5.4. L_2 and L_1 penalties
We have motivated the use of a loss with a Bayesian formulation combining the probability of the data given the model and the probability of the model

\[
\log \mu_W(w \mid \mathcal{D} = d) = \log \mu_{\mathcal{D}}(d \mid W = w) + \log \mu_W(w) - \log Z.
\]
We have motivated the use of a loss with a Bayesian formulation combining the probability of the data given the model and the probability of the model

\[
\log \mu_W(w \mid \mathcal{D} = d) = \log \mu_\mathcal{D}(d \mid W = w) + \log \mu_W(w) - \log Z.
\]

If \(\mu_W \) is a Gaussian density with a covariance matrix proportional to the identity, the log-prior \(\log \mu_W(w) \) results in a quadratic penalty

\[
\lambda \|w\|^2.
\]
We have motivated the use of a loss with a Bayesian formulation combining the probability of the data given the model and the probability of the model

\[
\log \mu_W(w \mid \mathcal{D} = d) = \log \mu_{\mathcal{D}}(d \mid W = w) + \log \mu_W(w) - \log Z.
\]

If \(\mu_W \) is a Gaussian density with a covariance matrix proportional to the identity, the log-prior \(\log \mu_W(w) \) results in a quadratic penalty

\[
\lambda \| w \|_2^2.
\]

Since this penalty is convex, its sum with a convex functional is convex.

This is called the \(L_2 \) regularization, or “weight decay” in the artificial neural network community.
Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss alone.

Since the derivative of $||x||_2^2$ is zero at zero, the optimal will never move there if it was not already there.
Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss alone.

Since the derivative of $\|x\|_2^2$ is zero at zero, the optimal will never move there if it was not already there.

$$(x - 1)^2 + \frac{1}{6}(x - 1)^3 + x^2$$
Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss alone.

Since the derivative of $\|x\|_2^2$ is zero at zero, the optimal will never move there if it was not already there.

$$(x - 1)^2 + \frac{1}{6}(x - 1)^3 + 2x^2$$
Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss alone.

Since the derivative of $\|x\|_2^2$ is zero at zero, the optimal will never move there if it was not already there.

$$(x - 1)^2 + \frac{1}{6}(x - 1)^3 + 3x^2$$
Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss alone.

Since the derivative of $\|x\|_2^2$ is zero at zero, the optimal will never move there if it was not already there.

$$(x - 1)^2 + \frac{1}{6}(x - 1)^3 + 4x^2$$
Convnet trained on MNIST with 1,000 samples and a L_2 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.002</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.004</td>
<td>0.005</td>
<td>0.065</td>
</tr>
<tr>
<td>0.010</td>
<td>0.022</td>
<td>0.075</td>
</tr>
<tr>
<td>0.020</td>
<td>0.048</td>
<td>0.101</td>
</tr>
</tbody>
</table>

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

for p in model.parameters():
 loss += lambda_l2 * p.pow(2).sum()

optimizer.zero_grad()
loss.backward()
optimizer.step()
Convnet trained on MNIST with 1,000 samples and a L_2 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.002</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.004</td>
<td>0.005</td>
<td>0.065</td>
</tr>
<tr>
<td>0.010</td>
<td>0.022</td>
<td>0.075</td>
</tr>
<tr>
<td>0.020</td>
<td>0.048</td>
<td>0.101</td>
</tr>
</tbody>
</table>

$\text{output} = \text{model}(\text{train_input}[b:b+\text{batch_size}])$

$\text{loss} = \text{criterion}(\text{output}, \text{train_target}[b:b+\text{batch_size}])$

for p in $\text{model.parameters()}$:
 loss += $\text{lambda_l2} \times p.\text{pow}(2).\text{sum}()$

$\text{optimizer.zero_grad()}$

loss.backward()

optimizer.step()

