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Abstract —We propose a new learning strategy for object detection. The proposed scheme forgoes the need to train a collection of
detectors dedicated to homogeneous families of poses, and instead learns a single classifier that has the inherent ability to deform
based on the signal of interest. We train a detector with a standard AdaBoost procedure by using combinations of pose-indexed
features and pose estimators. This allows the learning process to select and combine various estimates of the pose with features able
to compensate for variations in pose without the need to label data for training or explore the pose space in testing. We validate our
framework on three types of data: hand video sequences, aerial images of cars as well as face images. We compare our method to a
standard boosting framework, with access to the same ground truth, and show a reduction in the false alarm rate of up to an order of
magnitude. Where possible, we compare our method to the state-of-the art, which requires pose annotations of the training data, and
demonstrate comparable performance.

Index Terms —Image Processing and Computer Vision, Machine Learning, Object Detection.
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1 INTRODUCTION on the other hand, finer partitions result in increased pmpul

. . . tion size requirements. These techniques therefore compel
UCCESSFUL techniques for object detection are base . - :
. . radeoff between the granularity of the partition and thee si
n machine learning. Though progress has been ma

of the training data. Equally troublesome is the fact thatéh

in reliably detecting ObJ.ECtS with a sm_gle pose€, ha.nd“ngpproaches are burdened by the need to annotate data during
complex cases where object appearance is altered by V'BWp&)r'aining and by a more costly training. As a result, dealing

changes or deformations, has proven more difficult. ThisepaRNith a fine oartition of a rich pose space quickly becomes
describes a framework which makes headway toward detectin P P P q y

; . o Nfactable using such a strategy.
objects regardless of their pose. We specifically addrese th 9 . oy
S : ; . Recently, the authors in [8] present a framework centered
types of pose variations: deformations, in-plane rotatiand

. : on pose-indexedeatures. The key idea revolves around ana-
a limited range of out-of-plane rotation.

- _lytically parameterizing the detector’s constituent teas with
There are a number of recent works in literature proposn%

) . o ose. This avoids the need to partition the pose space and
methods for dealing with pose variations. One common threg P P P P

tth ks is that lecti f detector$, ables training to be carried out on the entire unfragnaente
among most these works 1S that a coflection of delectors) €ag,, get, Nevertheless, the procedure still requires theetda

tralrlﬁd for a single pose, is craftily combined in one form q[, - Jioiaq for training while a search over the pose space
another. is required for testing.

Some approaches [.31]’ [.35]’ [10] employ a two  stage e propose a new approach which consists of treating pose
framework where pose is estimated as part of a first stage anY\; collection of hidden variables and designing a family
a corresponding pose-specialized detector is tasked Vath € of pose estimators able to compute meaningful values for
sifying the image in the second stage. Other approaches []tﬁ]ose variables directly from the signal. We allow the lé&zgn
[13], [26], [27] proceed in a hierarchical fashion wherelnge rocedure to automatically handle the trade-offs involied
estimation is gradually refined with classifiers dedicated Lo cting and combining estimates of the hidden parameters
increasingly constrameq_ POSES. In aI_I cases, training atst obtained from various image areas. This approach sets dorth
be annotat_ed and _partltloned |nto_d|510|nt clust_ers, tiitee framework that overcomes both the data fragmentation prob-
used to train .a series of pose-dedlcated_cla55|_f|ers._ lem, associated with the training of pose-dedicated dlass;
Though reliable detection can be achieved in this manngg \ye| as the labeling and computational overheads of purel
the underlying design of these methods raises an 'mport%%e-indexed methods.
difficulty: on the one hand, a fine partition of the pose space o approach is a monolithic one in that a single classifier
is clearly desirable to attain better detection perforneambile s pilt that can adaptively deform to detect a target. Oyr ke
contribution lies in augmenting a set of pose-indexed festu
o g @Ii iIS V(Vjith Ejhe Eﬁ?:]e golytecchni?uef Fégléreile de L?juaanﬂe fEPFLNvith afamily of pose estimator&ach feature then consists of
wrzerand and with e Swiss tenter for =iecionic anditieehnology: 3 pair of functionals: one functional to estimate the posg an
. SZCIS:E:'l\JAr)etl\llse l\j\ﬁ?hattﬁe’z Tcavivétgeé?ggafhTr?s"{itﬁf‘erfmmaa':%fyhfy'iéer|and, and the other to compute a pose-indexed featpegameterized
the Ecole Polytechnique Fédérale de Lausanne (EPFL), Siaze. E- by the estimated pose. Various modes of parameterization
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procedure is allowed complete freedom in deciding how besterest is estimated using a decision tree constructed to
to combine a pose estimator with a pose-indexed featudetermine the view class. Second, one of twelve rotation-
In this manner, training proceeds on the unpartitioned datpecific Viola-Jones detectors is used to classify the image
set while pose estimator learning and feature learning roccthe treatment of out-of-plane rotations is entirely analog
jointly in an integrated framework. The final detector cetsi A number of other recent works essentially devise the same
of a variety of features which can deform independently 8asstrategy in dealing with multi-view object detection [2[35],
on the signal of interest, and on the pose variations obden[&0], [18]. Multiple detectors, each specialized to a sfeci
in training. pose, are built and the pose is estimated as part of a firg.stag
This work was initially motivated by a practical applicatio Other works [14], [13], [26], [27] also employ pose dedichte
— the detection of hands to prevent injuries in manufacturirclassifiers with the notable difference that pose estimatio
plants — which naturally poses significant challenges. Tlkad detection are organized hierarchically within a pydami
appearance of the hand, a deformable, articulate object nsygtem. In these methods, each level of the pyramid graduall
change considerably and to be of practical interest, detectrefines the pose estimate by the use of more constrained pose
must proceed in real-time with nearly zero error rates. Wiedicated classifiers. Still, other works [24], [25], [3(29]
demonstrate that our framework provides substantial lisnefiun a bank of pose dedicated classifiers on the scene and use
in this setting. Moreover, we validate our framework owarious forms of arbitration logic to combine the output.
images of faces where pose variations consists essentiallyrhis difference in treatment when compared with the nor-
of rigid rotations and again show significant gains. Finallynalization and exploration strategy employed for locatou
we process aerial images of cars, characterized by in-plamle stems from the fact that image normalization is not
rotation changes, and demonstrate gains of up to an orgessible when faced with complex deformations or view-
in magnitude. In all cases, the reference baseline is thatasfgle changes other than in-plane rotations. Hence, in the
a standard boosting method with access to the same groabdence of a three dimensional model or in order to avoid the
truth, namely data that is not annotated for pose. Whethdifficulties associated with building such a model, the view
faced with in-plane rotations, a limited range of out-ofipdé based approaches described above are a sensible course of
rotations, or deformations, our framework readily adapts fiction and have been demonstrated to yield reliable detecti
the data and appears to sensibly combine the various ppseformance. However, these techniques remain burdened by
estimates induced from training. several difficulties. First and foremost, training data mus
be appropriately annotated in order for it to be partitioned
into clusters of similar poses. Second, this partitionirrg o
fragmentation of the available training data reduces thmabar
Tremendous progress has been made towards the reliableafesamples used to train each pose-dedicated classifier and
tection of objects in images. In particular, there is anesitee negatively impacts performance. It is not difficult to comee
literature dealing with detecting objects under limiteéiches a setting where such a strategy fails to provide acceptatie e
in view-angle, for instance frontal faces. Though algonit rates: dealing with a rich pose space or a fine partition of the
details vary greatly, works such as [32], [4], [19], [16]0]2 pose space, for instance, is indeed not possible using such a
[33] have been proven successful in unconstrained, cidterstrategy without increasing training data size and trajiime.
or partially occluded scenes. In order to overcome training data fragmentation the awgthor
The problem of detecting objects regardless of their pose[8] present a framework centered on pose-indexed festure
and where significant changes in appearance arise has pragrallowing features to be parameterized with the pose,-it be
more difficult. In its broadest definition, object pose ird#8 comes possible to treat in-plane rotation, ranges of cariep!
all those latent variables which modulate object appe@anotations and deformations in the same manner as locatidn an
such as location, scale, rigid rotations or view-angle gean scale are typically handled. All pose parameters are fleate
deformations, and variations in illumination. Works such awithin the same formalism: pose-indexed features effect no
those described above and their extensions handle these pnalization during training while in testing, exhaustivespo
parameters with various methods. Whereas variationsun illexploration becomes necessary. Though promising resudts a
mination may be dealt with at the feature level, by designirghown, this technique requires nonetheless the trainitaytda
invariants such as edge detectors, location and scale ez bde labelled with the corresponding ground truth and incurs a
handled via image normalization in training and explomatiosignificant computational cost in testing.
in testing: a classifier is trained for a single location acales  Also relevant are works such as [7], [2], [3], [5], [12],
while detection is managed by searching for the presence[®7] which rely on sparse representations based on interest
the target over all scales and locations of a given scene. points. These approaches construct clusters of interéstspo
The predominant strategy, on the other hand, for dealitr@ated as object parts and spatially combined in a prabtbil
with view-angle changes and deformations consists of cafashion. This category of work has also proven successful
fully combining a collection of classifiers each dedicated tin detecting objects with limited changes in view-angleeTh
a single pose. For example, the authors in [31] extend thee of sparse representations has been recently applied to
Viola-Jones detector to address two types of pose variatittre multi-view setting [11], [34], [23], [15], [28] with soa
concerning faces: in-plane rotations and out-of-planatimis. success. Though the utilized points of interest effect pose
To deal with in-plane rotations, the pose of the image @fstimation and normalization, these techniques fail twipie
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acceptable error rates: at low to moderate image resokjtioa standard AdaBoost procedure constructirang classifier
an insufficient coverage of feature points leads to highly as a linear combination of, for instancetumpsof the
unreliable detection performance. Our approach bears sofokowing form

