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Abstract

People detection in single 2D images has improved
greatly in recent years. However, comparatively little
of this progress has percolated into multi-camera multi-
people tracking algorithms, whose performance still de-
grades severely when scenes become very crowded. In this
work, we introduce a new architecture that combines Con-
volutional Neural Nets and Conditional Random Fields to
explicitly model those ambiguities. One of its key ingredi-
ents are high-order CRF terms that model potential occlu-
sions and give our approach its robustness even when many
people are present. Our model is trained end-to-end and we
show that it outperforms several state-of-the-art algorithms
on challenging scenes.

1. Introduction
Multi-Camera Multi-Target Tracking (MCMT) algo-

rithms have long been effective at tracking people in com-
plex environments. Before the emergence of Deep Learn-
ing, some of the most effective methods relied on simple
background subtraction, geometric and sparsity constraints,
and occlusion reasoning [12, 6, 1]. Given the limited dis-
criminative power of background subtraction, they work
surprisingly well as long as there are not too many people in
the scene. However, their performance degrades as people
density increases, making the background subtraction used
as input less and less informative.

Since then, Deep Learning based people detection algo-
rithms in single images [23, 19, 28] have become among the
most effective [28]. However, their power has only rarely
been leveraged for MCMT purposes. Some recent algo-
rithms, such as the one of [27], attempt to do so by first
detecting people in single images, projecting the detections
into a common reference-frame, and finally putting them
into correspondence to achieve 3D localization and elimi-
nate false positives. As shown in Fig. 1, this is prone to er-
rors for two reasons. First, projection in the reference frame

is inaccurate, especially when the 2D detector has not been
specifically trained for that purpose. Second, the projection
is usually preceded by Non Maximum Suppression (NMS)
on the output of the 2D detector, which does not take into
account the multi-camera geometry to resolve ambiguities.

Ideally, the power of Deep Learning should be combined
with occlusion reasoning much earlier in the detection pro-
cess than is normally done. To this end, we designed a joint
CNN/CRF model whose posterior distribution can be ap-
proximated by Mean-Field inference using standard differ-
entiable operations. Our model is trainable end-to-end and
can be used in both supervised and unsupervised scenarios.

More specifically, we reason on a discretized ground
plane in which detections are represented by boolean vari-
ables. The CRF is defined as a sum of innovative high-
order terms whose values are computed by measuring the
discrepancy between the predictions of a generative model
that accounts for occlusions and those of a CNN that can in-
fer that certain image patches look like specific body parts.
To these terms, we add unary and pairwise ones to increase
robustness and model physical repulsion constraints.

To summarize, our contribution is a joint CNN/CRF
pipeline that performs detection for MCMT purposes in
such a way that NMS is not required. Because it explic-
itly models occlusions, our algorithm operates robustly even
in crowded scenes. Furthermore, it outputs probabilities of
presence on the ground plane, as opposed to binary detec-
tions, which can then be linked into full trajectories using a
simple flow-based approach [6].

2. Related Work
In this section, we first discuss briefly recent Deep

Learning approaches to people detection in single images.
We then move on to multi-image algorithms and techniques
for combining CNNs and CRFs.

2.1. Deep Monocular Detection
As in many other domains, CNN-based algorithms [23,

19, 22] have become very good for people detection in sin-



RCNN-2D/3D POM-CNN Ours
Figure 1. Multi-camera detection in a crowded scene. Even though there are 7 cameras with overlapping fields of view, baselines inspired by
earlier approaches—-RCNN-2D/3D by [27] and POM-CNN by [12], as described in Section 7.2—both generate false positives denoted by
red rectangles and miss or misplace a number of people, whereas ours does not. This example is representative of the algorithm’s behavior
and is best viewed in color. Please see supplementary material for results on a video sequence.

gle images and achieve state-of-the-art performance [28].
Algorithms in this class usually first propose potential can-
didate bounding boxes with scores assigned to them. They
then perform Non-Maximum Suppression (NMS) and re-
turn a final set of candidates. The very popular method
of [23] performs both steps in a single CNN pass through
the image. It returns a feature map in which a feature vector
of constant dimension is associated to each image pixel. For
any 2D bounding-box of any size in that image, a feature
vector of any arbitrary dimension can then be computed us-
ing Region Of Interest (ROI) pooling and fed to a classifier
to assess whether the bounding box does indeed correspond
to a true detection.

While this algorithm has demonstrated its worth on many
benchmarks, it can fail in crowded scenes such as the one of
Fig. 1. This is perennial problem of single-image detectors
when people occlude each other severely. One solution to
this problem is to rely on cameras with overlapping fields
of view, as discussed below.

2.2. Multi-Camera Pedestrian Detection
Here, we distinguish between recent algorithms that rely

on Deep Learning but do not explicitly account for occlu-
sions and older ones that model occlusions and geometry
but appeared before the Deep Learning became popular.
Our approach can be understood as a way to bring together
their respective strengths.

The recent algorithm of [27] runs a monocular detec-
tor similar to the one of [23] on multiple views and in-
fers people ground locations from the resulting detections.
However, this method is prone to errors both because the
2D detections are performed independently of each other
and because combining them by projecting them onto the
ground plane involves reprojection errors and ignores oc-
clusions. Yet, it is representative of the current MCMT
state-of-the-art and is benchmarked against much older al-
gorithms [12, 6] that rely on background subtraction instead
of a Deep Learning approach.

