces the number of variables and constraints by two to
three orders of magnitude. We have performed a number of
Monte Carlo simulations on small synthetic examples for
which we can solve the problem without pruning and veri-
fied that it has almost no impact on the final accuracy.

Since Integer Programming solving is NP-complete, we
relax our initial IP problem of Eq. 10 into a Linear Pro-
gram, by allowing the variables to become real-valued. This
results in a significant complexity reduction. The LP re-
sults however, are no longer guaranteed to be integral. In
practice, real values might occur when two or more targets
are moving so close to each other that appearance informa-
tion is unable to disambiguate their respective identities, as
shown in Fig. 3. These non-integer results can be inter-
preted as an uncertainty about identity assignment by our
algorithm. This represents valuable information that can
be dealt with accordingly if necessary. Note however that
in our experiments those non-integer results occur only in
rare occasions. In those cases, we currently round the non-
integer results.



4. Experiments
We use multi-camera sequences acquired during soccer

and basketball matches to validate our approach and com-
pare it against the approach we extend [2], which com-
pletely ignores image appearance, and a modified version
of it that takes frame-to-frame appearance into account, as
described in [1]. Additionally, to compare our approach
against other state-of-the-art ones, we test it on the PETS’09
benchmark dataset, which features pedestrians.

In the remainder of this section, we first describe these
video sequences. We then discuss how we obtain image
evidence and present our results 1.

4.1. Datasets

Team-sports players are hard to track reliably because
they tend to converge towards the ball, often change their
direction of travel abruptly, and wear the same uniforms
when they belong to the same team. The only reliable way
to identify them is to read the numbers on their shirts but,
given the resolution of the images, this can only be done in
relatively few frames. Furthermore, even though the color
of the uniforms can be used to tell the teams apart, this in-
formation is hard to exploit at the most critical times, that
is, when several players are bunched together.

Therefore, team sports sequences are challenging and
we tested our approach on both basketball and soccer se-
quences, along with a standard pedestrian benchmarking
dataset, which we describe in more detail below.

Basketball We acquired a 4,000-frame sequence at the
2010 FIBA World Championship for Women , using 8 cam-
eras – 4 wide-angle ones, 2 looking from above, and 2 pro-
viding close-ups – filming at 25 fps. There are 14 people,
4 referees and coaches, and two teams of 5 players. For
this dataset, we run two experiments: In the first one, we
use only color as appearance information, and the iden-
tity groups consist thus of two teams and referees. In the
second, we use number reading in addition to shirt colors,
which allows to handle 11 groups - one per player and one
group for the three referees and coach.

Soccer We use the publicly available ISSIA dataset [6]. It
is made of 3,000 frames filmed by six cameras at a soccer
match. There are 25 people, 3 referees and two teams of 11
players, including the goal keepers whose uniform is dif-
ferent from the one of their teammates. Due to the dataset
resolution, the shirt numbers are unreadable. Hence, the
appearance is based on shirt colors only. We use 5 iden-
tity groups that we denote as referees, team 1, team 2, goal
keeper 1 and goal keeper 2.

1For the supplementary material and videos, please visit:
http://cvlab.epfl.ch/research/body/surv/

Pedestrians We use the publicly available PETS’092

dataset, for which the performance of other algorithms has
been published [7]. More specifically, we tested our method
on the 800-frame sequence S2/L1, which is filmed by 7
cameras at 7 fps, and features 10 people. In this sequence,
the density of people is lower than in the two sport datasets
but most of the pedestrians wear similar dark clothes, which
makes appearance-based identification very challenging.
We therefore used only two appearance groups, one for peo-
ple wearing dark clothes and the other for those wearing
reddish ones.

4.2. Implementation Details

Our system is implemented in C++ using standard li-
braries. To produce the Probability Occupancy Maps
(POMs) we need as input, we use the publicly available
POM software package3. It implements an algorithm that
estimates ground plane occupancy from the binary out-
put of a background subtraction algorithm in multiple im-
ages acquired simultaneously using calibrated cameras [8].
The LP problems were formulated and optimized using the
MOSEK4 solver. The average running time of our method
is 4 seconds per frame on a 3GHz PC using a single core,
which makes it practical to process whole batches at once.

We exploit two distinct sources of image information, the
color of the uniforms and the numbers on the players shirts.
This is done as follows.

Color Similarity Since our sequences feature groups –
players of the same team, referees – whose appearance is
similar, we manually select a few POM-generated bound-
ing boxes corresponding to members of that group, con-
vert the foreground pixels within each box to the CIE-LAB
color space, and use them to populate a 20× 20× 20 color
histograms. We repeat this process independently for each
camera because they are not color calibrated.

