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A Real-Time Deformable Detector
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Abstract —We propose a new learning strategy for object detection. The proposed scheme forgoes the need to train a collection of
detectors dedicated to homogeneous families of poses, and instead learns a single classifier that has the inherent ability to deform
based on the signal of interest. We train a detector with a standard AdaBoost procedure by using combinations of pose-indexed
features and pose estimators. This allows the learning process to select and combine various estimates of the pose with features able
to compensate for variations in pose without the need to label data for training or explore the pose space in testing. We validate our
framework on three types of data: hand video sequences, aerial images of cars as well as face images. We compare our method to a
standard boosting framework, with access to the same ground truth, and show a reduction in the false alarm rate of up to an order of
magnitude. Where possible, we compare our method to the state-of-the art, which requires pose annotations of the training data, and
demonstrate comparable performance.

Index Terms —Image Processing and Computer Vision, Machine Learning, Object Detection.
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1 INTRODUCTION

SUCCESSFUL techniques for object detection are based
on machine learning. Though progress has been made

in reliably detecting objects with a single pose, handling
complex cases where object appearance is altered by viewpoint
changes or deformations, has proven more difficult. This paper
describes a framework which makes headway toward detecting
objects regardless of their pose. We specifically address three
types of pose variations: deformations, in-plane rotations and
a limited range of out-of-plane rotation.

There are a number of recent works in literature proposing
methods for dealing with pose variations. One common thread
among most these works is that a collection of detectors, each
trained for a single pose, is craftily combined in one form or
another.

Some approaches [31], [35], [10] employ a two stage
framework where pose is estimated as part of a first stage and
a corresponding pose-specialized detector is tasked with clas-
sifying the image in the second stage. Other approaches [14],
[13], [26], [27] proceed in a hierarchical fashion whereby pose
estimation is gradually refined with classifiers dedicated to
increasingly constrained poses. In all cases, training data must
be annotated and partitioned into disjoint clusters, thereafter
used to train a series of pose-dedicated classifiers.

Though reliable detection can be achieved in this manner,
the underlying design of these methods raises an important
difficulty: on the one hand, a fine partition of the pose space
is clearly desirable to attain better detection performance while
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on the other hand, finer partitions result in increased popula-
tion size requirements. These techniques therefore compela
tradeoff between the granularity of the partition and the size
of the training data. Equally troublesome is the fact that these
approaches are burdened by the need to annotate data during
training and by a more costly training. As a result, dealing
with a fine partition of a rich pose space quickly becomes
intractable using such a strategy.

Recently, the authors in [8] present a framework centered
on pose-indexedfeatures. The key idea revolves around ana-
lytically parameterizing the detector’s constituent features with
the pose. This avoids the need to partition the pose space and
enables training to be carried out on the entire unfragmented
data set. Nevertheless, the procedure still requires the data to
be annotated for training while a search over the pose space
is required for testing.

We propose a new approach which consists of treating pose
as a collection of hidden variables and designing a family
of pose estimators able to compute meaningful values for
those variables directly from the signal. We allow the learning
procedure to automatically handle the trade-offs involvedin
selecting and combining estimates of the hidden parameters
obtained from various image areas. This approach sets fortha
framework that overcomes both the data fragmentation prob-
lem, associated with the training of pose-dedicated classifiers,
as well as the labeling and computational overheads of purely
pose-indexed methods.

Our approach is a monolithic one in that a single classifier
is built that can adaptively deform to detect a target. Our key
contribution lies in augmenting a set of pose-indexed features
with a family of pose estimators. Each feature then consists of
a pair of functionals: one functional to estimate the pose and
the other to compute a pose-indexed featureparameterized
by the estimated pose. Various modes of parameterization
are allowed each of which acts as a specific form of feature
normalization. Though our framework is valid for any learning
method, we rely here on the AdaBoost algorithm for its
simplicity and efficiency [9], [32]. The AdaBoost learning
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procedure is allowed complete freedom in deciding how best
to combine a pose estimator with a pose-indexed feature.
In this manner, training proceeds on the unpartitioned data
set while pose estimator learning and feature learning occur
jointly in an integrated framework. The final detector consists
of a variety of features which can deform independently based
on the signal of interest, and on the pose variations observed
in training.

This work was initially motivated by a practical application
– the detection of hands to prevent injuries in manufacturing
plants – which naturally poses significant challenges. The
appearance of the hand, a deformable, articulate object may
change considerably and to be of practical interest, detection
must proceed in real-time with nearly zero error rates. We
demonstrate that our framework provides substantial benefits
in this setting. Moreover, we validate our framework on
images of faces where pose variations consists essentially
of rigid rotations and again show significant gains. Finally,
we process aerial images of cars, characterized by in-plane
rotation changes, and demonstrate gains of up to an order
in magnitude. In all cases, the reference baseline is that of
a standard boosting method with access to the same ground
truth, namely data that is not annotated for pose. Whether
faced with in-plane rotations, a limited range of out-of-plane
rotations, or deformations, our framework readily adapts to
the data and appears to sensibly combine the various pose
estimates induced from training.

2 RELATED WORK

Tremendous progress has been made towards the reliable de-
tection of objects in images. In particular, there is an extensive
literature dealing with detecting objects under limited changes
in view-angle, for instance frontal faces. Though algorithmic
details vary greatly, works such as [32], [4], [19], [16], [20],
[33] have been proven successful in unconstrained, cluttered
or partially occluded scenes.

The problem of detecting objects regardless of their pose
and where significant changes in appearance arise has proven
more difficult. In its broadest definition, object pose includes
all those latent variables which modulate object appearance
such as location, scale, rigid rotations or view-angle changes,
deformations, and variations in illumination. Works such as
those described above and their extensions handle these pose
parameters with various methods. Whereas variations in illu-
mination may be dealt with at the feature level, by designing
invariants such as edge detectors, location and scale are better
handled via image normalization in training and exploration
in testing: a classifier is trained for a single location and scale
while detection is managed by searching for the presence of
the target over all scales and locations of a given scene.