These older algorithms use multiple cameras with over-

lapping fields of view to leverage geometrical or appearance
consistency across views to resolve the ambiguities that
arise in crowded scenes and obtain accurate 3D localisa-
tion [12, 1, 21]. They rely on Bayesian inference and graph-
ical models to enforce detection sparsity. For example, the
Probabilisitic Occupancy Map (POM) approach [12] takes
background subtraction images as input and relies on Mean
Field inference to compute probabilities of presence in the
ground plane. More specifically, given several cameras with
overlapping fields of view of a discretized ground plane,
POM first performs background subtraction. It then uses
a generative model that represents humans as simple rect-
angles in order to create synthetic ideal images that would
be observed if people were at given locations. Under this
model of the image given the true occupancy, it approxi-
mates the probabilities of occupancy at every location using
Mean Field inference. Because the generative model ex-
plicitly accounts for occlusions, POM is robust and often
performs well. But it relies on background subtraction re-
sults as its only input, which is not discriminative enough
when the people density increases, as shown in Fig. 1. The
algorithm of [1] operates on similar principles as POM but
introduces more sophisticated human templates. Since it
also relies on background subtraction, it is subject to the
same limitations when the people density increases. And
so is the algorithm of [21] that introduces a more complex
Bayesian model to enhance the results of [1].

2.3. Combining CNNs and CRFs
Using a CNN to compute potentials for a Conditional

Random Field (CRF) and training them jointly for struc-
tured prediction purposes has received much attention in re-
cent years [18, 10, 11, 29, 2, 15, 17, 3]. However, properly
training the CRFs remains difficult because many interest-
ing models yield intractable inference problems. A popular
workaround is to optimize the CRF potentials so as to mini-
mize a loss defined on the output of an inference algorithm.
Back Mean-Field [11, 29, 2, 17] has emerged as a promis-
ing way to do this. It relies on the fact that the update steps



during Mean-Field inference are continuous and paralleliz-
able [4]. It is therefore possible to represent these opera-
tions as additional layers in a Neural Network and back-
propagate through it. So far, this method has mostly been
demonstrated either for toy problems or for semantic seg-
mentation with attractive potentials, whereas our approach
also requires repulsive potentials.

3. Modeling Occlusions in a CNN Framework
The core motivation behind our approach is to properly

handle occlusions, while still leveraging the power of CNNs
and on perfectly calibrated, fixed cameras. To do so, we
must model the interactions between multiple people who
occlude each other but may not be physically close to each
other. Our solution is to introduce an observation space;
a generative model for observations given where people are
located in the ground plane; and a discriminative model that
predicts expected observations from the images. We then
define a loss function that measures how different the CNN
predictions are from those generated by the model. Finally,
we use a Mean-Field approach with respect to probabilities
of presence in the ground plane to minimize this loss. We
cast this computation in terms of minimizing the energy of
a Conditional Random Field in which the interactions be-
tween nodes are non-local because the people who occlude
each other may not be physically close, which requires long
range high-order terms.

In the remainder of this section, we first introduce the
required notations to formalize our model. We then define
a CRF that only involves high-order interaction potentials.
Finally, we describe a more complete one that also relies on
unary and pairwise terms.

3.1. Notations
We discretrize the ground plane in grid cells and intro-

duce Boolean variables that denote the presence or absence
of someone in the cell. Let us therefore consider a dis-
cretized ground plane containing N locations. Let Zi be
the boolean variable that denotes the presence of someone
at location i. Let us assume we are given C RGB images
Ic of size Hc ×W c from multiple views 1 ≤ c ≤ C and
I = {I1, . . . , IC}. For each ground plane location i and
camera c, let the smallest rectangular zone containing the
2D projection of a human-sized 3D cylinder located at i be
defined by its top-left and bottom-right coordinates T ci and
Bci . For a pixel k ∈ {1, . . . ,Hc} × {1, . . . ,W c}, let Lck be
the set of such projections that contain k.

We also introduce a CNN that defines an operator
F(·; θF ), which takes as input the RGB image of camera
c and outputs a feature map Fc = F(Ic; θF ), where θF de-
notes the network’s parameters. It contains a d-dimensional
vector Fck for each pixel k.

LEARNING

INFERENCE

Generative Model

Discriminative Model
Figure 2. Schematic representation of our High-Order potentials
as described in Section 3.2.2. See supplementary material.

3.2. High-Order CRF
We take the energy of our CRF to be a sum of High-

Order potentials ψc,kh , one for each pixel. They handle
jointly detection, and occlusion reasoning while removing
the need for Non-Maximum Suppression. Each of these po-
tentials use Probability Product Kernels [13] to represent
the agreement between a generative model and a discrimi-
native model over the observation space, at a given pixel,
as depicted in Fig. 2. We therefore write

P (Z; I) =
1

Z
expψh(Z;F(I; θF )) , (1)

ψh(Z;F) =
∑

1≤c≤C,k∈{1,...,Hc}×{1,...,W c}

ψc,kh (Z;Fck) .

Assuming we know the values of the occupancy variables
Z, the generative model computes distributions over the set
of observations. For each pixel in each image, it computes a
distribution over possible 2D vectors representing observed
bounding-box regions. To this end, it considers the loca-
tions such that Zi = 1, crossing the corresponding line of
sight, and uses the simple generative occlusion model de-
scribed below. This results in images whose pixels are vec-
tors representing a distribution of 2D vectors, the observa-
tions, as depicted in the top row of Fig 2. Our discrimina-
tive model relies on a CNN which tries to predict similar
distributions of 2D vectors, directly by looking at the im-
age. For ease of understanding, we first present in more
details a simple version of our High-Order potentials ψc,kh .
It assumes that our observations are zeros and ones at ev-
ery pixel. The discriminative model therefore acts much as
the background subtraction algorithms used in [12] did. We
then extend them to take into account the 2D vector output
of our discriminative model.