\[\lambda = 0.001 \]
Convnet trained on MNIST with 1,000 samples and a L_2 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.002</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.004</td>
<td>0.005</td>
<td>0.065</td>
</tr>
<tr>
<td>0.010</td>
<td>0.022</td>
<td>0.075</td>
</tr>
<tr>
<td>0.020</td>
<td>0.048</td>
<td>0.101</td>
</tr>
</tbody>
</table>

```python
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

for p in model.parameters():
    loss += lambda_l2 * p.pow(2).sum()

optimizer.zero_grad()
loss.backward()
optimizer.step()
```
Convnet trained on MNIST with 1,000 samples and a L_2 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.002</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.004</td>
<td>0.005</td>
<td>0.065</td>
</tr>
<tr>
<td>0.010</td>
<td>0.022</td>
<td>0.075</td>
</tr>
<tr>
<td>0.020</td>
<td>0.048</td>
<td>0.101</td>
</tr>
</tbody>
</table>

```python
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
for p in model.parameters():
    loss += lambda_l2 * p.pow(2).sum()
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
Convnet trained on MNIST with 1,000 samples and a L_2 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.002</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.004</td>
<td>0.005</td>
<td>0.065</td>
</tr>
<tr>
<td>0.010</td>
<td>0.022</td>
<td>0.075</td>
</tr>
<tr>
<td>0.020</td>
<td>0.048</td>
<td>0.101</td>
</tr>
</tbody>
</table>

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

for p in model.parameters():
 loss += lambda_l2 * p.pow(2).sum()

optimizer.zero_grad()
loss.backward()
optimizer.step()
Convnet trained on MNIST with 1,000 samples and a L_2 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.002</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.004</td>
<td>0.005</td>
<td>0.065</td>
</tr>
<tr>
<td>0.010</td>
<td>0.022</td>
<td>0.075</td>
</tr>
<tr>
<td>0.020</td>
<td>0.048</td>
<td>0.101</td>
</tr>
</tbody>
</table>

```python
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
for p in model.parameters():
    loss += lambda_l2 * p.pow(2).sum()
optimizer.zero_grad()
loss.backward()
optimizer.step()
```

![Graph](image)

$\lambda = 0.020$
We can apply the exact same scheme with a Laplace prior

\[
\mu(w) = \frac{1}{(2b)^D} \exp \left(- \frac{\|w\|_1}{b} \right)
\]

\[
= \frac{1}{(2b)^D} \exp \left(- \frac{1}{b} \sum_{d=1}^{D} |w_d| \right),
\]
We can apply the exact same scheme with a Laplace prior

\[
\mu(w) = \frac{1}{(2b)^D} \exp \left(- \frac{\|w\|_1}{b} \right)
\]

\[
= \frac{1}{(2b)^D} \exp \left(- \frac{1}{b} \sum_{d=1}^{D} |w_d| \right),
\]

which results in a penalty term of the form

\[
\lambda \|w\|_1.
\]

This is the \(L_1 \) regularization.
We can apply the exact same scheme with a Laplace prior

$$
\mu(w) = \frac{1}{(2b)^D} \exp \left(- \frac{||w||_1}{b} \right)
$$

$$
= \frac{1}{(2b)^D} \exp \left(- \frac{1}{b} \sum_{d=1}^{D} |w_d| \right),
$$

which results in a penalty term of the form

$$
\lambda ||w||_1.
$$

This is the L_1 regularization. As for the L_2, this penalty is convex, and its sum with a convex functional is convex.
An important property of the L_1 penalty is that, if \mathcal{L} is convex, and

$$w^* = \arg\min_w \mathcal{L}(w) + \lambda \|w\|_1$$

then

$$\forall d, \left| \frac{\partial \mathcal{L}}{\partial w_d}(w^*) \right| < \lambda \Rightarrow w^*_d = 0.$$
In practice it means that this penalty pushes some of the variables to zero, but contrary to the L_2 penalty they actually move and remain there.

The λ parameter controls the sparsity of the solution.
With the L_1 penalty, the update rule becomes

$$w_{t+1} = w_t - \eta (g_t + \lambda \text{sign}(w_t)),$$

This update may overshoot, and result in a component of w_{t+1} strictly on one side of 0, while the same component in w_t is strictly on the other. While this is not a problem in principle, since w_t will fluctuate around zero, it can be an issue if the zeroed weights are handled in a specific manner (e.g. sparse coding to reduce memory footprint or computation).
With the L_1 penalty, the update rule becomes

$$w_{t+1} = w_t - \eta (g_t + \lambda \text{sign}(w_t)),$$

where sign is applied per-component. This is almost identical to

$$w'_t = w_t - \eta g_t$$
$$w_{t+1} = w'_t - \eta \lambda \text{sign}(w'_t).$$
With the L_1 penalty, the update rule becomes

$$w_{t+1} = w_t - \eta (g_t + \lambda \text{sign}(w_t)),$$

where sign is applied per-component. This is almost identical to

$$w'_t = w_t - \eta g_t$$

$$w_{t+1} = w'_t - \eta \lambda \text{sign}(w'_t).$$

This update may overshoot, and result in a component of w'_t strictly on one side of 0, while the same component in w_{t+1} is strictly on the other.
With the L_1 penalty, the update rule becomes

$$w_{t+1} = w_t - \eta (g_t + \lambda \text{sign}(w_t)),$$

where sign is applied per-component. This is almost identical to

$$w'_t = w_t - \eta g_t$$
$$w_{t+1} = w'_t - \eta \lambda \text{sign}(w'_t).$$

This update may overshoot, and result in a component of w'_t strictly on one side of 0, while the same component in w_{t+1} is strictly on the other.

While this is not a problem in principle, since w_t will fluctuate around zero, it can be an issue if the zeroed weights are handled in a specific manner (e.g. sparse coding to reduce memory footprint or computation).
The **proximal operator** takes care of preventing parameters from “crossing zero”, by adapting λ when it is too large

$$w_t' = w_t - \eta g_t$$

$$w_{t+1} = w_t' - \eta \min(\lambda, |w_t'|) \odot \text{sign}(w_t').$$

where \min is component-wise, and \odot is the Hadamard component-wise product.
Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss without penalty.

\[(x - 1)^2 + \frac{1}{6}(x - 1)^3\]
Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss without penalty.

$$(x - 1)^2 + \frac{1}{6}(x - 1)^3 + \frac{1}{2}|x|$$
Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss without penalty.

$$(x - 1)^2 + \frac{1}{6}(x - 1)^3 + |x|$$
Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss without penalty.

\[(x - 1)^2 + \frac{1}{6}(x - 1)^3 + \frac{3}{2}|x|\]
Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss without penalty.

\[(x - 1)^2 + \frac{1}{6}(x - 1)^3 + 2|x|\]
Convnet trained on MNIST with 1,000 samples and a L_1 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.00001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.00002</td>
<td>0.000</td>
<td>0.067</td>
</tr>
<tr>
<td>0.00005</td>
<td>0.004</td>
<td>0.068</td>
</tr>
<tr>
<td>0.00010</td>
<td>0.087</td>
<td>0.128</td>
</tr>
<tr>
<td>0.00020</td>
<td>0.057</td>
<td>0.101</td>
</tr>
<tr>
<td>0.00050</td>
<td>0.496</td>
<td>0.516</td>
</tr>
</tbody>
</table>

\[
\text{output} = \text{model}(\text{train_input}[b:b+\text{batch_size}])
\]
\[
\text{loss} = \text{criterion}(\text{output}, \text{train_target}[b:b+\text{batch_size}])
\]
\[
\text{optimizer.zero_grad()}
\]
\[
\text{loss.backward()}
\]
\[
\text{optimizer.step()}
\]

\[
\text{with torch.no_grad():}
\]
\[
\text{for p in model.parameters():}
\]
\[
\text{p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))}
\]
Convnet trained on MNIST with 1,000 samples and a L_1 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.00001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.00002</td>
<td>0.000</td>
<td>0.067</td>
</tr>
<tr>
<td>0.00005</td>
<td>0.004</td>
<td>0.068</td>
</tr>
<tr>
<td>0.00010</td>
<td>0.087</td>
<td>0.128</td>
</tr>
<tr>
<td>0.00020</td>
<td>0.057</td>
<td>0.101</td>
</tr>
<tr>
<td>0.00050</td>
<td>0.496</td>
<td>0.516</td>
</tr>
</tbody>
</table>