The predominant strategy, on the other hand, for dealing
with view-angle changes and deformations consists of care-
fully combining a collection of classifiers each dedicated to
a single pose. For example, the authors in [31] extend the
Viola-Jones detector to address two types of pose variation
concerning faces: in-plane rotations and out-of-plane rotations.
To deal with in-plane rotations, the pose of the image of

interest is estimated using a decision tree constructed to
determine the view class. Second, one of twelve rotation-
specific Viola-Jones detectors is used to classify the image.
The treatment of out-of-plane rotations is entirely analogous.

A number of other recent works essentially devise the same
strategy in dealing with multi-view object detection [21],[35],
[10], [18]. Multiple detectors, each specialized to a specific
pose, are built and the pose is estimated as part of a first stage.
Other works [14], [13], [26], [27] also employ pose dedicated
classifiers with the notable difference that pose estimation
and detection are organized hierarchically within a pyramid
system. In these methods, each level of the pyramid gradually
refines the pose estimate by the use of more constrained pose
dedicated classifiers. Still, other works [24], [25], [30],[29]
run a bank of pose dedicated classifiers on the scene and use
various forms of arbitration logic to combine the output.

This difference in treatment when compared with the nor-
malization and exploration strategy employed for locationand
scale stems from the fact that image normalization is not
possible when faced with complex deformations or view-
angle changes other than in-plane rotations. Hence, in the
absence of a three dimensional model or in order to avoid the
difficulties associated with building such a model, the view-
based approaches described above are a sensible course of
action and have been demonstrated to yield reliable detection
performance. However, these techniques remain burdened by
several difficulties. First and foremost, training data must
be appropriately annotated in order for it to be partitioned
into clusters of similar poses. Second, this partitioning or
fragmentation of the available training data reduces the number
of samples used to train each pose-dedicated classifier and
negatively impacts performance. It is not difficult to conceive
a setting where such a strategy fails to provide acceptable error
rates: dealing with a rich pose space or a fine partition of the
pose space, for instance, is indeed not possible using such a
strategy without increasing training data size and training time.

In order to overcome training data fragmentation the authors
in [8] present a framework centered on pose-indexed features.
By allowing features to be parameterized with the pose, it be-
comes possible to treat in-plane rotation, ranges of out-plane-
rotations and deformations in the same manner as location and
scale are typically handled. All pose parameters are treated
within the same formalism: pose-indexed features effect nor-
malization during training while in testing, exhaustive pose
exploration becomes necessary. Though promising results are
shown, this technique requires nonetheless the training data to
be labelled with the corresponding ground truth and incurs a
significant computational cost in testing.

Also relevant are works such as [7], [2], [3], [5], [12],
[17] which rely on sparse representations based on interest
points. These approaches construct clusters of interest points,
treated as object parts and spatially combined in a probabilistic
fashion. This category of work has also proven successful
in detecting objects with limited changes in view-angle. The
use of sparse representations has been recently applied to
the multi-view setting [11], [34], [23], [15], [28] with some
success. Though the utilized points of interest effect pose
estimation and normalization, these techniques fail to provide
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acceptable error rates: at low to moderate image resolutions,
an insufficient coverage of feature points leads to highly
unreliable detection performance. Our approach bears some
similarity to that of [6]. There, a view-based approach is
combined with deformable parts. Whereas this method has
proved successful in the multi-view setting it is nevertheless
burdenned by the need to explore possible configurations in
testing. Also, much as the above works on sparse represen-
tations, this method fails to provide acceptable error rates at
low image resolutions.

Our approach utilizes the pose-indexed features of [8] and
requires neither labeling for rigid rotations and deformations,
nor exploration of these pose parameters in testing. In contrast
with the works on sparse representations, we do not rely on
hand-designed local estimation and normalization. Instead, we
introduce a family of pose estimators, which provide estimates
of the rigid rotations and deformations from various areas in
the image, and allow the learning procedure to choose the best
combinations of pose-indexed features and pose estimators:
thus a pose-indexed feature may obtain a pose estimate from
one area in the image and compute a response in another.
We also allow the learning procedure to select from several
modes of normalization for each pose-indexed feature. The
result is a flexible detector which weights dense features,
each optimized with the best pose estimate and with the best
normalization mode. As will be seen through our experiments
and as shown in Figure 1, this permits the automatic discovery
of the variations present in the training data while maintaining
the generalization properties of the detector and providing
reliable detection.

3 BACKGROUND

Formal presentations of both standard features and pose-
indexed features are given here. In the remainder of this
paper, we use the AdaBoost learning procedure to illustrate
the various concepts. This is done for the sake of simplicity
and because our implementation relies on such a setup. The
underlying concepts, however, are not contingent on the use
of a specific learning algorithm: one could indeed use pose-
estimator based features in conjunction with other discrim-
inative machine learning methods, such as Support Vector
Machines and decision trees, or even with generative models.

3.1 Boosting with standard image features

Let I = [0, 1]W×H, denote the space of gray scale images of
sizeW×H and let

(

X(i), Y (i)
)

∈ I×{−1, 1}, i = 1, . . . , T, (1)

denote a labelled training set wherei = 1, . . . , T is an index
running through all available scenes. Here, we consider a
classificationsetup so that the imagesX(i) either contain a
target or not. Given a setH of image features or mappings of
the form

hk : I → R, k = 1, . . . ,K, (2)

a standard AdaBoost procedure constructs astrong classifier
f as a linear combination of, for instance,stumpsof the
following form

∀x ∈ I, f(x) =

N
∑

k=0

ωk1{hk(x)≥ρk}, (3)

whereN is the number of stumps and(ωk, hk, ρk) ∈ R×F×R.
Here, prior knowledge of the signal is embedded in the choice
of the feature setH. For instance, invariance to changes in
illumination may be obtained by using edge detectors while
invariance to translation may be achieved by using color or
gray-scale histograms estimated over large areas. The resulting
strong classifierf is used to classify images of sizeW×H . In
practice, it may also be used for detection, by simply scanning
a scene with windows of sizeW ×H .