3.2.1 Simple Generative Model
We first introduce a binary observation variable Xc

k ∈
{0, 1} over which we define two distributions P g and P d

produced by the generative and discriminative model re-
spectively. We take the distribution P g to be

P g(Xc
k = 1|Z) = 0, if Zi = 0 ∀i ∈ Lck , (2)

P g(Xc
k = 1|Z) = 1 otherwise,

and the discriminative one P d to be P d(Xc
k|Fck) =

fb(Fck; θb), where F ck is the d-dimensional feature vector
associated to pixel k introduced above and fb is a Multi-
Layer Perceptron (MLP) with weights θb. In other words,
fb plays the role of a CNN-based semantic segmentor or
background-subtraction.

For each pixel, we then take the high-order potential to
be the dot product between the distributions

ψc,kh (Z;Fck) = µh log

∫
Xc

k ∈ {0, 1}

P g(Xc
k|{Zi}i∈Lc

k
)P d(Xc

k|Fck) , (3)

as in the probability product kernel method of [13]. Intu-
itively, ψc,kh is high when the segmentation produced by the
network matches the projection of the detections in each
camera plane using the simple generative model of Eq. 2.
µh is an energy scaling parameter.

3.2.2 Full Generative Model
The above model correctly accounts for occlusions and ge-
ometry but ignores much image information by focusing on
background / foreground decisions. To refine it, we model
the part of the bounding-box a pixel belongs to rather than
just the fact that it belongs to a bounding-box. To this end,
we redefine the Boolean auxiliary variable Xc

k as

~Xc
k ∈ {0} ∪ R2 , (4)

where the label 0 represents background as before, and a la-
bel in R2 denotes the displacement with respect to the center
of the body of the visible person at this pixel location.

To extend the simple model and account for what part
of a bounding-box pixel k belongs to if it does, we sample
from the distribution P g( ~Xc

k|{Zi}i∈Lc
k
). To this end, let us

assume without loss of generality that the Lck are ordered
by increasing distance to the camera, as shown in the top
left corner of Fig. 2. We initialize the variables ~Xc

k to 0.
Then, for each i in Lck such that Zi = 1, we draw a boolean
random variable Oi with fixed expectancy o. If Oi = 1,
then

~Xk = ~xik , (5)

=

(
kx − 0.5(T ci x +Bci x)

Bci x − T ci x
;
ky − 0.5(T ci y +Bci y)

Bci y − T ci y

)
,

that is, the relative location of pixel k with respect to the
projection of detection i in camera c, as depicted in the up-
per right corner of Fig. 2.

We define the distribution P d( ~Xk|Fck) as an M -Modal
Gaussian Mixture

P d( ~Xk = 0) = fb(Fck ; θb) , (6)

P d( ~Xk| ~Xk 6= 0) =
∑

1≤m≤M

fh(Fck ; θh)mN ( ~Xk − αm;σm) ,

as depicted in the bottom right corner of Fig. 2. As a re-
sult, P d( ~Xk = 0) is the same as in the simple model but
P d( ~Xk| ~Xk 6= 0) encodes more information. (αm, σm) are
Gaussian parameters learned for each modem. fh is a MLP
parametrized by θh that outputs M normalized real proba-
bilities where M is a meta-parameter of our model. Simi-
larly, fb(Fck; θb) is a background probability.

Finally, as in Eq. 3, we take our complete potential to be

ψc,kh (Z;Fck) = µh log

∫
~Xk ∈ {0} ∪ R2

P g( ~Xk|{Zi}i∈Lc
k
)P d( ~Xk|Fck) . (7)

3.3. Complete CRF
To increase the robustness of our CRF, we have found it

effective to add, to the high-order potentials of Eq. 1, unary
and pairwise ones to exploit additional image information.
We therefore write our complete CRF model as

P (Z; I) =
1

Z expψ(Z;F) , (8)

ψ(Z;F) = ψh(Z;F) +
∑
i≤N

ψiu(Zi;F) +
∑

i≤N,j≤N

ψp(Zi, Zj),

where ψh is the high-order CRF of Eq. 1, the ψiu are unary
potentials, and ψp pairwise ones, which we describe below.

3.3.1 Unaries
The purpose of our unary potentials is to provide a prior
probability of presence at a given location on the ground,
before considering the occlusion effect and non maximum
suppression. For each location i and camera c, we use a
CNN fu(T ci , B

c
i ,Fc), with parameters θu, which outputs a

probability of presence of a person at location i. fu works
by extracting a fixed size feature vector from the rectan-
gular region defined by T ci , B

c
i in Fc, using an ROI pooling

layer [23]. A detection probability is finally estimated using
an MLP. Estimates from the multiple cameras are pooled
through a max operation

ψiu(Zi;F) = µuZi max
c

log
fu(T ci , B

c
i ,Fc)

1− fu(T ci , B
c
i ,Fc)

, (9)

where µu is a scalar that controls the importance of unary
terms compared to others.



3.3.2 Pairwise
The purpose of our pairwise potentials is to represent the
fact that two people are unlikely to stand too close to each
others. For all pairs of locations (i, j), let Ei,jp = Ep[|xi −
xj |; |yi − yj |], where Ep is a 2D kernel function of of pre-
defined size. We write

ψp(Zi, Zj) = −Ei,jp ZiZj (10)

for locations that are closer to each other than a predefined
distance and 0 otherwise.