similarity to that of [6]. There, a view-based approach is N

combined with deformable parts. Whereas this method has _

proved successful in the multi-view setting it is neveréisal Vrel f@)=2 wklinwza ®)
burdenned by the need to explore possible configurations in

testing. Also, much as the above works on sparse represéh€relV is the number of stumps aridy., hix, pr) € RxFxR.

tations, this method fails to provide acceptable errorsrate H€re. prior knowledge of the signal is embedded in the choice
low image resolutions of the feature se®{. For instance, invariance to changes in

Our approach utilizes the pose-indexed features of [8] aHlﬂJmi_nation may b? qbtained l;y usi;:_g e(jjgg dete_ctors Iwhile
requires neither labeling for rigid rotations and deforiorag, Invariance to translation may be achieved by using color or

nor exploration of these pose parameters in testing. Irrasnt gray-scale histograms estimated over large areas. Thitingsu

with the works on sparse representations, we do not rely ggon_g cla_133|f|ep“ Is used to classify Images of S'.WXH' In .
hand-designed local estimation and normalization. Instee practice, it may also be used for detection, by simply sazgni

introduce a family of pose estimators, which provide estasa a scene with windows of size/ x H.
of the rigid rotations and deformations from various areas i
the image, and allow the learning procedure to choose thte b8® Boosting with pose-indexed image features

combinations of pose-indexed features and pose estimalqi® consider here detectionsetup where the scenes for both
thus a pose-indexed feature may obtain a pose estimate fiegiing and testing consist of images which may contain one
one area in the image .and compute a response in anot@elseveral targets or none at all. L@tdenote the pose space
We also allow the learning procedure to select from seveig the object and lep € © denote a specific pose of that
modes of normalization for each pose-indexed feature. TBBject, encoding all possible parameters including itstion

result is a flexible detector which weights dense featurgs.the scene. In this context, an element of a training setstak
each optimized with the best pose estimate and with the bggt form

normalization mode. As will be seen through our experiments _ ,

and as shown in Figure 1, this permits the automatic disgover (X(l), 0, Yg(l)) €I xOx{-11}, (4)

of the variations present in the training data while mairiteag ‘

the generalization properties of the detector and progidithereYe(l) is equal to+1 if a target is truly visible inX ()

reliable detection. with posed, and to —1 otherwise. Ideally such a training
set is exhaustive, going through all possible poges ©.
Assuming, the only pose parameter of interest is a target's

3 BACKGROUND location in a scene, then such a training set enumerates all

. possible locations of all scenes assigning a positive labele
Formal presentations of both standard features and POS&arget is present and a negative one otherwise.

