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Abstract Diabetes is threatening the health of many people in the world. People
may be diagnosed with diabetes only when symptoms or complications such as dia-
betic retinopathy start to appear. Retinal images reflect the health of the circulatory
system and they are considered as a cheap and patient-friendly source of informa-
tion for diagnosis purposes. Convolutional neural networks have enhanced the per-
formance of conventional image processing techniques significantly by neglecting
inconsistent feature extraction pipelines and learning informative features automat-
ically from data. In this work we explore the possibility of using the deep residual
networks as one of the state-of-the-art convolutional networks to diagnose diabetes
directly from retinal images, without using any blood glucose information. The re-
sults indicate that convolutional networks are able to capture informative differences
between healthy and diabetic patients and it is possible to differentiate between these
two groups using only the retinal images. The performance of the proposed method
is significantly higher than human experts.
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1 Introduction

Diabetes is a group of metabolic diseases resulting from defects in insulin secretion
(type 1 diabetes), insulin action (type 2 diabetes), or both. If it is not controlled, it
leads to long-term damages, dysfunctions, and failure of different organs, especially
the eyes, kidneys, nerves, heart, and blood vessels [2]. One of the main long-term
complications is retinopathy with potential loss of vision. Since visual loss may not
be present in the earlier stages of retinopathy, regular screening of persons with dia-
betes is essential to enable early intervention. For decades, the diagnosis of diabetes
has been based on glucose criteria [15]. However, non-invasive and easy-to-access
approaches are favorable in large screening settings.

Retinal images are often used to develop automatic diagnosis systems and study
the progression of different diseases such as diabetic retinopathy, age-related mac-
ular degeneration, glaucoma and retinopathy prematurity [12, 1]. The extraction of
vascular biomarkers is not straightforward, and often relies on a series of preceding
image processing tasks including vessel segmentation, vessel width measurement
and artery-vein classification [4, 5]. Potential errors in the processing pipeline may
accumulate, and the final extracted biomarkers may become unreliable. Due to con-
tradictory and inconsistent results, it is still not clear to clinicians how the vascu-
lature changes in patients are developing with diabetic retinopathy. Moreover, no
studies have investigated whether it is possible to use retinal images to differentiate
between the images of healthy and those of diabetic subjects before diagnosis of
retinopathy.

Deep learning is rapidly becoming the state-of-the-art in various medical ap-
plications including image classification, segmentation, localization and registra-
tion [14, 7]. One of the main reasons behind the outstanding performance of Con-
volutional Neural Networks (CNNs) compared to conventional approaches is that
features are learned from data automatically, instead of being handcrafted. In this
work we use CNNs, in particular the deep residual nets (ResNets) [9], to investi-
gate if the retinal images of healthy and diabetic subjects are differentiable. The
residual networks are easier to optimize, and can gain accuracy from considerably
increased depth, with much less complexity compared to other state-of-the-art ar-
chitectures [9].

2 Material

We used a subset of a private dataset collected in the Maastricht Study1. This is a
large phenotyping study focusing on type 2 diabetes, comprising subjects that live
in the southern part of the Netherlands [13]. This subset includes 8924 good quality
images of left and right eyes of 2336 subjects (1150 males and 1186 females, aged
between 40 and 76), which are centered either on the fovea or on the optic disc. The

1 https://www.demaastrichtstudie.nl/research
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images are taken with a non-mydriatic autofocus fundus camera (Model AFC-230,
Nidek). The images are categorized into two groups, either healthy (5791 images),
or type 2 diabetic subjects (3133 images), based on blood sugar level tests.

3 Methodology

The network follows the structure of the residual networks proposed by [9]. It
chains several blocks, each consisting of two convolutional layers, batch normaliza-
tion [10], rectified linear units [6], and a “pass-through” which adds the unchanged
input.