4. Inference and Derivation
Given the CRF of Eq. 8 and assuming all parameters

known, finding out where people are in the ground plane
amounts to minimizing ψ with respect to Z, the vector of
binary variables that indicates which ground locations con-
tain someone, which amounts to computing a Maximum-
a-Posteriori of the posterior P . Instead of doing so di-
rectly, which would be intractable, we use Mean-Field in-
ference [26] to approximate P by a fully-factorised distri-
butionQ. As in [12], this produces a Probability Occupancy
Map, that is, a probability of presence Q(Zi = 1), at each
location, such as the one depicted by Fig. 3.

(a) (b)
Figure 3. Output. (a) Given a set of images of the same scene,
ours algorithm produces a Probabilistic Occupancy Map, that is, a
probability of presence at each location of the ground plane. Red
values indicate probabilities close to 1 and blue ones values close
to zero. (b) Because the probabilities are very peaked, they can
easily be thresholded to produce detections whose projections are
the green boxes in the original image(s).

To perform this minimization, we rely on the natural-
gradient descent scheme of [4]. It involves taking gradient
steps that are proportional to

∇ηi = EQ [(ψ(Z,F)) |Zi = 1]−EQ [(ψ(Z,F)) |Zi = 0] , (11)

for each location i. The contribution to ∇ηi of the unaries
derives straightforwardly from Eq. 9. Similarly, the one of
the pairwise potentials of Eq. 10 is

(∇ηi)p = −
∑
j

Ei,jp Qj(Zj = 1) , (12)

= −
∑
j

Ep[|xi − xj |, |yi − yj |]Qj(Zj = 1) ,

which can be implemented as a convolution over the current
estimate of the probabilistic occupancy map Q with the two
dimensional kernel Ep[., .]. This makes it easy to unroll the
inference steps using a Deep-Learning framework.

Formulating the contributions of the higher-order terms
of Eq. 7 is more involved and requires simplifications. We
first approximate the Gaussians used in Eq. 6 by a func-
tion whose value is 1 in Bm and ε elsewhere, where Bm
is the rectangle of center αm and half-size 3σm. Note that
this approximation is only used for inference purposes, and
that during training, it keeps its original Gaussian form. We
then threshold the Gaussian weights fh resulting in the bi-
nary approximation f̃h. This yields a binary approxima-
tion P̃ d( ~Xk) of P d( ~Xk). Note that the corresponding ap-
proximate potential ψ̃c,kh (Z,Fck) can be either O(log ε), if
P ( ~Xk, bk = 1;Z) = 0 for all ~Xk such that P d( ~Xk) > ε or
O(log(1)). Hence, the configurations where ψc,kh (Z,Fck) =
O(log ε) will dominate the others when computing the ex-
pectancies. This yields the approximation of Eq. 11,

∇̃ηi = −C(EQ [∆(Z)|Zi = 1]− EQ [∆(Z)|Zi = 0]) , (13)

where C = −logε is a constant and ∆(Z) is a binary ran-
dom variable, which takes value 1 if ψ̃c,kh (Z,Fck) = 0, and
0 otherwise. Note that ψc,kh (Z,Fck) = O(log(1)) iff

∃i ≤ N,m ≤M s.t f̃h(Fck ; θh)m = 1 and ~Xi
k ∈ Bm . (14)

This means that for each pixel k, given a thresholded out-
put from the network f̃h(Fck; θh), we obtain a list of compat-
ible explanations Ck ⊂ {1, . . . , N} such that pixel k defines
a very simple pattern-based potential of the form 1 if Zi =
0 ∀i ∈ Ck, 0 otherwise, which is similar to the potentials
used in the Mean-Fields algorithms of [25, 12, 16, 2, 5]. In
the supplementary material, we see how this operation can
be implemented efficiently using common Deep-Learning
operations and integral-images.

5. Training
We now show how our model can be trained first in a

supervised manner and then in an unsupervised one.

5.1. Supervised Training
Let us first assume that we observe D data points

(Z0, I0), . . . , (ZD, ID), where Id represents a multi-view
image and Zd the corresponding ground truth presences.
The purpose of training is then to optimize the network pa-
rameters θF , θu, θh defined in Sections 3.1, 3.3.1 and 3.2.2
respectively, the gaussian parameters α, σ of Eq. 6 and the
energy-scaling meta-parameters µu, µh of Eqs. 9 and 3 to
maximize

∑
d≤D

logP (Zd; Id). It cannot be done directly

using Eq. 8 because computing the partition function Z is
intractable.



Back Mean-Field An increasingly popular work-around
is to optimize the above-mentioned parameters to ensure
that the output of the Mean-Field inference fits the ground
truth. In other terms, let QθF ,θu,θh,α,σ(Z; I) be the distribu-
tion obtained after inference . We look for

argmax
θF ,θu,θh,α,σ

∑
(Zd,Id)

logQθF ,θu,θh,α,σ(Z = Zd; Id) . (15)

Since QθF ,θu,θh,α,σ(Z = Zd; Id) is computed via a se-
quence of operations which are all differentiable with re-
spect to the parameters θF , θu, and θh, it is therefore possi-
ble to solve Eq. 15 by stochastic gradient descent [11, 29].