indexed features are given here. In the remainder of thisgian a training set as described above, a pose-indexed
paper, we use the AdaBoost learning procedure to illustrg{e e [8] is a function of the form: ’

the various concepts. This is done for the sake of simplicity
and because our implementation relies on such a setup. The g, :OXIT—-R, k=1,... K. (5)

underlying concepts, however, are not contingent on the u§e v stated. th teat d d both . d
of a specific learning algorithm: one could indeed use pos imply stated, these lealures depend both on an image an

estimator based features in conjunction with other discrirft po?e. {\Iext';, W'tthda & O.f gose(-jln(ilexgg fea’:cutrhes,fone can
inative machine learning methods, such as Support Vecfgistruct a boosted pose-indexed classifier of the form
Machines and decision trees, or even with generative models N
Vo e 97 r e, f(97x) = Zwkl{gk(97I)ZPk}' (6)
k=0
Classical object detection, from a single viewpoint, can be
Let Z = [0,1]"*H, denote the space of gray scale images §rmalized in this setting with a two dimensional pose space

sizeW x H and let © = [0, W]x|0, H]. (7)

(X(l)v Y(l)) €eIx{-11}, i=1,....T, (1) During training, the features simply translate with thealtien
o ] . of every element in the training set and are, in effect, reduc
denote a labelled training set wheire- 1,..., T is an index (4 the features described in 3.1. Detection, at fixed scaierev
running through all available scenes. Here, we considerysy scene is parsed at every location, proceeds in a similar

classificationsetup so that the images ) either contain a manner. Given an image, detection at a particular threshold
target or not. Given a sé{ of image features or mappings ofy onsists of computing a list of alarms

the form

k=0

3.1 Boosting with standard image features

he:T—R, k=1, K, ) Ar(z)={0€0 st f0,2)>T}. ®)



This approach extends naturally to arbitrary complex dbjeose estimator learning and feature learning occurs yointl
posef while maintaining the joint information between dif-in a fully integrated fashion: the learning process is a#dw
ferent features. However, it requires the training data ¢o ko combine several estimates i@, of an unkown pose
labelled with the corresponding ground truth, and requines and balances different modes of parametrization to reduce
exploration of pose parameters in test. These drawbacks el@ssification error. The final detector is highly flexibledan
further exacerbated by adding more dimensions to the paade to simultaneously examine the signal i different
space. ways to determine pose parameters and deform its features
accordingly.
4 PROPOSED FRAMEWORK

To retain the benefits of the pose-indexed features withait t 4.2 Discussion

inherent weaknesses, we treat rigid rotations and defawnmsat Suppose we are tasked with detecting an object class whose

as a collection of hidden variables and simultaneously efjose space may be parameterizedphyyarameters:
power the learning procedure with estimates of those hidden

variables. Specifically, we introduce the idea of a pose esti O=01%x--xX0, (14)

mator, which computes a meaningful pose directly from thge maintain our definitions fob, and©s as the pose spaces
signal. This computed pose is then used to evaluate variQiSne |ocation of the target and the orientation in the image
pose-indexed features as is next explained. plane respectively. The additional pose parameters mbdel t
_ _ _ rigid rotations and deformations of the target.
4.1 Boosting with pose estimators
We begin by regarding location, which is annotated in tregni  Approximating the pose space: By designing a family of
and parsed in testing, in the same way as classical appmaghese estimators and allowing the learning method to combine
and purely pose-indexed approaches. Let a pose estimator with a pose-indexed feature undergoing a
B specific type of normalization, the pose space of the obgect i
61 = [0, W]x[0, H] ©) effectively being approximated with:
represent the aforementioned two-dimensional spaceistand O~ 0, xOM (15)
for the location of the target, and 1€, = [—=, [ consist TR
of an orientation in the image plane. Given a pose-index&this is true whether the actual pose space of the object is
feature, rich, consisting of deformations and out-of-plane rotasio
) - or very simple consisting say only of in-plane rotations.
9+ (O1xO2) xIT =R, k=1,.... K (10) In the former case of a rich pose space, consisting of say
a pose estimator is a mapping of the form p — 1 parameters as described above, the learning method
_ B attempts to capture estimates of these parameters using the
Mm:O1x1 =0y m=1,..., M. (11) M pose estimators. In the case of simple in-plane rotations,
We can now define a pose-indexed image featyré for the M pose estimators all work to capture a single parameter,

locations! in the pose spac®; with namely orientation, and are combined and weighted by the
learning method.
VieO, z€Z, ymr(l,x) = gi((l,nm,(L,x)), z). (12)
In words, to evaluate a functional,,;, on a scener for a lo- A deformable detector: It is also worth noting that the

cation/ € ©,, we first compute an anglé = n,,,, (I, ) € O final detector that is obtained from our framework spans a
and then evaluatg, for the combined posg, ¢') andz. These Very large set of possible configurations. Assumivig> N,
features thus simply have a component which estimates \&fere we recall thatV represents the number of stumps,
angle of the target in the image plane. That estimate is thafd allowing forg bins to quantify the response of the pose
used to evaluate a pose-indexed feature. In practice reliffe €stimators (seg5.1), the detector possesses a total of
modes of parameterizations are used for the pose-indexed M (16)
featuresg, and each parameterization mode may be seen as
effecting a specific type of feature normalization, see fédu instances, each corresponding to a specific instantiatfon o
Hence, from a set of cardinalith of pose-indexed featuresthe M parameter used to deform features. With a basic setup
gr and a set of cardinality)/ of pose estimators),,,, we of ¢ = 8 and M = 14, this results in4.4 x 10'? different
create a new set of cardinality/ K with features~,,,. configurations, a very large space which stands in sharp
This augmented set can then be used with AdaBoost incantrast to the single configuration of a rigid model ordiiyar
straightforward manner. At every iteration, the most sasfid constructed by AdaBoost. Whereas one would expect that
pose estimator and pose-indexed pair is chosen with the nfott a given object class and pose variation, the correlation
pair chosen so as to rectify the errors of the previous obetween thel/ estimates greatly reduce this space, the same
resulting in a boosted ensemble of the form does not hold for the negative class. Thus the entire space of
N configurations can in fact be utlized by the learning method
vieo,, f(,z)= ZWkl{gk((l,nmk(l,w)),w)zpk}- (13) to discriminate the object class from an arbitrary backgebu