One basic block (BB

f ,s
p,q) is shown in Fig. 1a, and the complete model used in this

work is depicted in Fig. 1b. In this figure, Conv

f ,s
p,q represents a 2D convolutional

layer [11], where f , p, q and s represent respectively the filter size ( f ⇥ f ), the
number of input planes, the number of output planes, and the convolution step size.
BN is a batch normalization layer [10] and ReLU is the rectified linear unit [6].
Avg

k,s and Max

k,s apply a 2D average or max pooling operation in k ⇥ k regions
by step size s ⇥ s. Finally SM

p,q represents the softmax classifier (linear unit with
softmax operation at the end) with p and q as the input and output sizes. For each
BB

f ,s
p,q if p = q then s = 1 and the shortcut between input and output of the block is

an identity map. Otherwise, the shortcut is implemented with a convolutional layer
(Conv

f ,s
p,q) with stride s = 2. This model has 26 weighted layers with 11,025,570

parameters. It needs an input image of size of 898⇥898, and it has a 2-class softmax
classifier at the end. A cross entropy criterion is used for measuring the loss value.

Before feeding the images to the network, several pre-processing and data aug-
mentation steps are applied. The images have varying resolutions, so the first step
consists of cropping black borders and re-scaling all images to the resolution of
1024⇥1024 pixels, so that the aspect ratio remains unchanged. Data augmentations
then include random affine transformation, random cropping to 85-95% of the ini-
tial size, horizontal flipping and random rotation between 0 to 360 degrees. When
these transformations have been applied, images are rescaled to the desired model
input size. At the end, a channel-wise global contrast normalization for each image
(by subtracting mean and division over standard deviation) is used for normalizing
the data.

We split the dataset into two 80/20% parts that we use as training and valida-
tion sets. The augmentation steps are applied to both sets similarly. Since there is
more than one image per subject available, the average predictions of all images of
each subject (besides testing each image 25 times) is used for evaluating the per-
formance of the method. The weights are initialized as in [8] and training was done
from scratch. We used SGD optimization technique with a weight decay of 0.0001
and a momentum of 0.9. The learning rate was fixed to 0.001 for 100 epochs, then
decreased it to 0.0001 and trained the network for 200 more epochs.
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Fig. 1 The basic block (BB

f ,s
p,q) of residual nets (1a), and the complete structure of the network

used in this work (1b).

4 Results

For evaluating the performance of the method we use the weighted Cohen’s kappa
with quadratic weights and the F1-score. k statistic compares the accuracy of the
system to the accuracy of a random system. Complete agreement corresponds to
k = 1. If there is no agreement among the raters other than what would be expected
by chance, then k  0 [3].

The evolution of training loss and kappa score during training time is depicted in
Fig. 2. By testing the model on the validation set, our trained model is capable of
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predicting the diabetes status directly from the retinal images (without any further
information about other glucose measurements) with a k score of 0.458 and F1-
score of 0.758. In order to compare this performance, we asked an ophthalmologist
expert to predict the diabetes status of a subset of 32 images (16 diabetic and 16
healthy). Only 2 out of 16 diabetic images could be detected by the expert and the
rest was labeled as healthy, which corresponds to a k score of 0.125 and F1-score
of 0.222. The kappa score of the validation set is a bit higher than the training set,
because the final predictions over multiple eyes per subjects are averaged during test
time. This makes the prediction more accurate.
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Fig. 2 The evolution of the training loss and kappa score per epoch

5 Conclusion

Currently, diagnosis of diabetes is based on glucose measurements, and retinal im-
ages are useful to observe the early signs of diabetic retinopathy such as micro-
aneurysms and retinal haemorrhages. When these signs do not exist in the image,
it is difficult for experts to differentiate between healthy and diabetic subjects. The
preliminary results in this work show that CNNs are able to differentiate between
these two groups only by using the retinal images, with a significantly better per-
formance compared to ophthalmologists. This indicates that the retinal vasculature
start to change in patients with diabetes in early stages and CNNs are able to cap-
ture these changes. By proper visualization techniques, extending the experiments
on larger data-sets and including additional meta-data it may be possible to discover
new biomarkers, which can be used for diagnosis of diabetes non-invasively. This is
very advantageous in large screening settings and early blindness prevention.
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