Extracting color information from closely spaced peo-
ple is unreliable because it is often difficult to correctly
segment individuals. Thus, at run time, for each camera
and at each time frame, we first compute an occlusion map
based on the raw probability occupancy map: If a specific
location is occluded with high probability in a given cam-
era view, we do not use it to compute color similarity for
this location. Within a detection bounding box, we use the
background subtraction result to segment the person. The
segmented pixels are inserted into a color histogram, in the
same way as for template generation. Finally, the similar-
ity between this observed color histogram Ocolors and the
templates Tcolors is computed using the Kullback-Leibler
divergence. For each location, the final classification score

2PETS 2009: http://www.cvg.rdg.ac.uk/PETS2009
3POM: http://cvlab.epfl.ch/software/pom
4Mosek Optimization tool: http://www.mosek.com/

http://cvlab.epfl.ch/research/body/surv/
http://www.cvg.rdg.ac.uk/PETS2009
http://cvlab.epfl.ch/software/pom
http://www.mosek.com/


(i) (ii) (iii) (iv)
Figure 4. Examples of color projections: (i) color image , (ii)
gray-scaled image, (iii) color projection using the two colors of
the green team, (iv) color projection using the two colors of the
white team. These projections allow us better recognitions.

is the average over the maximum matching scores from the
non-occluded views v. We normalize this term in order to
get a probability between 0 and 1.

ϕt,li ∝
∑
v exp(−KL(Tcolors, Ocolors))

|v|
. (11)

If no appearance cue is available, due to occlusions for
example, ϕt,li is set to 1

L .

Reading the Numbers The numbers on the back of sports
players are unique identifiers, and can be used to unambigu-
ously recognize them. Within a team, the printed numbers
usually share a unique color, which is well separated from
the shirt color. Here we use this observation to develop a
specific image binarization that improves number recogni-
tion. For every team, the shirt color cs and number color cn
are obtained by clustering a shirt color patch into two clus-
ters. Then, for each pixel we measure the distance between
its color cp and these two colors: ds = ||cs − cp||, dn =
||cn − cp||. The converted gray-level pixel is defined as
255 dn

ds+dn
, which produces a white number on a black shirt.

An illustration of this projection method is shown in Fig. 4.
Finally, we binarize those images.

As for group classification, we manually extract a tem-
plate for every player beforehand. At run time, applying
number recognition at every position of an image would be
much too expensive. Instead, we rely on people detection
to select candidate positions for number reading. For each
candidate position, we trim the upper 1/5 part and the lower
1/5 part of the bounding box, which roughly correspond to
the head of the player and his legs respectively. We then
search for number candidates inside the reduced bounding
box, by using XOR operation between the templates and
observation patches with the same size.

We select the observation patch that gives us the maxi-
mum normalized sum of pixel-wise XOR between the tem-
plate and the observation and write

ϕt,li ∝
Tnumbers ⊕Onumbers

|Tnumbers|
. (12)

Since numbers cannot be read often, we favor highly con-
fident detections. Therefore, we only keep scores that are
higher than a threshold, 0.8 in our case. In other cases, we
set ϕt,li to a neutral value of 1

L .

4.3. Baseline

As a baseline, we use the publicly available5 KSP
tracker [2], that ignores appearance. Nevertheless, it has
been shown to outperform many state-of-the-art methods on
the PETS’09 dataset [7]. In addition, we use a modified ver-
sion of the KSP that includes appearance information from
frame to frame. This method we will refer to as C-KSP only
differs from the original algorithm in the cost of the edges.
It includes an appearance term ζti,j in addition to the detec-
tion term

c(ei,j(t)) = − log(
ρtiζ

t
i,jL

1− ρti
) . (13)

The appearance term ζti,j is generated the same way as ϕt,li ,
between color histograms from two locations in successive
frames, similarly to what is done in [1].

4.4. Evaluation Metrics

A standard metric for evaluating object trackers is the
Multiple Object Tracking Accuracy (MOTA) [3], defined
as

MOTA = 1−
∑
t(cm(mt) + cf (fpt) + cs(mmet))∑

t gt
,

where gt is the number of ground truth detections, mt the
number of miss-detections, fpt the false positive count and
mmet the number of instantaneous identity switches. Ac-
cording to [12], the weighting functions are set to cm =
cf = 1, and cs = log10. While providing a reliable perfor-
mance measure for generic tracking systems, this metric is
not appropriate to evaluate applications for which identity
preserving is crucial. Its mme term penalizes only instan-
taneous identity switches, that is the frame at which two
trajectories are switched, but does not account for the pro-
portion of a trajectory that is correctly labeled over a whole
sequence.