3.2 Boosting with pose-indexed image features

We consider here adetectionsetup where the scenes for both
training and testing consist of images which may contain one
or several targets or none at all. LetΘ denote the pose space
of the object and letθ ∈ Θ denote a specific pose of that
object, encoding all possible parameters including its location
in the scene. In this context, an element of a training set takes
the form

(

X(i), θ, Y
(i)
θ

)

∈ I ×Θ× {−1, 1}, (4)

whereY (i)
θ is equal to+1 if a target is truly visible inX(i)

with pose θ, and to−1 otherwise. Ideally such a training
set is exhaustive, going through all possible posesθ ∈ Θ.
Assuming, the only pose parameter of interest is a target’s
location in a scene, then such a training set enumerates all
possible locations of all scenes assigning a positive labelwhere
a target is present and a negative one otherwise.

Given a training set as described above, a pose-indexed
feature [8] is a function of the form:

gk : Θ×I → R, k = 1, . . . ,K. (5)

Simply stated, these features depend both on an image and
a pose. Next, with a setG of pose-indexed features, one can
construct a boosted pose-indexed classifier of the form

∀θ ∈ Θ, x ∈ I, f(θ, x) =

N
∑

k=0

ωk1{gk(θ,x)≥ρk}. (6)

Classical object detection, from a single viewpoint, can be
formalized in this setting with a two dimensional pose space

Θ = [0,W ]×[0, H ]. (7)

During training, the features simply translate with the location
of every element in the training set and are, in effect, reduced
to the features described in 3.1. Detection, at fixed scale, where
the scene is parsed at every location, proceeds in a similar
manner. Given an imagex, detection at a particular threshold
T consists of computing a list of alarms

AT (x) =
{

θ ∈ Θ s.t. f(θ, x) ≥ T
}

. (8)
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This approach extends naturally to arbitrary complex object
poseθ while maintaining the joint information between dif-
ferent features. However, it requires the training data to be
labelled with the corresponding ground truth, and requiresthe
exploration of pose parameters in test. These drawbacks are
further exacerbated by adding more dimensions to the pose
space.

4 PROPOSED FRAMEWORK

To retain the benefits of the pose-indexed features without their
inherent weaknesses, we treat rigid rotations and deformations,
as a collection of hidden variables and simultaneously em-
power the learning procedure with estimates of those hidden
variables. Specifically, we introduce the idea of a pose esti-
mator, which computes a meaningful pose directly from the
signal. This computed pose is then used to evaluate various
pose-indexed features as is next explained.

4.1 Boosting with pose estimators

We begin by regarding location, which is annotated in training
and parsed in testing, in the same way as classical approaches
and purely pose-indexed approaches. Let

Θ1 = [0,W ]×[0, H ] (9)

represent the aforementioned two-dimensional space standing
for the location of the target, and letΘ2 = [−π, π[ consist
of an orientation in the image plane. Given a pose-indexed
feature,

gk : (Θ1×Θ2)× I → R, k = 1, . . . ,K, (10)

a pose estimator is a mapping of the form

ηm : Θ1×I → Θ2, m = 1, . . . ,M. (11)

We can now define a pose-indexed image featureγmk for
locationsl in the pose spaceΘ1 with

∀l ∈ Θ1, x ∈ I, γmk(l, x) = gk
(

(l, ηmk
(l, x)), x

)

. (12)

In words, to evaluate a functionalγmk on a scenex for a lo-
cationl ∈ Θ1, we first compute an angleθ′ = ηmk

(l, x) ∈ Θ2

and then evaluategk for the combined pose(l, θ′) andx. These
features thus simply have a component which estimates an
angle of the target in the image plane. That estimate is then
used to evaluate a pose-indexed feature. In practice, different
modes of parameterizations are used for the pose-indexed
featuresgk and each parameterization mode may be seen as
effecting a specific type of feature normalization, see Figure 1.

Hence, from a set of cardinalityK of pose-indexed features
gk and a set of cardinalityM of pose estimatorsηm, we
create a new set of cardinalityMK with features γmk.
This augmented set can then be used with AdaBoost in a
straightforward manner. At every iteration, the most successful
pose estimator and pose-indexed pair is chosen with the next
pair chosen so as to rectify the errors of the previous one
resulting in a boosted ensemble of the form

∀l ∈ Θ1, f(l, x) =

N
∑

k=0

ωk1{gk((l,ηmk
(l,x)),x)≥ρk}. (13)

Pose estimator learning and feature learning occurs jointly
in a fully integrated fashion: the learning process is allowed
to combine several estimates inΘ2 of an unkown pose
and balances different modes of parametrization to reduce
classification error. The final detector is highly flexible and
able to simultaneously examine the signal inM different
ways to determine pose parameters and deform its features
accordingly.

4.2 Discussion

Suppose we are tasked with detecting an object class whose
pose space may be parameterized byp parameters:

Θ = Θ1 × · · · ×Θp (14)

We maintain our definitions forΘ1 andΘ2 as the pose spaces
of the location of the target and the orientation in the image
plane respectively. The additional pose parameters model the
rigid rotations and deformations of the target.

Approximating the pose space: By designing a family of
pose estimators and allowing the learning method to combine
a pose estimator with a pose-indexed feature undergoing a
specific type of normalization, the pose space of the object is
effectively being approximated with:

Θ ≈ Θ1×Θ
M
2 (15)

This is true whether the actual pose space of the object is
rich, consisting of deformations and out-of-plane rotations,
or very simple consisting say only of in-plane rotations.
In the former case of a rich pose space, consisting of say
p − 1 parameters as described above, the learning method
attempts to capture estimates of these parameters using the
M pose estimators. In the case of simple in-plane rotations,
theM pose estimators all work to capture a single parameter,
namely orientation, and are combined and weighted by the
learning method.

A deformable detector: It is also worth noting that the
final detector that is obtained from our framework spans a
very large set of possible configurations. AssumingM > N ,
where we recall thatN represents the number of stumps,
and allowing forq bins to quantify the response of the pose
estimators (see§5.1), the detector possesses a total of

qM (16)

instances, each corresponding to a specific instantiation of
theM parameter used to deform features. With a basic setup
of q = 8 and M = 14, this results in4.4 × 1012 different
configurations, a very large space which stands in sharp
contrast to the single configuration of a rigid model ordinarily
constructed by AdaBoost. Whereas one would expect that
for a given object class and pose variation, the correlations
between theM estimates greatly reduce this space, the same
does not hold for the negative class. Thus the entire space of
configurations can in fact be utlized by the learning method
to discriminate the object class from an arbitrary background.