k=0
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Fig. 1. Our framework mixes three types of edge countinguiest Every row shows an example feature from each type
along with its extractions for three samples: an open hdrelsame hand where the thumb has moved and a rotated version
of this case. The example features are shown on the left coltine solid box shows the support of the feature while the
solid line within shows the extracted edge orientation. Tashed box shows the area in the image from which the pose
estimate is computed, here the dominant edge orientatiois. area is also highlighted in every sample by the boldetineut

of the hand.Top row: a standard feature which checks for the absence of horizedtges. Note that as the thumb moves
and the entire hand is rotated, this features disregardsithnges in pose and always checks for the absence of halizont
edges at the same location in the imalygddle row: a pose-indexed feature which always has a fixed location hetks

for the presence of different edge orientation dependinghendominant edge orientation in the lower-left quadranthef
image. Note how the feature is effectively tracking the tbuSuch features effect so-called “Type | normalization"aendby

the extracted edge orientation depends on a pose estireat¢s.4. Bottom row: a pose-indexed feature whose location and
edge orientation extraction depend on the dominant edgatation in the entire image. Note how the feature is effebti
tracking the forefinger: it ignores the change in pose as lihenb moves since this has no impact on the global dominant
orientation and follows the rotation of the hand in the neaple. Such features effect so-called “Type Il normal@ati
whereby the extracted edge orientation and the featureaitin depend on a pose estimate, $@4.

TABLE 1: Various approaches in perspecti#r.st column: The predominant strategy which consists of training pasgighted
classifiers. There, the training data must be fully labeftadthe pose so that it can be partitioned to train the classifiers, the
feature is simply indexed by location and a separate detéctmained for each pose parameter other than locaecond
column: The pose-indexing framework. There, data must also be atewivhile the use of the pose-indexed features allows
for training a single classifier indexed by pose on the ertata. Detection must be managed via exhaustive searchlower t
pose parameter$.hird column: Our framework. Data must only be annotated for location. @Gdmbined use of pose-indexed
features and pose estimators allows for the training of glsinlassifier indexed by location. During detection, norcleas
necessary as the selected pose estimators extract theegtgoise estimates.

Predominant Strategy Pose-indexing Pose Estimators
Training Data (XU),e, Ye(i)) (X“),@,Ye(i)) (X“),l,Yl(i))
Feature Set hp:©1xZ —R gk : OXZT - R gr: (©1xX02) X T - R

Nm : ©1XZ — Og

Training Output filz), ..y f ey (1) f(0,z) fll,z)

o1l

Detection vl € ©1, givenfd € ©, V0 € O, Vi€ O,
N H N N
Fb®) = Eiio it o gayzpty 100 = Tiowrligu0mzay  F(L0) = Yo @l {gx(Ummy, (1)) 201}




Perspective on different approaches: Table 1 puts the
various approaches in perspective assuming a general pose
spaceO as described in Egn. 14. Let us consider, by way of
example, a target undergoing simple in-plane rotationg Th
predominant approach in this case is that of Viola and Jor
in [31] where12 rotation specific detectors are trained alon
with a pose estimator returning an estimate of the targe|
orientation in the image plane. The pose-indexed approg -
in this case would train a single detector with features th™=
rotate according to the labelled pose. In testing, one woy .
simply test all possible rotations at all possible locagi@md
retain the maximum response. In contrast, our approachdvo
initiate training on the unlabeled training data amfl pose
parameters are used to approximate the target's rotation in
the image plane: each pose-indexed feature would obtain Fig. 2: From the original gray-scale image (top), we compute
pose information from one of th&/ parameters. Those sameeight edge maps (two lower rows), corresponding to eight
parameters are extracted during testing, and used to éwalifferent orientations of a simple edge detector. Integnalges
their associated pose-indexed features. of these edge maps are used to efficiently compute propertion

Our implementation, as described §8, should not be un- of edges in rectangular windows.
derstood as dealing with the full range of out-of-planetiota
for example, one should not apply our implementation to
build a single, monolithic, deformable detector capable &fig. 2 for ¢ = 8. We also consider a smoother version of
simultaneously detecting a front view car and a side viegy(z,!) defined as:
car. As mentioned ir§2, in such a setting, the view-based _
approaches are a sensible design strategy. The latergstrate £e(z,1) = max(0, cos(¢ — ¢)) (18)
should be combined with our proposed deformable detecﬁorth. h ed ith ori . ellin i
to reduce data fragmentation and thereby improve detection > “ase. each edge with orientatiprat pixel  in image
performance. We note that the method in [6] in fact mixe% contributes a soft valqe to each (.adge.map. We again assume
a view-based approach with deformable parts. However, (w,1) to be equal ta if the location! is not in the image

- ane. In practice, the hard edge map based feature perform
very limited number of parts are used and much as the L ) . . )
purely pose-indexed approaches, it requires the exploraf poorly with highg. This becomes immediately obvious when

. . . ) : . . we consider that with a fine discretization, edge orientetio
possible configurations in testing. The method is additlpna . . . .
. . . .~ become increasingly noisy. Soft-features, which allowsoft
designed to leverage higher resolution content. In corapayi

our method uses hundreds of deformable features, does \ﬁ%ttes for every edge, become useful with highFor the

: . . . . remainder of this paper, the discussion is presented with
require exploration of pose parameters in testing and ialdap )
- : ; . . respect to the hard edge maps though all equations extend
of providing reliable detection even in low resolution.

equally to the soft edge maps by simply substitutingr, )

with & (,1).

S IMPLEMENTATION DETAILS Our features, similar to those of [1], compute the ratio of

The specifics of our implementation are given in this sectiosdges of a particular orientation within a sub-window of the

We follow the same notation as that of previous sections. detector'sr x r square of interest, with respect to the total
number of edges within the same sub-window. tenote

5.1 Standard Feature Set such a sub-window of random size and location contained

We describe here two types of standard image features, not%{l’“"f} X ALy plgne. Our features are entirely
indexed by a pose. A sceneis preprocessed by computingpar"’“”ne_te”ZGd_by the sub-windawand the edge type and
and thresholding the derivatives of the image intensity g€ defined as:

obtain an edge image. The orientation of these edges are h _ 19
further quantized intagy bins, resulting ing edge maps. Let Re(T) Z fe(@,m) / Z Sala,m). (19)

¢ denote the possible orientations of an edgebos [—, 7|, mett e, mek

and letd = {0, 2, 4r,...,(¢—1)* 2} denote the possible These features give the classifier the ability to check fer th

orientations of aquantizededge. presence of outlines and textures and can be computed in
NowVe e @, x € Z,l € {l,..., W} x{1,...,H}, let constant time using integral images, one for each edge map.