Pre-training However, it still remains difficult to opti-
mize the whole model from scratch. We therefore pre-train
our potentials separately before end-to-end fine-tuning.
More precisely, the CNN fu that appears in the unary terms
of Eq. 9 is trained as a standard classifier that gives the
probability of presence at a given location, given the pro-
jection of the corresponding bounding-box in each camera
view. For each data point, this leaves the high-order terms
for which we need to optimize∑

c

∑
k∈Pc

log(ψc,kh (Zd,Fck)) , (16)

with respect to the parameters of the Gaussian Mixture net-
work θh, α, and σ. We use Jensen’s inequality to take our
generative distribution P g out of the integral in Eq. 7 and
approximate it by random sampling procedure described in
Section 3.2.2. We rewrite the set of samples for ~Xc

k from all
the pixels from all the cameras from all the data-points as
S(Z0, . . . , ZD). The optimization objective of Eq. 16 can
then be rewritten as∑

~xs∈S(Z0,...,ZD)

log(P d(~xs|Fck, θh, α, σ)) , (17)

which is optimized by alternating a standard stochastic gra-
dient descent for the θh parameters and a closed form batch
optimization for α, σ. This procedure is similar to one of-
ten used to fit a Mixture of Gaussians, except that, during
the E-Step, instead of computing the class probabilities di-
rectly to increase the likelihood, we optimise the parameters
of the network through gradient descent. More details are
provided in the supplementary material.

This pre-training strategy creates potentials which are
reasonable but not designed to be commensurate with each
others. We therefore need to choose the two energy param-
eters scalars µu, and µh, via grid-search in order to optimize
the relative weights of Unary and High-Order potentials be-
fore using the Back-Mean field method.

5.2. Unsupervised Training
In the absence of annotated training data, inter-view con-

sistency and translation invariance still provide precious
a-priori information, which can be leveraged to train our
model in an unsupervised way.

Let us assume that the background-subtracting part of
the network, which computes fb, the MLP introduced in
Section 3.2.2, is reasonably initialized. In practice, it is
easy to do either by training it on a segmentation dataset
or by relying on simple background subtraction to compute
fb. Then, starting from initial values of the parameters θ, we
first compute the Mean-Field approximation of P (Z; I0, θ),
which gives us a first lower bound of the partition function.
We then sample Z from Q and use that to train our poten-
tials separately as if these samples were ground truth-data,
using the supervised procedure of Section 5.1. We then iter-
ate this procedure, that is, Mean-Field inference, sampling
fromZ, and optimizing the potentials sequentially. This can
be interpreted as an Expectation-Maximization (EM) [7]
procedure to optimize an Expected Lower Bound (ELB) to
the partition function Z of Eq. 8.

6. Implementation Details

Our implementation uses a single VGGNet-16 Network
with pre-trained weights. It computes features that will then
be used to estimate both unary and pairwise potentials. The
features map Fc = F(Ic; θF ) is obtained by upsampling of
the convolutional layers.

Similarly to the classification step in [23], we restrict the
Region-Of-Interest pooling layer (ROI) to the features from
the last convolutional layer of VGGNet. The output of the
ROI is a 3x3x1024 tensor, which is flattened and input to
a two layers MLP with ReLU non-linearities. In a similar
way as in previous works on segmentation [29], we use a
two layers MLP to classify each hyper-column of our dense
features map Fc = F(Ic; θF ) to produce segmentation fb
and Gaussian Class fh probabilities.

We use M = 8 modes for Multi-Modal Gaussian dis-
tribution of Eq. 6 for all our experiments and we have not
assessed the impact of this choice on the performance. Be-
sides, our kernel defining the pairwise potentials of Eq. 10
takes an arbitrary uniform constant value. For unsupervised
training, we use a fixed number of 6 EM iterations, which
we empirically found to be enough, as illustrated in the sup-
plementary material.

Finally, all our pipeline is implemented end-to-end using
standard differentiable operations from the Theano Deep-
Learning library [24]. For Mean-Field inference, we use a
fixed number of iterations (30) and step size (0.01).



7. Evaluation
7.1. Datasets, Metrics, and Baselines

We introduce here the datasets we used for our experiments,
the metrics we relied on to evaluate performance, and the
baselines to which we compared our approach.

Datasets.

• ETHZ. [8] It was acquired using 7 cameras to film
the dense flow of students in front of the ETHZ main
building in Zürich for two hours. It comprises 250 an-
notated temporal 7-image frames in which up to 30
people can be present at a time. We used 200 of these
frames for training and validation and 50 for evalua-
tion. See the image of Fig. 1 for a visualization.

• EPFL. The images were acquired at 25 fps on the ter-
race of an EPFL building in Lausanne using 4 DV cam-
eras. The image of Fig. 3 is one of them. Up to 7 peo-
ple walk around for about 3 1/2 minutes. As there are
only 80 annotated frames, we used them all for evalu-
ation purposes and relied either on pre-trained models
or unsupervised training.

• PETS. The standard PETS 2009 (PETS S2L1) is
widely used for monocular and multi-camera detec-
tion. It contains 750 annotated images and was ac-
quired from 7 cameras. It is a simple dataset in the
sense that it is not very crowded, but the calibration is
inaccurate and the image quality low.

Metrics. Recall from Section 4, that our algorithms pro-
duces Probabilistic Occupancy Maps, such as the ones of
Fig. 3. They are probabilities of presence of people at
ground locations and are very peaky. We therefore simply
label locations where the probability of presence is greater
than 0.5 as being occupied and will refer to these as de-
tections, without any need for Non-Maximum suppression.
We compute false positive (FP), false negative (FN) and true
positives (TP) by assigning detections to ground truth using
Hungarian matching. Since we operate in the ground plane,
we impose that a detection can be assigned to a ground
truth annotation only if they are less than a distance r away.
Given FP, FN and TP, we can evaluate:

• Multiple Object Detection Accuracy (MODA)
which we will plot as a function of r, and the Multiple
Object Detection Precision (MODP) [14].