Therefore, we introduce a new term gmme for measur-
ing the proportion of identity switches in a global manner.
For every detection at every frame, the gmme term is in-
cremented if the detection label does not correspond to the
ground truth identity. Thus, a trajectory with an identity
switch in the middle will be counted wrong for half of its
length, instead of just once for the mme, as explained on
Fig. 5. We could generate a new metric, by replacing mme
by gmme in MOTA, but for the sake of clarity, we will show
results on each of the componentsm, fp, mme and gmme,
in next section.

5KSP: http://cvlab.epfl.ch/software/ksp

http://cvlab.epfl.ch/software/ksp
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Figure 6. Performance comparison of our method (LP) against the baseline (KSP and C-KSP). We plot separately each component of
MOTA: the miss-detections and false positive rates m and fp, the rate of instantaneous identity switches mme, and the rate of global
identity mismatch gmme. While MOTA components (m, fp, mme) are similar among the three algorithms, our method is much better at
preserving identities, as reflected by the low gmme rates. Note that, for these scores, lower is better.

(i) mme on Algorithm A (ii) gmme on Algorithm A

(iii) mme on Algorithm B (iv) gmme on Algorithm B
Figure 5. Illustration of the difference between identity mismatch
score mme and global identity mismatch score gmme. We apply
the two scores on two synthetic tracking results A and B. The mis-
matches are circled in red. As can be seen, algorithm B manages
to recover from its tracking mistakes. However, its mme score is
worse than the one of Algorithm A. Our proposed gmme score
favors algorithms that preserve identities.

4.5. Results

We ran our algorithm and the baseline, KSP and C-KSP,
on our three datasets. Evaluated with the MOTA metric,
the three algorithms all exhibit excellent performances, as
shown in Fig. 8. Our algorithm is always either as good or
better than KSP, which has itself been shown to outperform
state-of-the-art methods on the PETS’09 sequence [7].

To better understand the performance of the different al-
gorithms, we then compute the three individual components
of MOTA m, fp, mme, as well as the new global identity
mismatch score gmme. The results are plotted on Fig. 6
for the three datasets. Those results show rather similar

missed detection and false positive rates for all methods.
Also, the mme term is uniformly low, which explains the
similarity of the MOTA results. By contrast, the more ac-
curate gmme metric clearly indicates the performance dif-
ference between algorithms in terms of identity assignment:
Our method is shown to preserve the identities much better
than the two baselines. What is more, the addition of a sec-
ond appearance cue – numbers on the back of players – is
shown to further decrease the already low amount of iden-
tity mismatch, on the basketball dataset (Fig. 6(a)). The
performance of the C-KSP is more erratic: It improves over
the KSP on the basketball data set, but is slightly worse on
the two others. This shows that a frame-by-frame appear-
ance constraint is not enough to preserve identities over a
long period of time. The improvement of our approach over
the two baseline methods is less important on the PETS’09
pedestrian dataset than on the sport sequences. The reason
is that people in this sequence are wearing dark clothes of a
relatively uniform color.

In general, when the appearance information is less dis-
criminant, failure cases such as the one illustrated by Fig. 7
are more likely to happen. In case no appearance informa-
tion is available, the optimization is based purely on the ge-
ometrical constraints, similarly to the KSP algorithm. Note
that for the pedestrian dataset, a motion model such as the
one from [1] would probably reduce the number of identity
switches. However, it would not be applicable to the sport
datasets, where players’ movements are way too erratic.

Figure 7. Failure case: Despite the global appearance model, indi-
viduals 5 and 8 are switched because of similarly colored clothes.
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Figure 8. Evaluation of our method (LP) against the baseline (KSP
and C-KSP) using the MOTA metric. While excellent, the scores
are almost the same for all methods. This is because MOTA only
considers instantaneous identity switches, and weights them by
log10. Note that higher values are better and the maximum is 1.
More detailed results are presented in Fig. 6.

5. Conclusion
In this paper, we introduced a global optimization frame-

work for multi-people tracking that takes image-appearance
cues into account, even if they are only available at dis-
tance time intervals. As a result, it does better at preserving
identity over very long sequences than previous approaches.
Furthermore, it depends on a comparatively small number
of parameters such as the size of the grid it works on and
the maximum number of separate identities to be expected.

Future work will focus on automatically estimating the
number of appearance groups by clustering the detections
and exploiting the fact that our algorithm occasionally re-
turns non-integer probabilities to invoke more sophisticated
domain-knowledge only at critical junctures.
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