Ee(z,1) € {0, 1}, a7)

denote the presence of an edge with quantized orientatio
at pixel [ in image z. We assume.(z,!l) is equal to0 if From the image features described above, we define a set of
the location/ is not in the image plane. Thus, eaghz,l) features indexed by a location in the image plane and an
is simply a map of edges with quantized orientatignsee orientation. We defin®; = {1,..., W} x {1,...,H} and

§.2 Pose-Indexed Image Features
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Fig. 4: Our family of pose estimators. Given the square
of interest of sizer x r centered on/, there arel4 pose

estimators in total operating: each one computes the darnina
Fig. 3: From a rectangular window and a posgu,v,02), edge orientatiod, in one of the sub-squares at three different

we define a indexed window, ¢,. Heref, = /4. scalessS.

©2 = [—m, m[. Given a rectangular sub-windoi®, and poses sets. They determine the global orientation in the imageepla

I = (u,v) € ©1, andb, € O,, we define by looking for the axis which maximizes symmetry of the
R, (20) two-half images using various metrics.

as the rectangular window in the image plane obtained I@/ EXPERIMENTS
applying a rotation of anglé, and a translatiorju, v).

Similarly, given a edge orientation ¢ & and an angle
0> € O©4, we define

To evaluate the performance of our proposed learning giyate
experiments were performed on three different data setsovi
(21) Sequences of hands, aerial images of cars and face images.
For all data sets, we compare the performance of our method
as the orientation obtained after a rotationdefis applied to against that of a standard boosting procedure with access to
the edge, that is the edge orientationdirclosest toe + 2. the sameground truth. In the case of the aerial images of
With the above notation, we can define a set of pose-indexggts, where pose variation consists mainly of pure in-plane
features fromh g . introduced above, with rotations, we also compared the performance of our method
with the optimal pose normalization scheme: a try-all-iotzs
(22) . .
detector trained on manually aligned data. In what follaivs,
which is, the proportion of edges with a rotated edge orientspecifics of our experimental setup are given and the results
tion in the translated and rotated rectangular window. of our experiments provided.
We note that the orientation of the resulting window is again
quantified with a resolution of for computational reasons.g 1 Learning

Rotations of angles proportional to/2 and /4 are ideal, . .
: gles proport / ~/ : J}e standard AdaBoost learning procedure is used. Two

see Fig. 3. For other angles, rotations are approximated\g e
maximum overlap with the ideal case. The features themsel eoolean flags are added to the definition of our augmented

can be computed in constant time with integral imagesy pose-indexed features. The first indicates if the feature is

. : s to take the pose estimate into account. If so, the second
integral images for each edge map and an additipfat each e N . ' .
edge map rotated by /4. flag specifies if the feature’s window is to be registered

according to the rotation described §n3.2. Given a pose,
(1,62) € ({1,..., W} x{1,...,H}) x [-7,7[, three types of

. _ . . _ features are hence obtained:

We define a family of pose estimators which estimate a, Theg first ignores the pose estimate and thus reduces to the
meaningful orientatiord,; € ©, from a location/ = (u,v).  gtandard feature as it simply translates its window with
Our pose estimators compute the dominant edge orientation |

in a particular windowA contained in the neighborhood bf . 'I:he second considers the pose estinfaténsofar as its

692

gR,e((L 92)? I) = th,92= €65

5.3 Pose Estimators

More precisely, we define edge orientation type is concerned while still translating
na(l) = argmax i, , (23) its window with 7.
ecd o The third translates its window with , applies a rota-
which computes the dominant edge orientatién in the tion to the latter and changes its edge orientation type
window A translated according th Given the{l,...,r} x according tofs.
{1,...,r} plane r, we define 14 regions for the pose- We refer to the second and third items as Type | normalization

estimators corresponding to the complete square, the faund Type Il normalization respectively.

regular sub-squares, and the nine regular sub-squaresh whi The selection of the stump at every iteration of AdaBoost

leads tol4 different pose-estimators, as shown in Fig. 4. Notesults from examinind000 of these features. The threshold

that the estimated pose is quantified with the same numberppfof the selected stumps is optimized through an exhaustive

bins ¢ so as to allow for the reuse of the integral images. search. The boolean flags are naturally selected randoritiy, w
In addition to thesd4 pose estimators, we defin@dmore probability 0.5. The pose estimator is also chosen randomly:

global pose estimators for our experiments with the faca ddhe scale at which it examines the signal is first chosen



uniformly and the same is true for the sub-square over-whiét2 Error rates

orientation is computed (amorig 4 or 9 possible), see Fig. 4. Error rates were computed in a conservative fashion. A detec
Finally, the window 2 and the edge orientatioa are also tion s a true alarm if its location is within a certain distan
chosen uniformly at random.In all our experiments, a sing{gym the target and a false alarms otherwise. The considered
AdaBoost stage is trained with the bootstrapping procedyiRtance is half the length of the detector’s square windbw o
described in [8]: this allows us to avoid the difficultieSnterest. In several frames, in both the hand and the car data
associated with training and tuning a cascade. All of thets, two targets may lie within the above mentioned distanc
results are averaged over five independent runs. Since Wehis scenario, if only one alarm is raised, a miss is catinte
observed the absence of over-fitting, we did not optimizg || our experiments we have chosen to use false alarm rate
learning parameters through cross-validation. Learnind agor uniformity instead of the number of false alarms.Givieatt
testing algorithmic outlines are given in Algorithms 1 and 3| images were scanned by steps of two pixels, a conversion
below. to this second measure can be obtained simply by multiplying
the rate with the size of the image, given below for each data
set, and dividing by four.