• Precision-Recall. Precision and Recall are taken to be
TP/(TP + FN) and TP/(TP+FP) respectively.

We will report MODP, Precision, and Recall for r = 0.5,
which roughly corresponds to the width of a human body.

Note that these metrics are unforgiving of projection errors
because we measure distances in the ground plane, which
would not be the case if we evaluated overlap in the image
plane as is often done in the monocular case. Nevertheless,
we believe them to be the metrics for a multi-camera system
that computes the 3D location of people.

Baselines and Variants of our Method. We imple-
mented the following two baselines.

• POM-CNN. The multi-camera detector [12] described
in Section 2.2 takes background subtraction images as
its input. In its original implementation, they were
obtained using traditional algorithms [30, 20]. For
a fair comparison reflecting the progress that has oc-
curred since then, we use the same CNN-based seg-
mentor as the one use to segment the background, that
is fb(Fck; θb)0 from Eq. 6.

• RCNN-2D/3D. The recent work of [27] proposes a
MCMT tracking framework that relies on a powerful
CNN for detection purposes [23], as discussed in Sec-
tion 2.2. Since the code of [27] is not publicly avail-
able, we reimplemented their detection methodology
as faithfully as possible but without the tracking com-
ponent for a fair comparison with our approach that
operates on images acquired at the same time. Specif-
ically, we run the 2D detector [23] on each image. We
then project the bottom of the 2D bounding box onto
the ground reference frame as in [27] to get 3D ground
coordinates. Finally, we cluster all the detections from
all the cameras using 3D proximity to produce the final
set of detections.

To gauge the influence of the different components or
our approach, we compared these baselines against the fol-
lowing variants of our method.

• Ours. Our method with all three terms in the CRF
model turned on, as described in Section 3.3, and
fine tuned end-to-end through back Mean-Field, as de-
scribed in Section 5.1.

• Ours-No-FT. Ours without the final fine-tuning.

• Ours-Unsuperv. Same as Ours-No-FT but the train-
ing is done without ground truth annotations, as de-
scribed in Section 5.2.

• Ours-Simple-HO : We replace the full High-Order
term of Section 3.2 with the simplified one that approx-
imates the one of [12], as described at the beginning of
that section.

• Ours-No-HO. We remove the High-Order term of
Section 3.2 altogether.



ETHZ EPFL PETS

ETHZ EPFL PETS
Method Precision / Recall MODP Precision / Recall MODP Precision / Recall MODP

Ours 95 / 80% 53.8% - - - -
Ours-No-FT 93 / 80% 53.4% 88 / 82% 48.3% 93 / 87% 60.4%

Ours-Unsuperv 86 / 80% 49.8% 80 / 85% 47.5% - -
Ours-Simple-HO 87 / 70% 47.5% 85 / 75% 43.2% 93 / 87% 60.4%

Ours-No-HO 84 / 55% 34.4% 37 / 68% 23.3% 93 / 81% 55.2%
POM-CNN 75 / 55% 30.5% 80 / 78% 45.9% 90 / 86% 42.9%

RCNN-2D/3D 68 / 43% 18.4% 39 / 50% 21.6% 50 / 63% 27.6%

Figure 4. Results on our three test datasets. Top row. MODA scores for the different methods as function of the radius r used to compute
it, as discussed in Section 7.1. Bottom row. Precision/Recall and MODP for the different methods for r = 0.5. Some of the values are
absent either due to the bad calibration of the data-set, or missing ground-truth, as explained in Sections 7.1 and 7.2. The numbers we
report for the RCNN-2D/3D baseline are much lower than those reported in [27] for the method that inspired it, in large part because we
evaluate our metrics in the ground plane instead of the image plane and because [27] uses a temporal consistency to improve detections.

7.2. Results

We report our results on our three test datasets in Fig. 4.

ETHZ. Ours and Ours-No-FT clearly dominate the
RCNN-2D/3D and POM-CNN baselines, with Ours
slightly outperforming Ours-No-FT because of the fine-
tuning. Simplifying the high-order term, as in Ours-
Simple-HO, degrades performance and removing it, as in
Ours-No-HO, degrades it even more. The methods dis-
cussed above rely on supervised training, whereas Ours-
Unsuperv does not but still outperforms the baselines.

EPFL. Because the images have different statistics than
those of ETHZ, the unary terms as well as the people de-
tector RCNN-2D/3D relies on are affected. And since there
is no annotated data for retraining, as discussed above, the
performance of Ours-No-HO and RCNN-2D/3D drop very
significantly with respect to those obtained on ETHZ. By
contrast, the high order terms are immune to this, and both
Ours-No-FT and Ours-Unsuperv hold their performances.

PETS. The ranking of the methods is the same as before
except for the fact that Ours-Simple-HO does as well as
Ours-No-FT. This is because the PETS dataset is poorly
calibrated, which results in inaccurate estimates of the dis-
placement vectors in the generative model of Section 3.2.2.
As a result, it does not deliver much of a performance boost
and we therefore did not find it meaningful to report results
for unsupervised training and fine-tuning of these High-
Order potentials.

From Detections to Trajectories. Since our method pro-
duces a Probability Occupancy Map for every temporal
frame in our image sequences, we can take advantage of
a simple-flow based method [6] to enforce temporal consis-
tency and produce complete trajectories. As shown in Fig. 5
this leads to further improvements for all three datasets.