5

Fig. 1: Our framework mixes three types of edge counting features. Every row shows an example feature from each type
along with its extractions for three samples: an open hand, the same hand where the thumb has moved and a rotated version
of this case. The example features are shown on the left column: the solid box shows the support of the feature while the
solid line within shows the extracted edge orientation. Thedashed box shows the area in the image from which the pose
estimate is computed, here the dominant edge orientation. This area is also highlighted in every sample by the bolded outline
of the hand.Top row: a standard feature which checks for the absence of horizontal edges. Note that as the thumb moves
and the entire hand is rotated, this features disregards thechanges in pose and always checks for the absence of horizontal
edges at the same location in the image.Middle row: a pose-indexed feature which always has a fixed location but checks
for the presence of different edge orientation depending onthe dominant edge orientation in the lower-left quadrant ofthe
image. Note how the feature is effectively tracking the thumb. Such features effect so-called “Type I normalization” whereby
the extracted edge orientation depends on a pose estimate, see§6.1. Bottom row: a pose-indexed feature whose location and
edge orientation extraction depend on the dominant edge orientation in the entire image. Note how the feature is effectively
tracking the forefinger: it ignores the change in pose as the thumb moves since this has no impact on the global dominant
orientation and follows the rotation of the hand in the next sample. Such features effect so-called “Type II normalization”
whereby the extracted edge orientation and the feature’s location depend on a pose estimate, see§6.1.

TABLE 1: Various approaches in perspective.First column: The predominant strategy which consists of training pose-dedicated
classifiers. There, the training data must be fully labelledfor the poseθ so that it can be partitioned to train the classifiers, the
feature is simply indexed by location and a separate detector is trained for each pose parameter other than location.Second
column: The pose-indexing framework. There, data must also be annotated while the use of the pose-indexed features allows
for training a single classifier indexed by pose on the entiredata. Detection must be managed via exhaustive search over the
pose parameters.Third column: Our framework. Data must only be annotated for location. Thecombined use of pose-indexed
features and pose estimators allows for the training of a single classifier indexed by location. During detection, no search is
necessary as the selected pose estimators extract the required pose estimates.

Predominant Strategy Pose-indexing Pose Estimators

Training Data
(

X(i), θ, Y
(i)
θ

) (

X(i), θ, Y
(i)
θ

) (

X(i), l, Y
(i)
l

)

Feature Set hk : Θ1× I → R gk : Θ×I → R gk : (Θ1×Θ2)× I → R

ηm : Θ1×I → Θ2

Training Output f1(l, x), . . . , f ‖Θ‖
‖Θ1‖

(l, x) f(θ, x) f(l, x)

Detection ∀l ∈ Θ1, given θ̂ ∈ Θ, ∀θ ∈ Θ, ∀l ∈ Θ1,

f
θ̂
(l, x) =

∑N
k=0 ω

θ̂
k
1
{hθ̂

k
(l,x)≥ρθ̂

k
}

f(θ, x) =
∑N

k=0 ωk1{gk(θ,x)≥ρk}
f(l, x) =

∑N
k=0 ωk1{gk((l,ηmk

(l,x)),x)≥ρk}
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Perspective on different approaches: Table 1 puts the
various approaches in perspective assuming a general pose
spaceΘ as described in Eqn. 14. Let us consider, by way of
example, a target undergoing simple in-plane rotations. The
predominant approach in this case is that of Viola and Jones
in [31] where12 rotation specific detectors are trained along
with a pose estimator returning an estimate of the target’s
orientation in the image plane. The pose-indexed approach
in this case would train a single detector with features that
rotate according to the labelled pose. In testing, one would
simply test all possible rotations at all possible locations and
retain the maximum response. In contrast, our approach would
initiate training on the unlabeled training data andM pose
parameters are used to approximate the target’s rotation in
the image plane: each pose-indexed feature would obtain its
pose information from one of theM parameters. Those same
parameters are extracted during testing, and used to evaluate
their associated pose-indexed features.

Our implementation, as described in§5, should not be un-
derstood as dealing with the full range of out-of-plane rotation:
for example, one should not apply our implementation to
build a single, monolithic, deformable detector capable of
simultaneously detecting a front view car and a side view
car. As mentioned in§2, in such a setting, the view-based
approaches are a sensible design strategy. The later strategy
should be combined with our proposed deformable detector
to reduce data fragmentation and thereby improve detection
performance. We note that the method in [6] in fact mixes
a view-based approach with deformable parts. However, a
very limited number of parts are used and much as the
purely pose-indexed approaches, it requires the exploration of
possible configurations in testing. The method is additionally
designed to leverage higher resolution content. In comparison,
our method uses hundreds of deformable features, does not
require exploration of pose parameters in testing and is capable
of providing reliable detection even in low resolution.

5 IMPLEMENTATION DETAILS

The specifics of our implementation are given in this section.
We follow the same notation as that of previous sections.

5.1 Standard Feature Set

We describe here two types of standard image features, not yet
indexed by a pose. A scenex is preprocessed by computing
and thresholding the derivatives of the image intensity to
obtain an edge image. The orientation of these edges are
further quantized intoq bins, resulting inq edge maps. Let
φ denote the possible orientations of an edge onΦ = [−π, π[,
and letΦ̂ = {0, 2π

q
, 4π

q
, . . . , (q − 1) ∗ 2π

q
} denote the possible

orientations of aquantizededge.
Now ∀e ∈ Φ̂, x ∈ I, l ∈ {1, . . . ,W} × {1, . . . , H}, let

ξe(x, l) ∈ {0, 1}, (17)

denote the presence of an edge with quantized orientatione
at pixel l in image x. We assumeξe(x, l) is equal to0 if
the locationl is not in the image plane. Thus, eachξe(x, l)
is simply a map of edges with quantized orientatione, see

Fig. 2: From the original gray-scale image (top), we compute
eight edge maps (two lower rows), corresponding to eight
different orientations of a simple edge detector. Integralimages
of these edge maps are used to efficiently compute proportions
of edges in rectangular windows.

