Deep learning

7.2. Autoencoders

François Fleuret

https://fleuret.org/ee559/

Nov 2, 2020
Many applications such as image synthesis, denoising, super-resolution, speech synthesis, compression, etc. require to go beyond classification and regression, and model explicitly a high dimension signal.
Many applications such as image synthesis, denoising, super-resolution, speech synthesis, compression, etc. require to go beyond classification and regression, and model explicitly a high dimension signal.

This modeling consists of finding “meaningful degrees of freedom” that describe the signal, and are of lesser dimension.
Original space \mathcal{X}

Latent space \mathcal{F}
Original space \mathcal{X}

Latent space \mathcal{F}

f
Original space \mathcal{X}

Latent space \mathcal{F}
Original space \mathcal{X}
When dealing with real-world signals, this objective involves the same theoretical and practical issues as for classification or regression: defining the right class of high-dimension models, and optimizing them.

Regarding synthesis, we saw that deep feed-forward architectures exhibit good generative properties, which motivates their use explicitly for that purpose.
Autoencoders
An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an **encoder** f from the original space \mathcal{X} to a **latent** space \mathcal{F}, and a **decoder** g to map back to \mathcal{X} (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).
An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an encoder f from the original space \mathcal{X} to a latent space \mathcal{F}, and a decoder g to map back to \mathcal{X} (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).
An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an **encoder** f from the original space \mathcal{X} to a **latent** space \mathcal{F}, and a **decoder** g to map back to \mathcal{X} (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).
An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an encoder f from the original space \mathcal{X} to a latent space \mathcal{F}, and a decoder g to map back to \mathcal{X} (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).
An autoencoder maps a space to itself and is [close to] the identity on the data.

Dimension reduction can be achieved with an autoencoder composed of an encoder f from the original space \mathcal{X} to a latent space \mathcal{F}, and a decoder g to map back to \mathcal{X} (Bourlard and Kamp, 1988; Hinton and Zemel, 1994).

If the latent space is of lower dimension, the autoencoder has to capture a “good” parametrization, and in particular dependencies between components.
Let q be the data distribution over \mathcal{X}. A good autoencoder could be characterized with the quadratic loss

$$\mathbb{E}_{X \sim q}\left[\|X - g \circ f(X)\|^2\right] \approx 0.$$
Let q be the data distribution over \mathcal{X}. A good autoencoder could be characterized with the quadratic loss

$$
\mathbb{E}_{X \sim q} \left[\|X - g \circ f(X)\|^2 \right] \approx 0.
$$

Given two parametrized mappings $f(\cdot; w_f)$ and $g(\cdot; w_g)$, training consists of minimizing an empirical estimate of that loss

$$
\hat{w}_f, \hat{w}_g = \arg\min_{w_f, w_g} \frac{1}{N} \sum_{n=1}^{N} \|x_n - g(f(x_n; w_f); w_g)\|^2.
$$
Let q be the data distribution over \mathcal{X}. A good autoencoder could be characterized with the quadratic loss

$$E_{X \sim q} \left[\| X - g \circ f(X) \|^2 \right] \simeq 0.$$

Given two parametrized mappings $f(\cdot; w_f)$ and $g(\cdot; w_g)$, training consists of minimizing an empirical estimate of that loss

$$\hat{w}_f, \hat{w}_g = \arg\min_{w_f, w_g} \frac{1}{N} \sum_{n=1}^{N} \| x_n - g(f(x_n; w_f); w_g) \|^2.$$

A simple example of such an autoencoder would be with both f and g linear, in which case the optimal solution is given by PCA.
Let q be the data distribution over \mathcal{X}. A good autoencoder could be characterized with the quadratic loss

$$E_{X \sim q} [\|X - g \circ f(X)\|^2] \simeq 0.$$

Given two parametrized mappings $f(\cdot; w_f)$ and $g(\cdot; w_g)$, training consists of minimizing an empirical estimate of that loss

$$\hat{w}_f, \hat{w}_g = \arg\min_{w_f, w_g} \frac{1}{N} \sum_{n=1}^{N} \|x_n - g(f(x_n; w_f); w_g)\|^2.$$