Algorithm 1 Learning Outline

Given training dat X@,Z,Yl(i)), a set of K pose-indexed
featuresg, and a set ofM pose-estimators,,. et il
1: Initliaze weightsy ;; = 5-, 5- wherea andb are the total 0.95" g
number of positive and negative examples respectively.

2: for k=1to N do

3. for ¢t =1to 1000do

4: Choose at random a pose-indexed feagﬁé a pose
estimatorn,(,? and a normalization mode. Evaluate
weighted classification error after threshold optimize
tion p,(:):

True positive rate
o
o o
oo

o
©
©

— pose estimators
--- standard features

0.751

_ ) (7)
€@ =20 L® (@ ey 2p0y ~ Y
bl 0.77" 3 -5 -4 _3 2
10 10 0 10 10
5: end for False positive rate
6: Definegy, nm,, pr as the minimizers ot,. (@)

7. Update data weights:

T T T T T
1—ei

« il — ki ’ --- standard features

L= iy ‘

wheree;; = 0 if image z() at location! is classified \
correctly ande; ; = 1 otherwise.g, = 15;. 210" ' ]
8: Setwy + %logé g
9:  Normalize data weighte1,:; + % g
10: end for 8
11: The final detector is given by: i
N
F2) =D kL (g (U, (1)) 200}
k=0 107 1
0 1 60 260 360 460 500 600
Number of stumps
(b)
Fig. 5: Performance of our learning framework compared
Algorithm 2 Detection Outline with a standard boosting framework for hardware-speadliz
Given a patch from image and location. camera (training and testing). Figure (a) displays trusitjve
1 Evaluate allM pose estimators rate as a function of the false alarms rate on a log scale.
2: Evaluate strong classifier: " Figure (b) displays the false alarm rate at 90% true positive
’ ' rate as a function of the number of stumps. In both figures, the
N thin blue curve corresponds to the performance of the standa
fll,z) = ZWkl{gk((l-,nmk(l-,z))-,z)zfak} feature set while the thick red curve shows the performance
k=0 of the detector using the combination of pose-indexed featu

and pose-estimators.



6.3.2 Setup

The boosting stage is trained with00 positive examples and
0.95/ [ . 150,000 negative examples for the hardware-specialized data
e set. Similarly, the boosting stage corresponding to thecarb
) »& . data set is trained witi800 positive samples and80, 000
’ negative samples. Learning was carried out upo stumps
1 for both data sets. Hard Edge maps were used withS.

True positive rate
o
o o
o

o
©
©

1 6.3.3 Results

— pose estimators

@Q We compared the performance of our augmented feature set
with that of the standard features. As shown in Figures 5 and 6
incorporating pose estimator learning with feature leagni

0.751

0.7

107 False positive rae 10° provid_es with a significant gain in false positive rateadit
detection rates and for both data sets. Indeed our method
@) is able to capture the strong changes in appearance of the
10° ‘ ‘ ‘ ‘ ‘ hand where the standard features fail. Most notably)0&t
true positive rate our first hardware-specialized data met,
method raises9.4 x 10-6 false alarms per frame versus

2.7 x 10~° for the standard features, a gain of approximately
180%. Some example frames, chosen uniformly at random,
are shown in Figure 17 and 18 for both data sets.

Figures 7 and 8 show some statistics with respect to the
type of features selected by AdaBoost. We note that the
percentage of features operating with pose estimatorsiguic
rises with each boosting step and stabilizes at approxiynate
70% leaving30% for the standard features. This is intuitively

, meaningful: with each boosting step, harder samples remain
1o ‘ ‘ ‘ ‘ i to be classified and more of the augmented features are
0 100 20 umberofstumps 1 %0 80 brought into play. We also note that the pose estimators are

(b) utilized relatively uniformly and across both normalipeti

Fig. 6: Performance of our learning framework compare?fhemes' The most frequently selected features utilizetbe

with a standard boosting framework for the webcam data £42!€ Pose estimator with type Il normalization: thesetfiest
(training and testing). Figure (a) displays true-positiate as account for the in-plane rotation that is present througtioa

a function of the false alarms rate on a log scale. Figure (Bjauence. The remaining augmented features, utilizedeat ov
%, account for the deformations of the hands.

displays the false alarm rate at 90% true positive rate g : )
a function of the number of stumps. In both figures, the Table 2 shows run-times obtained for the proposed frame-

thin (dashed) blue curve corresponds to the performance'$i"k on the webcam test sequence with varying number of
the standard feature set while the thick red curve shows fFi¢mps. We note that the code was not optimized for best

performance of the detector using the combination of pod¥:€formance and that implementing a simple early-rejectio
indexed features and pose-estimators. cascade, for example, would result in significant speed-ups

while maintaining performance constant.

False positve rate

<
n
=]

6.3 Experiments on Hand Video Sequences
6.3.1 Data

We carried out our tests on two data sets. Each data set c-§’5°
tains two hand sequences: one sequence is used for traing
the other is used for testing. Our first data set was obtaing

. . . . 8,30
from a hardware-specialized camera [22] which directly €ong
putes edges and is to an extent illumination invariant. €hes? 700

sequences have a resolution Bf8 x 160, a frame rate of _. _ )
approximately? fps and a duration oft minutes. The scene Fig. 7: Frequency of features selected by AdaBoost during

consists of a piece of heavy machinery with a few moving paft&ining for the hardware-specialized camera. Left: tite &
and clutter. Our second data set was obtained from a stand4Rich features operating with pose estimators are selexted
webcam. These sequences have a resolutiontof 192, a a function of the number of stumps. Right: the allotment of
frame rate of approximately) fpsand a duration o% minutes. features to each pose estimator.

The scene consists of a typical disorderly office desk.

-
=]

pose estimators
@

MType | normalization
M Type Il normalization

Percentage use of pose estimators
(5] o

o

200 300 400 500 123 456 7 891011121314
Number of stumps Feature Type



Fig. 9: Some examples of cars from our test data set takeoramif at random across the entire set

" - 6.4.3 Results

12 \ 11|

%10 — We compared the performance of our augmented feature set
mEniemasion  With that of a standard boosting procedure with access to

200 300 400 500 0 123 456 7 891011121314
Number of stumps Feature Type
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100

Percentage features using pose estimators

Fig. 8: Frequency of features selected by AdaBoost for tl
webcam data set. Left: the rate at which features operati
with pose estimators are selected as a function of the num
of stumps. Right: the allotment of features to each po:
estimator.