Fig. 2 for q = 8. We also consider a smoother version of
ξe(x, l) defined as:

ξ̄e(x, l) = max(0, cos(φ− e)) (18)

In this case, each edge with orientationφ at pixel l in image
x contributes a soft value to each edge map. We again assume
ξ̄e(x, l) to be equal to0 if the locationl is not in the image
plane. In practice, the hard edge map based feature perform
poorly with highq. This becomes immediately obvious when
we consider that with a fine discretization, edge orientations
become increasingly noisy. Soft-features, which allow forsoft
votes for every edge, become useful with highq. For the
remainder of this paper, the discussion is presented with
respect to the hard edge maps though all equations extend
equally to the soft edge maps by simply substitutingξe(x, l)
with ξ̄e(x, l).

Our features, similar to those of [1], compute the ratio of
edges of a particular orientation within a sub-window of the
detector’sr × r square of interest, with respect to the total
number of edges within the same sub-window. LetR denote
such a sub-window of random size and location contained
in {1, . . . , r} × {1, . . . , r} plane. Our features are entirely
parameterized by the sub-windowR and the edge typee and
are defined as:

hR,e(x) =
∑

m∈R

ξe(x,m) /
∑

d∈Φ̂,m∈R

ξd(x,m). (19)

These features give the classifier the ability to check for the
presence of outlines and textures and can be computed in
constant time usingq integral images, one for each edge map.

5.2 Pose-Indexed Image Features

From the image features described above, we define a set of
features indexed by a location in the image plane and an
orientation. We defineΘ1 = {1, . . . ,W} × {1, . . . , H} and
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Fig. 3: From a rectangular windowR and a pose(u, v, θ2),
we define a indexed windowRl,θ2 . Hereθ2 = π/4.

Θ2 = [−π, π[. Given a rectangular sub-windowR, and poses
l = (u, v) ∈ Θ1, andθ2 ∈ Θ2, we define

Rl,θ2 (20)

as the rectangular window in the image plane obtained by
applying a rotation of angleθ2 and a translation(u, v).

Similarly, given a edge orientatione ∈ Φ̂ and an angle
θ2 ∈ Θ2, we define

eθ2 (21)

as the orientation obtained after a rotation ofθ2 is applied to
the edge, that is the edge orientation inΦ̂ closest toe+ θ2.

With the above notation, we can define a set of pose-indexed
features fromhR,e introduced above, with

gR,e((l, θ2), x) = hRl,θ2
, eθ2

, (22)

which is, the proportion of edges with a rotated edge orienta-
tion in the translated and rotated rectangular window.

We note that the orientation of the resulting window is again
quantified with a resolution ofq for computational reasons.
Rotations of angles proportional toπ/2 and π/4 are ideal,
see Fig. 3. For other angles, rotations are approximated for
maximum overlap with the ideal case. The features themselves
can be computed in constant time with2q integral images:q
integral images for each edge map and an additionalq for each
edge map rotated byπ/4.

5.3 Pose Estimators

We define a family of pose estimators which estimate a
meaningful orientationθ2 ∈ Θ2 from a locationl = (u, v).
Our pose estimators compute the dominant edge orientation
in a particular windowΛ contained in the neighborhood ofl.
More precisely, we define

ηΛ(l) = argmax
e∈Φ̂

hΛl, e , (23)

which computes the dominant edge orientationθ2 in the
window Λ translated according tol. Given the{1, . . . , r} ×
{1, . . . , r} plane r, we define 14 regions for the pose-
estimators corresponding to the complete square, the four
regular sub-squares, and the nine regular sub-squares, which
leads to14 different pose-estimators, as shown in Fig. 4. Note
that the estimated pose is quantified with the same number of
bins q so as to allow for the reuse of the integral images.

In addition to these14 pose estimators, we defined3 more
global pose estimators for our experiments with the face data

S=0 S=1 S=2

Fig. 4: Our family of pose estimators. Given the square
of interest of sizer × r centered onl, there are14 pose
estimators in total operating: each one computes the dominant
edge orientationθ2 in one of the sub-squares at three different
scalesS.

sets. They determine the global orientation in the image plane
by looking for the axis which maximizes symmetry of the
two-half images using various metrics.

6 EXPERIMENTS

To evaluate the performance of our proposed learning strategy,
experiments were performed on three different data sets: video
sequences of hands, aerial images of cars and face images.
For all data sets, we compare the performance of our method
against that of a standard boosting procedure with access to
the sameground truth. In the case of the aerial images of
cars, where pose variation consists mainly of pure in-plane
rotations, we also compared the performance of our method
with the optimal pose normalization scheme: a try-all-rotations
detector trained on manually aligned data. In what follows,the
specifics of our experimental setup are given and the results
of our experiments provided.

6.1 Learning

The standard AdaBoost learning procedure is used. Two
boolean flags are added to the definition of our augmented
pose-indexed features. The first indicates if the feature is
to take the pose estimate into account. If so, the second
flag specifies if the feature’s window is to be registered
according to the rotation described in§ 3.2. Given a pose,
(l, θ2) ∈

(

{1, . . . ,W}×{1, . . . , H}
)

× [−π, π[, three types of
features are hence obtained:

• The first ignores the pose estimate and thus reduces to the
standard feature as it simply translates its window with
l.

• The second considers the pose estimateθ2 insofar as its
edge orientation type is concerned while still translating
its window with l.

• The third translates its window withl , applies a rota-
tion to the latter and changes its edge orientation type
according toθ2.

We refer to the second and third items as Type I normalization
and Type II normalization respectively.

The selection of the stump at every iteration of AdaBoost
results from examining1000 of these features. The threshold
ρi of the selected stumps is optimized through an exhaustive
search. The boolean flags are naturally selected randomly, with
probability 0.5. The pose estimator is also chosen randomly:
the scale at which it examines the signal is first chosen
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uniformly and the same is true for the sub-square over-which
orientation is computed (among1, 4 or 9 possible), see Fig. 4.
Finally, the windowR and the edge orientatione are also
chosen uniformly at random.In all our experiments, a single
AdaBoost stage is trained with the bootstrapping procedure
described in [8]: this allows us to avoid the difficulties
associated with training and tuning a cascade. All of the
results are averaged over five independent runs. Since we
observed the absence of over-fitting, we did not optimize
learning parameters through cross-validation. Learning and
testing algorithmic outlines are given in Algorithms 1 and 2
below.