Method ETHZ EPFL PETS
Ours 74.1% 68.2% 79.8%
Ours + [6] 75.2% 76.9% 83.4%

Figure 5. MODA scores for r = 0.5 before and after enforcing
temporal consistency.

8. Discussion

We introduced a new CNN/CRF pipeline that outper-
forms the state-of-the art for multi-camera people localiza-
tion in crowded scenes. It handles occlusion while taking
full advantage of the power of a modern CNN and can be
trained either in a supervised or unsupervised manner.

A limitation, however, is that the CNN used to compute
our unary potentials still operates in each image indepen-
dently as opposed to pooling very early the information
from multiple images and then leveraging the expected ap-
pearance consistency across views. In future work, we will
explore the multi-camera regression method of [9] to im-
prove unary potentials.

This work was supported in part by the Swiss National Science Foun-
dation, under the grant CRSII2-147693 “Tracking in the Wild”.
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Output of the Gaussian density discriminative network.

As expected the colors of the learned Gaussian classes in Fig. 3 match those predicted by
the Network in Fig. 2. We see that our learning algorithm indeed identified several Gaussian
classes which can be interpreted as “Left Head and Shoulders”, “Right Head and Shoulders”,
“Right Flank” etc...

1 Detailed Explanation
This document illustrates the output of our Gaussian discriminative model and the learned Gaussian
parameters.
The semantic segmentation of Fig. 1 corresponds to the output of the Background/Foreground seg-
mentation Network. It is used in the “simple” occlusion model to compute

P d(Xk = 0) = fb(Fc
k; θb) ,

and in the “full” model to compute

P d( ~Xk = 0) = fb(Fc
k; θb) .

Figure 1: Semantic segmentation fb(Fc
k; θb).

The Network output of Fig. 2 represents the Gaussian class output by the network to compute
P d( ~Xk| ~Xk 6= 0). More precisely, each pixel is colored proportionaly to,

fh(Fc
k; θh)m(1− fb(Fc

k; θb)) ,

1



where each Gaussian class m corresponds to a different RGB color. For convenience of representa-
tion, we only display 3 Gaussian classes out of 8 used in total.

Figure 2: Gaussian Network output fh(Fc
k; θh)m(1− fb(Fc

k; θb)). We see that the pixels have been
correctly identified as belonging to one of the three represented body-part, colored in Red, Green
and Blue. We see that Yellow pixels appear, which correspond to pixels classified both as Red and
Green.

Finally, we propose, in Fig. 3, to visualise the Gaussian parameters learned during training. To
do so, we represent a projected bounding box centred in 0 of size H ×W . We then use a specific
color to highlight the set of pixels which would vote for this bounding-box through each Gaussian
element. For instance, the pixels k colored in red, where red corresponds to Gaussian class m = 1,
are those such that,

‖xk − α1x‖2

2(Hσ1x)2
+
‖yk − α1y‖2

2(Wσ1y)2
≤ 1 .

This representation has to be put in regards with the discriminative/generative correspondence.
Indeed, let us assume that there is a single person in the image, with its single corresponding pro-
jected bounding-box in the camera plane. The discriminative model then matches the generative one
if the network “colors” the pixels inside the bounding-box as in Fig 3.

H

W
Figure 3: Representation of the learned three learned Gaussians with colors corresponding to the
classes of Fig. 2.
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2 Results

Figure 4: Camera 1. Gaussians 1,2 and 3 represented.
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Figure 5: Camera 2. Gaussians 1,2 and 3 represented.
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Figure 6: Camera 3. Gaussians 4,5 and 6 represented.
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Figure 7: Camera 4. Gaussians 4,5 and 6 represented.
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Regression with Gaussian Mixture Networks

In this document, we provide technical details about the discriminative model P d and its opti-
misation. Recall that P d( ~Xk| ~Xk 6= 0) is a Gaussian Mixture probability distribution in R2, where
the weight of each Gaussian is predicted by a Neural Network.

We therefore need to learn the parameters of the probability distribution

P d( ~Xk| ~Xk 6= 0) =
∑

1≤m≤M

fh(Fc
k; θh)mN ( ~Xk − αm;σm) , (1)

namely, the Gaussian parameters αm and σm for each mode indexm, and the network parameters θh.

Following Eq.17 of the main paper, we treat each pixel as an independent data-point ~xs. S =
S(Z0, . . . , ZD) denotes the set of those data-points. In this section, we assume that we have access
to a label in R2, for each data-point ~xs. We recall that this label is generated by sampling of the
generative model, given ground truth detections Z.

The procedure that we use to optimise the following loss derived from Eq.17

R(θh, α, σ) = −
∑

(~xs∈S

log(P d(~xs|Fcs
ks
, θh, α, σ)) , (2)

follows the same principles as the standard Gaussian Mixture regression model via Expectation-
Maximization algorithm [1] and is also closely related to the recent Neural Decision Forests [2],
which introduce a Network producing a probability distribution in the form of a mixture of His-
tograms.

Updating the Network Parameters We update the parameters of the network θh by direct back-
propagation and stochastic gradient descent on the objective of Eq. 2.