A simple example of such an autoencoder would be with both f and g linear, in which case the optimal solution is given by PCA. Better results can be achieved with more sophisticated classes of mappings, in particular deep architectures.
Deep Autoencoders
A deep autoencoder combines an encoder composed of convolutional layers, with a decoder composed of transposed convolution or other interpolating layers. *E.g.* for MNIST:

AutoEncoder (
(encoder): Sequential (
(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU (inplace)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(3): ReLU (inplace)
(4): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
(5): ReLU (inplace)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(7): ReLU (inplace)
(8): Conv2d(32, 8, kernel_size=(4, 4), stride=(1, 1))
)
(decoder): Sequential (
(0): ConvTranspose2d(8, 32, kernel_size=(4, 4), stride=(1, 1))
(1): ReLU (inplace)
(2): ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(3): ReLU (inplace)
(4): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
(5): ReLU (inplace)
(6): ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(7): ReLU (inplace)
(8): ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1))
)
)
Encoder

Tensor sizes / operations

1 \times 28 \times 28

\texttt{nn.Conv2d(1, 32, kernel_size=5, stride=1)}

32 \times 24 \times 24

\texttt{nn.Conv2d(32, 32, kernel_size=5, stride=1)}

32 \times 20 \times 20

\texttt{nn.Conv2d(32, 32, kernel_size=4, stride=2)}

32 \times 9 \times 9

\texttt{nn.Conv2d(32, 32, kernel_size=4, stride=2)}

32 \times 4 \times 4

\texttt{nn.Conv2d(32, 8, kernel_size=4, stride=1)}

8 \times 1 \times 1
Decoder

Tensor sizes / operations

8 × 1 × 1

\texttt{nn.ConvTranspose2d}(8, 32, kernel_size=4, stride=1)

32 × 4 × 4

\texttt{nn.ConvTranspose2d}(32, 32, kernel_size=3, stride=2)

32 × 9 × 9

\texttt{nn.ConvTranspose2d}(32, 32, kernel_size=4, stride=2)

32 × 20 × 20

\texttt{nn.ConvTranspose2d}(32, 32, kernel_size=5, stride=1)

32 × 24 × 24

\texttt{nn.ConvTranspose2d}(32, 1, kernel_size=5, stride=1)

1 × 28 × 28
Training is achieved with quadratic loss and Adam

model = AutoEncoder(nb_channels, embedding_dim)

optimizer = optim.Adam(model.parameters(), lr = 1e-3)

for epoch in range(args.nb_epochs):
 for input in train_input.split(batch_size):
 z = model.encode(input)
 output = model.decode(z)
 loss = 0.5 * (output - input).pow(2).sum() / input.size(0)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
\mathbf{X} (original samples)

$g \circ f(\mathbf{X})$ (CNN, $d = 2$)

$g \circ f(\mathbf{X})$ (PCA, $d = 2$)
X (original samples)

$g \circ f(X)$ (CNN, $d = 4$)

$g \circ f(X)$ (PCA, $d = 4$)
X (original samples)

$g \circ f(X)$ (CNN, $d = 8$)

$g \circ f(X)$ (PCA, $d = 8$)
\(X \) (original samples)

\[
\begin{array}{cccccccccccc}
7 & 2 & 1 & 0 & 4 & 1 & 4 & 9 & 6 & 9 & 0 & 0 \\
9 & 0 & 1 & 5 & 9 & 7 & 3 & 4 & 9 & 6 & 6 & 5 \\
4 & 0 & 7 & 4 & 0 & 1 & 3 & 1 & 3 & 4 & 7 & 2 \\
\end{array}
\]

\(g \circ f(X) \) (CNN, \(d = 16 \))

\[
\begin{array}{cccccccccccc}
7 & 2 & 1 & 0 & 4 & 1 & 4 & 9 & 6 & 9 & 0 & 0 \\
9 & 0 & 1 & 5 & 9 & 7 & 3 & 4 & 9 & 6 & 6 & 5 \\
4 & 0 & 7 & 4 & 0 & 1 & 3 & 1 & 3 & 4 & 7 & 2 \\
\end{array}
\]