Algorithm 1 Learning Outline

Given training data
(

X(i), l, Y
(i)
l

)

, a set ofK pose-indexed
featuresgk and a set ofM pose-estimatorsηm.

1: Initliaze weightsα1,i,l =
1
2a ,

1
2b wherea andb are the total

number of positive and negative examples respectively.
2: for k = 1 to N do
3: for t = 1 to 1000do
4: Choose at random a pose-indexed featureg

(t)
k , a pose

estimatorη(t)m and a normalization mode. Evaluate
weighted classification error after threshold optimiza-
tion ρ

(t)
k :

ǫt =
∑

i,l

αj

∣

∣

∣
1
{g

(t)
k

((l,η
(t)
m (l,x(i))),x(i))≥ρ

(t)
k

}
− y

(i)
l

∣

∣

∣

5: end for
6: Definegk, ηmk

, ρk as the minimizers ofǫt.
7: Update data weights:

αk+1,i,l = αk,i,lβ
1−ei,l
t

whereei,l = 0 if image x(i) at locationl is classified
correctly andei,l = 1 otherwise.βt =

ǫt
1−ǫt

.
8: Setωk ←

1
2 log

1
βt

9: Normalize data weightsαk+1,i,l ←
αk+1,i,l∑
j
αk+1,i,l

10: end for
11: The final detector is given by:

f(l, x) =

N
∑

k=0

ωk1{gk((l,ηmk
(l,x)),x)≥ρk}

Algorithm 2 Detection Outline
Given a patch from imagex and locationl.

1: Evaluate allM pose estimatorsηm.
2: Evaluate strong classifier:

f(l, x) =

N
∑

k=0

ωk1{gk((l,ηmk
(l,x)),x)≥ρk}

6.2 Error rates

Error rates were computed in a conservative fashion. A detec-
tion is a true alarm if its location is within a certain distance
from the target and a false alarms otherwise. The considered
distance is half the length of the detector’s square window of
interest. In several frames, in both the hand and the car data
sets, two targets may lie within the above mentioned distance.
In this scenario, if only one alarm is raised, a miss is counted.
In all our experiments we have chosen to use false alarm rate
for uniformity instead of the number of false alarms.Given that
all images were scanned by steps of two pixels, a conversion
to this second measure can be obtained simply by multiplying
the rate with the size of the image, given below for each data
set, and dividing by four.
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Fig. 5: Performance of our learning framework compared
with a standard boosting framework for hardware-specialized
camera (training and testing). Figure (a) displays true-positive
rate as a function of the false alarms rate on a log scale.
Figure (b) displays the false alarm rate at 90% true positive
rate as a function of the number of stumps. In both figures, the
thin blue curve corresponds to the performance of the standard
feature set while the thick red curve shows the performance
of the detector using the combination of pose-indexed features
and pose-estimators.
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Fig. 6: Performance of our learning framework compared
with a standard boosting framework for the webcam data set
(training and testing). Figure (a) displays true-positiverate as
a function of the false alarms rate on a log scale. Figure (b)
displays the false alarm rate at 90% true positive rate as
a function of the number of stumps. In both figures, the
thin (dashed) blue curve corresponds to the performance of
the standard feature set while the thick red curve shows the
performance of the detector using the combination of pose-
indexed features and pose-estimators.

6.3 Experiments on Hand Video Sequences

6.3.1 Data

We carried out our tests on two data sets. Each data set con-
tains two hand sequences: one sequence is used for training,
the other is used for testing. Our first data set was obtained
from a hardware-specialized camera [22] which directly com-
putes edges and is to an extent illumination invariant. These
sequences have a resolution of128 × 160, a frame rate of
approximately7 fps and a duration of4 minutes. The scene
consists of a piece of heavy machinery with a few moving parts
and clutter. Our second data set was obtained from a standard
webcam. These sequences have a resolution of144 × 192, a
frame rate of approximately10 fpsand a duration of5 minutes.
The scene consists of a typical disorderly office desk.

6.3.2 Setup

The boosting stage is trained with1500 positive examples and
150, 000 negative examples for the hardware-specialized data
set. Similarly, the boosting stage corresponding to the webcam
data set is trained with1800 positive samples and180, 000
negative samples. Learning was carried out up to500 stumps
for both data sets. Hard Edge maps were used withq = 8.

6.3.3 Results

We compared the performance of our augmented feature set
with that of the standard features. As shown in Figures 5 and 6,
incorporating pose estimator learning with feature learning
provides with a significant gain in false positive rate atall
detection rates and for both data sets. Indeed our method
is able to capture the strong changes in appearance of the
hand where the standard features fail. Most notably, at90%
true positive rate our first hardware-specialized data set,our
method raises9.4 × 10−6 false alarms per frame versus
2.7× 10−5 for the standard features, a gain of approximately
180%. Some example frames, chosen uniformly at random,
are shown in Figure 17 and 18 for both data sets.

Figures 7 and 8 show some statistics with respect to the
type of features selected by AdaBoost. We note that the
percentage of features operating with pose estimators quickly
rises with each boosting step and stabilizes at approximately
70% leaving30% for the standard features. This is intuitively
meaningful: with each boosting step, harder samples remain
to be classified and more of the augmented features are
brought into play. We also note that the pose estimators are
utilized relatively uniformly and across both normalization
schemes. The most frequently selected features utilize thelarge
scale pose estimator with type II normalization: these features
account for the in-plane rotation that is present throughout the
sequence. The remaining augmented features, utilized at over
80%, account for the deformations of the hands.

