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We have a bunch of training points

(xn, yn) ∈ Rd × R, n = 1 . . . N,

and we want to predict the value y associated to another x, or ideally we would
like to have a posterior distribution that would tell us both the most likely value
associated to x, but also the dispersion around it, etc.

Consider the following model: we define a functional basis

fk : Rd → R, k = 1, . . . , K,

and an unknown vector of coefficients following a centered normal Gaussian dis-
tribution (i.e. expectation 0 and covariance matrix identity)

(A1, . . . , AK) ∼ N (0,1).

We postulate that the training points are of the form

∀n, yn = F (xn),

where F is a random functional (hence a “process” in the probabilistic terminol-
ogy) defined by

F =
∑

k

Akfk.

Since the vector
(F (x1), . . . , F (xN), F (x)) (1)

is equal to
A1 . (f1(x1), . . . f1(xN), f1(x))

+ A2 . (f2(x1), . . . f2(xN), f2(x))
. . .

+ AK . (fK(x1), . . . fK(xN), fK(x)),
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it is a Gaussian vector of dimension K multiplied by a matrix, which results obvi-
ously in a vector following a Gaussian density for which we know the covariance
matrix.

From that we can compute explicitly

P (F (x) = y |F (x1) = y1, . . . , F (xN) = yN)

=
P (F (x) = y, F (x1) = y1, . . . , F (xN) = yN)

P (F (x1) = y1, . . . , F (xN) = yN)
.

Since the denominator is a normalization quantity which does not depend on y,
and the numerator is obviously Gaussian in y, we have the desired (Gaussian)
posterior on the unknown value y associated to x.

Two remarks:

1. If you were looking for the values associated to several test points x′
1 . . . x

′
L,

you would do exactly the same and would get a (Gaussian) joint posterior
for them.

2. What matters at the end is not the functional basis f1, . . . , fK , but a mean
to compute the covariance matrix of (1). And you can do so just by knowing
for every pair (n,m) the quantity κ(xn, xm) =

∑
k fk(xn)fk(xm).

Hence the possibility to “kernelize” all this: forget the fk, that you actually
never need, and just chose a

κ : Rd × Rd → R.

Note that the f1, . . . , fK may not exist for an arbitrary κ. So for this
description of things to be consistent, κ has to be a “Mercer kernel”, which
means that it is semi-definite positive. Also, since κ(x, x′) accounts for how
much F (x) and F (x′) “fluctuate together”, it makes sense to see it as a
similarity measure.

So, despite the fact that it sounds impressive to have a “functional basis”, a
“kernel” and a “Gaussian prior”, at the end it boils down to a Gaussian vector
of dimension N +L, for which we know N components and want to estimate the
L others.
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