True positive rate

TABLE 2: Run-times for the webcam dataset on a gener:
purpose Inté®P Xeor® L5420 processor, 2.50Ghz.

— pose estimators
--- standard features

Number of stumps  Frame processing time (ms) FPS ;
100 28.38 35 O%-s 10° 10 10°
200 49.07 20 False positive rate
300 69.55 14
400 88.32 11 @
500 107.56 9 -3

— pose estimators
6.4 Experiments on Aerial Images of Cars T

6.4.1 Data

Our data set consists ©00 aerial images of resolutiotD64 x
744 collected over Lausanne and Geneva at a constant altitu
The images contain approximated)00 cars, parked or in
motion, in a highly challenging urban environment: shadov
are cast by buildings and greenery often occlude over h
the targets. In addition, cars are customarily parked bide-
side leaving very little space in between rendering degecti 107 0 1000 1500 2000 2500
even more troublesome. Some sample patches taken unifor Number of stumps

at random are shown in figure 9. The pose variation we are (b)

interested in here is in-plane rotation as cars can be foound
any orientation.

B e T

False positve rate

F'ig. 10: Performance of our learning framework compared
with a standard boosting framework for the car data set.
Figure (a) displays true-positive rate as a function of tisef

6.4.2 Setup alarms rate on a log scale. Figure (b) displays the falsenalar

Images over Lausanne were used for training while imagE€ at 90% true positive rate as a function of the number of
over Geneva were used for testing. The boosting stageSFQmps- In both figures, the thin blue curve corresponds to
trained with 1500 positive examples ang, 000,000 negative the performance of the standard feature set while the thick

examples while learning was carried up2@)0 stumps. Hard red curve shows the performance of the detector using the
Edge maps were used with= 16. combination of pose-indexed features and pose-estimators



11

the same ground truth. As shown in figure 10, incorporatingdexed approach: there, pose-indexed features are used to
pose estimator learning with feature learning providedwit perform in-plane normalization in training, according tet
significant gain in false positive rate ali detection rates and labelled pose, and all rotations are explored in testing.
for both data sets. Indeed, %1% true positive rate, our method
raisesl.2 x 10~ false alarms per frame vers8s x 10~* for
the standard features, a gain of approxima2&i§y%. Gains of
an order of magnitude are observed at true positive ratesvbel
70%. Some example detections, are shown in Figure 19.
Figure 11 shows some statistics with respect to the type
features selected by the AdaBoost learning procedure. \iée n
that the percentage of features operating with pose estisal
starts off at al00% and stabilizes at approximatel§s%.
This behavior is rather different from the one observed fi
the hand video sequences and can be explained by the
that features using the global pose estimator with type
normalization perform in-plane rotation normalizationvéh
that the pose variations in the car images consist mainly
in-plane rotations, the only features that offer AdaBoasid)
error rates are immediately that variety. This was emgdisica

confirmed as the first0 features selected by AdaBoost areF. 12 Perf f | ing f K d
consistently effecting type Il normalization with our ghdb 9. 1e. Ferlormance of our learning framework compare

pose estimator. We note however that as more and more sthth the optimal pose normalization scheme and a purel;_/-pose
are added, the pose estimators are utilized relativelyoumify " dexed approach for the car data set. The figure displays

and across both normalization schemes. Even though, we ltépg-polsltl\{% ra';? as a function of the falje ale;]rms r?te on a
only faced with in-plane rotations, none of the pose estinsat og scale. The thin green curve corresponds to the perfozenan
: : a?f the standard feature set, the thick red curve shows the

n%erformance of the detector using the combination of pose-
indexed features and pose-estimators and the thin blaele cur
shows the performance of a purely pose-indexed approach.

True positive rate

— pose estimators
--- optimal pose normalization
-- pure pose-i i 8

N 107 107 107
False positive rate

ous pose estimators in order to compensate for this defigie

=
=
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v comatzsion 6.5 Experiments on face images
6.5.1 Data
‘ Our data here consists 8000 face images of size8 x 48.
1

a

~ @
a =3
a =)

| I ||| STIITI These faces differ from the standard data sets in that the
B a0 O 12345 g7 e sttt images contain most of the head, from forehead including the

1000
Number of stumps Feature Type

Percentage features using pose estimators
o .
&
ge use of pose

&

500

chin and jaw lines, as well as some background. More impor-

Fig.dll: FreqLuef:cyr/] of featurers]_ sﬂected by AdaB.OOSt _g).: tﬁfntly, the images were collected so as to include generally
car data set. Left: the rate at which features operatingpo upright and generally frontal faces but without paying much

estimators are selected as a function of the number of Stumgt?ention to the pose. Thus the data set contains someigariat
Right: the allotment of features to each pose estimator. . tarms of in-plane rotation as well as out-of-plane ratati

Some examples are shown in 13. We believe that such a data
We also compared our detector with an optimal pose naet captures well the inherent natural variations thatt émis
malization scheme. This consists in manually aligning thshotographs.

car patches for training and parsing all possible rotations

of the images in testing. Note that for both training anfi.5.2 Setup

testing the images were rotated and bilinear interpolatiaa For this data set, we ran classification experiments as @gpos
performed so as to avoid possible artifacts. As can be sderdetection. Thus for training, we usdd00 positive samples

in figure 12, our framework outperforms the try-all-rotatso and6000 negative samples. For testidg00 positive samples
detector at high true positive and low true positive. The tryvere tested with approximately, 000, 000 negative samples
all-rotations detector performs better in the true positi@enge to ensure stable and meaningful false positive rates. Negat
0.75 — 0.95. Note however that as shown [31], a try-all-data was collected randomly from large images that do not
rotations detector trained on aligned data exhibits dijghtcontain faces. Learning was carried up 1800 stumps and
higher accuracy than the state of the art two stage approaekperiments were performed using soft edge maps with

the advantage of the latter is that a search over all rotatidr2, corresponding to a quantization of edge orientatiord of

is not necessary. Both methods require pose annotationdefjrees. Such a fine discretization was required in order to
the data for training, which our framework forgoes. We alscapture the rigid rotations variations which exhibit a venyall
note that our framework performs as well as the purely-poss#tandard deviation of approximately) degrees.