Table 2 shows run-times obtained for the proposed frame-
work on the webcam test sequence with varying number of
stumps. We note that the code was not optimized for best
preformance and that implementing a simple early-rejection
cascade, for example, would result in significant speed-ups
while maintaining performance constant.
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Fig. 7: Frequency of features selected by AdaBoost during
training for the hardware-specialized camera. Left: the rate at
which features operating with pose estimators are selectedas
a function of the number of stumps. Right: the allotment of
features to each pose estimator.
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Fig. 9: Some examples of cars from our test data set taken uniformly at random across the entire set
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Fig. 8: Frequency of features selected by AdaBoost for the
webcam data set. Left: the rate at which features operating
with pose estimators are selected as a function of the number
of stumps. Right: the allotment of features to each pose
estimator.

TABLE 2: Run-times for the webcam dataset on a general-
purpose IntelR© XeonR© L5420 processor, 2.50Ghz.

Number of stumps Frame processing time (ms) FPS
100 28.38 35
200 49.07 20
300 69.55 14
400 88.32 11
500 107.56 9

6.4 Experiments on Aerial Images of Cars

6.4.1 Data

Our data set consists of100 aerial images of resolution1064×
744 collected over Lausanne and Geneva at a constant altitude.
The images contain approximately3000 cars, parked or in
motion, in a highly challenging urban environment: shadows
are cast by buildings and greenery often occlude over half
the targets. In addition, cars are customarily parked side-by-
side leaving very little space in between rendering detection
even more troublesome. Some sample patches taken uniformly
at random are shown in figure 9. The pose variation we are
interested in here is in-plane rotation as cars can be found in
any orientation.

6.4.2 Setup

Images over Lausanne were used for training while images
over Geneva were used for testing. The boosting stage is
trained with1500 positive examples and2, 000, 000 negative
examples while learning was carried up to2000 stumps. Hard
Edge maps were used withq = 16.

6.4.3 Results

We compared the performance of our augmented feature set
with that of a standard boosting procedure with access to
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Fig. 10: Performance of our learning framework compared
with a standard boosting framework for the car data set.
Figure (a) displays true-positive rate as a function of the false
alarms rate on a log scale. Figure (b) displays the false alarm
rate at 90% true positive rate as a function of the number of
stumps. In both figures, the thin blue curve corresponds to
the performance of the standard feature set while the thick
red curve shows the performance of the detector using the
combination of pose-indexed features and pose-estimators.
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the same ground truth. As shown in figure 10, incorporating
pose estimator learning with feature learning provides with a
significant gain in false positive rate atall detection rates and
for both data sets. Indeed, at90% true positive rate, our method
raises1.2×10−4 false alarms per frame versus3.6×10−4 for
the standard features, a gain of approximately200%. Gains of
an order of magnitude are observed at true positive rates below
70%. Some example detections, are shown in Figure 19.

Figure 11 shows some statistics with respect to the type of
features selected by the AdaBoost learning procedure. We note
that the percentage of features operating with pose estimators
starts off at a100% and stabilizes at approximately75%.
This behavior is rather different from the one observed for
the hand video sequences and can be explained by the fact
that features using the global pose estimator with type II
normalization perform in-plane rotation normalization. Given
that the pose variations in the car images consist mainly of
in-plane rotations, the only features that offer AdaBoost good
error rates are immediately that variety. This was empirically
confirmed as the first10 features selected by AdaBoost are
consistently effecting type II normalization with our global
pose estimator. We note however that as more and more stumps
are added, the pose estimators are utilized relatively uniformly
and across both normalization schemes. Even though, we are
only faced with in-plane rotations, none of the pose estimators
are accurate individually: AdaBoost hence combines the vari-
ous pose estimators in order to compensate for this deficiency.
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Fig. 11: Frequency of features selected by AdaBoost for the
car data set. Left: the rate at which features operating withpose
estimators are selected as a function of the number of stumps.
Right: the allotment of features to each pose estimator.

We also compared our detector with an optimal pose nor-
malization scheme. This consists in manually aligning the
car patches for training and parsing all possible rotations
of the images in testing. Note that for both training and
testing the images were rotated and bilinear interpolationwas
performed so as to avoid possible artifacts. As can be seen
in figure 12, our framework outperforms the try-all-rotations
detector at high true positive and low true positive. The try-
all-rotations detector performs better in the true positive range
0.75 − 0.95. Note however that as shown [31], a try-all-
rotations detector trained on aligned data exhibits slightly
higher accuracy than the state of the art two stage approach:
the advantage of the latter is that a search over all rotations
is not necessary. Both methods require pose annotation of
the data for training, which our framework forgoes. We also
note that our framework performs as well as the purely-pose-

indexed approach: there, pose-indexed features are used to
perform in-plane normalization in training, according to the
labelled pose, and all rotations are explored in testing.
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Fig. 12: Performance of our learning framework compared
with the optimal pose normalization scheme and a purely pose-
in dexed approach for the car data set. The figure displays
true-positive rate as a function of the false alarms rate on a
log scale. The thin green curve corresponds to the performance
of the standard feature set, the thick red curve shows the
performance of the detector using the combination of pose-
indexed features and pose-estimators and the thin black curve
shows the performance of a purely pose-indexed approach.

6.5 Experiments on face images
6.5.1 Data
Our data here consists of8000 face images of size48 × 48.
These faces differ from the standard data sets in that the
images contain most of the head, from forehead including the
chin and jaw lines, as well as some background. More impor-
tantly, the images were collected so as to include generally
upright and generally frontal faces but without paying much
attention to the pose. Thus the data set contains some variation
in terms of in-plane rotation as well as out-of-plane rotation.
Some examples are shown in 13. We believe that such a data
set captures well the inherent natural variations that exist in
photographs.