\(g \circ f(X) \) (PCA, \(d = 16 \))

\[
\begin{array}{cccccccccccc}
7 & 2 & 1 & 0 & 4 & 1 & 4 & 9 & 6 & 7 & 0 & 6 \\
9 & 0 & 1 & 5 & 9 & 7 & 3 & 4 & 9 & 6 & 6 & 5 \\
4 & 0 & 7 & 4 & 0 & 1 & 3 & 1 & 3 & 4 & 7 & 2 \\
\end{array}
\]
\[g \circ f(X) \text{ (CNN, } d = 32) \]

\[g \circ f(X) \text{ (PCA, } d = 32) \]
To get an intuition of the latent representation, we can pick two samples x and x' at random and interpolate samples along the line in the latent space

$$\forall x, x' \in \mathcal{X}^2, \alpha \in [0, 1], \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).$$
To get an intuition of the latent representation, we can pick two samples x and x' at random and interpolate samples along the line in the latent space

$$
\forall x, x' \in \mathcal{X}^2, \; \alpha \in [0, 1], \; \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).$$
To get an intuition of the latent representation, we can pick two samples x and x' at random and interpolate samples along the line in the latent space.

\[
\forall x, x' \in \mathcal{X}^2, \; \alpha \in [0, 1], \; \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).
\]
To get an intuition of the latent representation, we can pick two samples \(x \) and \(x' \) at random and interpolate samples along the line in the latent space.

\[
\forall x, x' \in \mathcal{X}^2, \alpha \in [0, 1], \quad \xi(x, x', \alpha) = g((1 - \alpha)f(x) + \alpha f(x')).
\]
PCA interpolation ($d = 32$)
Autoencoder interpolation ($d = 8$)
Autoencoder interpolation \((d = 32)\)
And we can assess the generative capabilities of the decoder g by introducing a [simple] density model q^Z over the latent space \mathcal{F}, sample there, and map the samples into the image space \mathcal{X} with g.
And we can assess the generative capabilities of the decoder g by introducing a [simple] density model q^Z over the latent space \mathcal{F}, sample there, and map the samples into the image space \mathcal{X} with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

$$ f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta}) $$

where \hat{m} is a vector and $\hat{\Delta}$ a diagonal matrix, both estimated on training data.
And we can assess the generative capabilities of the decoder \(g \) by introducing a [simple] density model \(q^Z \) over the latent space \(\mathcal{F} \), sample there, and map the samples into the image space \(\mathcal{X} \) with \(g \).

We can for instance use a Gaussian model with diagonal covariance matrix.

\[
f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})
\]

where \(\hat{m} \) is a vector and \(\hat{\Delta} \) a diagonal matrix, both estimated on training data.
And we can assess the generative capabilities of the decoder g by introducing a [simple] density model q^Z over the latent space \mathcal{F}, sample there, and map the samples into the image space \mathcal{X} with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

where \hat{m} is a vector and $\hat{\Delta}$ a diagonal matrix, both estimated on training data.
And we can assess the generative capabilities of the decoder g by introducing a
[simple] density model q^Z over the latent space \mathcal{F}, sample there, and map the
samples into the image space \mathcal{X} with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

where \hat{m} is a vector and $\hat{\Delta}$ a diagonal matrix, both estimated on training data.
And we can assess the generative capabilities of the decoder g by introducing a [simple] density model q^Z over the latent space \mathcal{F}, sample there, and map the samples into the image space \mathcal{X} with g.

We can for instance use a Gaussian model with diagonal covariance matrix.

$$f(X) \sim \mathcal{N}(\hat{m}, \hat{\Delta})$$

where \hat{m} is a vector and $\hat{\Delta}$ a diagonal matrix, both estimated on training data.
Autoencoder sampling \((d = 8)\)

Autoencoder sampling \((d = 16)\)

Autoencoder sampling \((d = 32)\)
These results are unsatisfying, because the density model used on the latent space \mathcal{F} is too simple and inadequate.

Building a "good" model amounts to our original problem of modeling an empirical distribution, although it may now be in a lower dimension space.
The end
References