Fig. 13: Some examples of faces from our test data set takiéormnty at random across the entire set

6.5.3 Results
We compared the performance of our augmented feature /
with that of a standard boosting procedure with access to t oesl o -

same ground truth. As can be seen in figure 14, our meth
performs as well as a standard boosting framework for tri i
positive rates abov&7r.5%. Below that true positive rate how-
ever, our framework provides very significant gains. Indee

at82.5% true positive rate, our method raiseg x 10~ false
alarms per frame versus6 x 10~¢ for the standard features, a

o

©

©
¥
i

True positive rate
o

0 o

o ©
S

il L

gain of approximatelyl00%. Note also that at approximately @@
81% true positive, our framework raisésalarms and all the 075t ]
6,000, 000 negative patches are correctly classified. The sar

behavior is noted for the standard boosting framework, ghou 07 _ . . . ,
at 72.5% true positive. We note that pose estimators we 10 10 aise positi\}g_rate o o

again utilized relatively uniformly and constitutdd% of all

(@)
features selected.

6.6 Assessing the effects of Joint Learning

We are interested in analyzing the benefits brought about 107
the joint pose estimator and feature learning we propose.
particular, we are interested in the performance that woL
result from constraining the pose-indexed features tazatil
only one pose estimator and perform only one type of norm:
ization. To this end, we considered the case where featuees
forced to employ the global pose estimator and perform ty| 107
Il normalization. This is essentially a scheme that attemf

to perform in-plane normalization based on a pose estim: M

obtained from a hand-crafted rule.

--- standard features
— pose estimators

False positve rate

200 400 600 800 1000 1200 1400 1600

This setup allows us to truly understand where the gains ° Number of stumps
performance originate from. For fairness, these experisnen ()

were performed on two of our data sets: the car data set ] ; f | ing f K d
where most of the pose variation is in-plane rotation and t}llzég 14: Performance of our learning framework compare

hand webcam data set where pose variation consists maiWkg'I a standard boosting framework for our face data set.

of deformations though in-plane rotation is present thhmug Figure (a) displays true—posm_ve rate as a function of disef

the sequence, given that there are two hands with differé:]H"f‘rmS rate on a log sc_a_le. Figure (b) d|splgys the falsenalar

orientations. rate at 82.5% true positive rate as a function of the number
Figure 15 shows the results obtained for the car data set. HsStUMPs. In both figures, the thin blue curve corresponds to

expected the constrained scheme performs between our-framg performance of the standard feature set while the thick

work and the standard boosting framework, though clos"éard curve shows the performance of the detector using the

to the former. Upon first examination, this was surprisin ombination of pose-indexed features and pose-estimators
since we observed that the global pose estimator is proneX@it €dge map features are used.

error eventhough in pose is visible in most samples. Upon

closer examination, we noted that the errors of the global

pose estimator are consistent in that the latter fails ostets copes with this situation by placing features at consistent
of samples exhibiting the same difficulties, namely ocdasi locations for each cluster and weighing them appropriately
or strong shading. The AdaBoost learning procedure readilyie previous observation notwithstanding, it is clear that
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Fig. 15: Performance on the car data set of our learning frantgg. 16: Performance of our learning framework compared
work compared with a scheme utilizing the same frameworkith a scheme utilizing the same framework but where feature
but where features are constrained to employ the global p@se constrained to employ the global pose estimator andteffe
estimator and effect type Il normalization for the car datéype Il normalization for the hand (webcam) data. The figure
The figure displays true-positive rate as a function of theefa displays true-positive rate as a function of the false atarae
alarms rate on a log scale. The thick red curve shows the a log scale. The thick red curve shows the performance of
performance of the detector using the combination of poste detector using the combination of pose-indexed feature
indexed features and pose-estimators and the black cuitre, vand pose-estimators and the black curve, with circular erark
circular markers, shows the performance of the global poskows the performance of the global pose estimator only
estimator only scheme. The thin blue curve corresponds dcheme. The thin blue curve corresponds to the performance
the performance of the standard feature set. of the standard feature set and is shown for reference

the joint learning we propose brings significant benefits {yientations in a fixed sub-window. The pose estimators we
this case with gains of00% compared to a hand-designed,se as defined ifi5.3, provide the same operator when the
normalization rule. _ windows of the pose-estimator and the pose-indexed fesature

Figure 16 shows the results obtained for the hand webcam, jgentical. Hence, the features we have designed form a
data. As can be seen, the performance of the constraingfher.set of simple truly invariant features, as they ate @b
scheme is far worse than that of our framework. Surprisinglystimate the orientation in a window, and evaluate the respo
it is even worse than the performance of the standard b@psti that orientation in another one. Extension of this woak ¢
framework. This can be explained by the fact that the globgjjiy two different axes. The first is to consider the use of
pose estimator is unreliable, returning nearly randomsptjse more complex pose-estimators, going beyond the direct use
a large number of samples. Thus, the global pose estimatopsihe edge counting features. The second axis will consist
unable to account on its own for the in-plane rotation veotet st jnyestigating the relationship between standard irrri
that are present in the data. This is in addition to the faglyyres and alternatives of the combination of pose-iedex
that constraining features to use the global pose estina@idr toa¢res and pose-estimator we propose here, as stated. abov
effect type Il normalization offers no possibility to haedl gy jeconstructing standard image invariants in the same way
deformation. we may exhibit new valuable classes of both pose-indexed
features and pose estimators.
7 CONCLUSION
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Fig. 17: Some example detections sampled uniformly at ranacross the entire test set obtained from our hardwareadized
camera. True positive rate is 90%. Correct detections avenrshin green whereas false alarms are shown in red. Detection
proceeds frame by frame independently with no temporaltcainss, not even background subtraction.

Fig. 18: Some example detections sampled uniformly at nandoross the entire test set obtained from the webcam. True
positive rate is 90%. Correct detections are shown in greleereas false alarms are shown in red. Detection proceeu fra
by frame independently with no temporal constraints, nenelvackground subtraction.
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Fig. 19: Some examples from our car test set. True positiieisa85%. Correct detections are shown in green whereas fals
alarms are shown in red. There are 198,000 tests per image.