6.5.2 Setup
For this data set, we ran classification experiments as opposed
to detection. Thus for training, we used4000 positive samples
and6000 negative samples. For testing4000 positive samples
were tested with approximately6, 000, 000 negative samples
to ensure stable and meaningful false positive rates. Negative
data was collected randomly from large images that do not
contain faces. Learning was carried up to1500 stumps and
experiments were performed using soft edge maps withq =
72, corresponding to a quantization of edge orientation of5
degrees. Such a fine discretization was required in order to
capture the rigid rotations variations which exhibit a verysmall
standard deviation of approximately10 degrees.
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Fig. 13: Some examples of faces from our test data set taken uniformly at random across the entire set

6.5.3 Results
We compared the performance of our augmented feature set
with that of a standard boosting procedure with access to the
same ground truth. As can be seen in figure 14, our method
performs as well as a standard boosting framework for true
positive rates above87.5%. Below that true positive rate how-
ever, our framework provides very significant gains. Indeed,
at 82.5% true positive rate, our method raises7.7×10−7 false
alarms per frame versus1.6×10−6 for the standard features, a
gain of approximately100%. Note also that at approximately
81% true positive, our framework raises0 alarms and all the
6, 000, 000 negative patches are correctly classified. The same
behavior is noted for the standard boosting framework, though
at 72.5% true positive. We note that pose estimators were
again utilized relatively uniformly and constituted40% of all
features selected.

6.6 Assessing the effects of Joint Learning

We are interested in analyzing the benefits brought about by
the joint pose estimator and feature learning we propose. In
particular, we are interested in the performance that would
result from constraining the pose-indexed features to utilize
only one pose estimator and perform only one type of normal-
ization. To this end, we considered the case where features are
forced to employ the global pose estimator and perform type
II normalization. This is essentially a scheme that attempts
to perform in-plane normalization based on a pose estimate
obtained from a hand-crafted rule.

This setup allows us to truly understand where the gains in
performance originate from. For fairness, these experiments
were performed on two of our data sets: the car data set
where most of the pose variation is in-plane rotation and the
hand webcam data set where pose variation consists mainly
of deformations though in-plane rotation is present throughout
the sequence, given that there are two hands with different
orientations.

Figure 15 shows the results obtained for the car data set. As
expected the constrained scheme performs between our frame-
work and the standard boosting framework, though closer
to the former. Upon first examination, this was surprising
since we observed that the global pose estimator is prone to
error eventhough in pose is visible in most samples. Upon
closer examination, we noted that the errors of the global
pose estimator are consistent in that the latter fails on clusters
of samples exhibiting the same difficulties, namely occlusion
or strong shading. The AdaBoost learning procedure readily
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Fig. 14: Performance of our learning framework compared
with a standard boosting framework for our face data set.
Figure (a) displays true-positive rate as a function of the false
alarms rate on a log scale. Figure (b) displays the false alarm
rate at 82.5% true positive rate as a function of the number
of stumps. In both figures, the thin blue curve corresponds to
the performance of the standard feature set while the thick
red curve shows the performance of the detector using the
combination of pose-indexed features and pose-estimators.
Soft edge map features are used.

copes with this situation by placing features at consistent
locations for each cluster and weighing them appropriately.
The previous observation notwithstanding, it is clear that
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Fig. 15: Performance on the car data set of our learning frame-
work compared with a scheme utilizing the same framework
but where features are constrained to employ the global pose
estimator and effect type II normalization for the car data.
The figure displays true-positive rate as a function of the false
alarms rate on a log scale. The thick red curve shows the
performance of the detector using the combination of pose-
indexed features and pose-estimators and the black curve, with
circular markers, shows the performance of the global pose
estimator only scheme. The thin blue curve corresponds to
the performance of the standard feature set.

the joint learning we propose brings significant benefits in
this case with gains of100% compared to a hand-designed
normalization rule.

Figure 16 shows the results obtained for the hand webcam
data. As can be seen, the performance of the constrained
scheme is far worse than that of our framework. Surprisingly,
it is even worse than the performance of the standard boosting
framework. This can be explained by the fact that the global
pose estimator is unreliable, returning nearly random poses, for
a large number of samples. Thus, the global pose estimator is
unable to account on its own for the in-plane rotation variations
that are present in the data. This is in addition to the fact
that constraining features to use the global pose estimatorand
effect type II normalization offers no possibility to handle
deformation.

7 CONCLUSION

We introduced a novel object-detection strategy to handle
complex changes in target pose. Our method consists of
designing a series of pose estimators able to directly compute
an orientation in the image plane, and to allow the learning
process to chose the most efficient combinations of pose
estimators and pose-indexed features. This procedure produces
a detector able to modulate its features according to the
image signal hence adapting to variations in appearance and
local deformations without the need for fragmenting the data
during training, nor visiting additional pose parameters during
detection.

A simple class of features truly invariant to rotation would
compute the maximum proportion of edges over all possible
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Fig. 16: Performance of our learning framework compared
with a scheme utilizing the same framework but where features
are constrained to employ the global pose estimator and effect
type II normalization for the hand (webcam) data. The figure
displays true-positive rate as a function of the false alarms rate
on a log scale. The thick red curve shows the performance of
the detector using the combination of pose-indexed features
and pose-estimators and the black curve, with circular markers,
shows the performance of the global pose estimator only
scheme. The thin blue curve corresponds to the performance
of the standard feature set and is shown for reference

orientations in a fixed sub-window. The pose estimators we
use, as defined in§5.3, provide the same operator when the
windows of the pose-estimator and the pose-indexed features
are identical. Hence, the features we have designed form a
super-set of simple truly invariant features, as they are able to
estimate the orientation in a window, and evaluate the response
for that orientation in another one. Extension of this work can
follow two different axes. The first is to consider the use of
more complex pose-estimators, going beyond the direct use
of the edge counting features. The second axis will consist
of investigating the relationship between standard invariant
features and alternatives of the combination of pose-indexed
features and pose-estimator we propose here, as stated above.
By deconstructing standard image invariants in the same way,
we may exhibit new valuable classes of both pose-indexed
features and pose estimators.
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Fig. 17: Some example detections sampled uniformly at random across the entire test set obtained from our hardware-specialized
camera. True positive rate is 90%. Correct detections are shown in green whereas false alarms are shown in red. Detection
proceeds frame by frame independently with no temporal constraints, not even background subtraction.

Fig. 18: Some example detections sampled uniformly at random across the entire test set obtained from the webcam. True
positive rate is 90%. Correct detections are shown in green whereas false alarms are shown in red. Detection proceeds frame
by frame independently with no temporal constraints, not even background subtraction.
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Fig. 19: Some examples from our car test set. True positive rate is 85%. Correct detections are shown in green whereas false
alarms are shown in red. There are 198,000 tests per image.