Updating the Gaussian Parameters Let αt and σt denote the current estimates of the the Gaus-
sian parameters. We derive a closed form update which guarantees that

R(θh, α
t+1, σt+1) ≤ R(θh, α

t, σt) . (3)

For each data point ~xs, let us introduce the distribution over the mixture elements m,

ξt(m|~xs,Fcs
ks
, θh, α

t, σt) =
fh(Fcs

ks
; θh)mN (~xs − αt

m;σt
m)∑

1≤m′≤M
fh(Fcs

ks
; θh)m′N (~xs − αt

m′ ;σt
m′)

(4)

usually called “responsibilities” in the GMM litterature.
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We then use the standard variational trick with the auxiliary distribution ξt(m) to minimise an
upper-bound onR(θh, α, σ), with respect to the parameters α and σ.

R(θh, α, σ) = −
∑
~xs∈S

log

 ∑
1≤m≤M

fh(Fcs
ks
; θh)mN (~xs − αm;σm)


= −

∑
~xs∈S

log

 ∑
1≤m≤M

ξt(m|~xs)
fh(Fcs

ks
; θh)mN (~xs − αm;σm)

ξt(m|~xs)


≤ −

∑
~xs∈S

∑
1≤m≤M

ξt(m|~xs) log
(
fh(Fcs

ks
; θh)mN (~xs − αm;σm)

ξt(m|~xs)

)

≤ R(θh, α
t, σt)−

∑
~xs∈S

∑
1≤m≤M

ξt(m|~xs) log
(
N (~xs − αm;σm)

N (~xs − αt
m;σt

m)

)
(5)

Minimizing Eq. 5 with respect to α and σ is a convex problem. Assuming that we can find the
values achieving the minimum, let us set αt+1 and σt+1 to these. Then, from Eq. 5, we obtain

R(θh, α
t+1, σt+1) ≤ R(θh, α

t, σt) ,

with equality if and only if αt+1 = αt and σt+1 = σt.
We therefore need to minimize Eq. 5 with respect to α and σ, which is equivalent to maximizing∑

~xs∈S

∑
1≤m≤M

ξt(m|~xs) log (N (~xs − αm;σm)) ,

with respect to the parameters α and σ. This is done by using the standard optimality conditions for
convex problems. We obtain

αt+1
m =

∑
~xs∈S

ξt(m|~xs)~xs∑
~xs∈S

ξt(m|~xs)
, (6)

and,

σt+1
m =

∑
~xs∈S

ξt(m|~xs)(~xs − αt+1
m )2∑

~xs∈S
ξt(m|~xs)

. (7)

Alternating both In practice, we alternate one epoch of stochastic gradient descent optimizing the
network parameters θh with one update of the Gaussian parameters of Eqs. 6 and 7. For memory
usage reasons, the sums in Eqs. 6 and 7, have to be split into mini-batches. However the update is
done after summation over the whole dataset or a very large number of samples.
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Efficient differentiable implementation of Mean-Field
inference for High-Order Potentials.

In this document, we concisely explain how Mean-Fields (MF) inference can be efficiently im-
plemented with the High-Order potentials described in the main paper.

More precisely, for each pixel k and location i, we seek to compute efficiently the approximated
natural gradient term

∇̃ηi
k

= −Ck
(
EQ

[
∆k(Z)|Zi = 1

]
− EQ

[
∆k(Z)|Zi = 0

])
, (1)

and then sum these terms for every pixel to obtain the approximated natural gradient ∇̃ηi.

Computing each natural gradient term Recall that ∆k(Z) is a function of Z which takes value
0 if one of the “compatible explanations” for pixel k is present and 1 otherwise. Also, recall that we
say that an explanation Zi is compatible if a presence in Zi gets projected on the camera plane in
such a way that it matches the observation at pixel k produced by the discriminative model. Let Ck
denote the list of indices j ∈ {1, . . . , N} such that a presence in Zj is a compatible explanation for
the observation at pixel k.

Let us consider pixel k and location i. If location i is not compatible with pixel k (i.e. i /∈ Ck),

then the value taken by Zi has no impact on ∆k(Z) and therefore ∇̃ηi
k

= 0.
Let us assume that i ∈ Ck. Then,

EQ

[
∆k(Z)|Zi = 1

]
= 0

and,

EQ

[
∆k(Z)|Zi = 0

]
=

∏
j∈Ck/i

(1−Q(Zj = 1))

=

∏
j∈Ck(1−Q(Zj = 1))

1−Q(Zi = 1)
, (2)

where the first equation the fact that the MF distribution Q is fully factorized.

Computing Updates for all variables in two steps Computing the gradient term of Eq. 2 directly
would require a large multiplication for each pixel, which would be inefficient. However, we remark
that the numerator of Eq. 2, doesn’t depend on the chosen i, and its denominator doesn’t depend on
k. We therefore proceed using the two following steps

• For each pixel k, we compute

δk =
∏
j∈Ck

(1−Q(Zj = 1)) . (3)
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• Then, for each variable index i, we compute the sum over all pixels

∇̃ηi =
1

1−Q(Zi = 1)

∑
k|i∈Ck

δk . (4)

Note that these operations are all differentiable with respect to the MF distribution Q and to the
parameter Ck, which makes it possible to back-propagate the gradient through the MF iterations.

Furthermore, since the Gaussians were approximated for inference by constant terms, on a rect-
angular zones, the sum of Eq. 4, can be computed efficiently using integral images.
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RCNN-2D/3D : Projecting 2D 
detections form one image to 3D on 
the ground plane is prone to large 
localization errors, especially when 

POM : The POM method uses 
background subtraction (or 
semantic segmentation in this case) 
as its sole input. Therefore, in 
crowded scenes, or when a single 
camera covers the target, it may fail 
to correctly reason about the 
number of people and their location.

DeepOcclusion : Ou method is able 
to reason directly in 3D, using 
features extracted by a Deep 
Network.