```python
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
    for p in model.parameters():
        p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))
```

![Graph showing P(w < x) for different values of λ.]
Convnet trained on MNIST with 1,000 samples and a L_1 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.00001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.00002</td>
<td>0.000</td>
<td>0.067</td>
</tr>
<tr>
<td>0.00005</td>
<td>0.004</td>
<td>0.068</td>
</tr>
<tr>
<td>0.00010</td>
<td>0.087</td>
<td>0.128</td>
</tr>
<tr>
<td>0.00020</td>
<td>0.057</td>
<td>0.101</td>
</tr>
<tr>
<td>0.00050</td>
<td>0.496</td>
<td>0.516</td>
</tr>
</tbody>
</table>

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
 for p in model.parameters():
 p.sub_(p.sign() * p.abs().clamp(max=lambda_l1))

$\lambda = 0.00002$
Convnet trained on MNIST with 1,000 samples and a L_1 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.00001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.00002</td>
<td>0.000</td>
<td>0.067</td>
</tr>
<tr>
<td>0.00005</td>
<td>0.004</td>
<td>0.068</td>
</tr>
<tr>
<td>0.00010</td>
<td>0.087</td>
<td>0.128</td>
</tr>
<tr>
<td>0.00020</td>
<td>0.057</td>
<td>0.101</td>
</tr>
<tr>
<td>0.00050</td>
<td>0.496</td>
<td>0.516</td>
</tr>
</tbody>
</table>

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
 for p in model.parameters():
 p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))
Convnet trained on MNIST with 1,000 samples and a L_1 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.00001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.00002</td>
<td>0.000</td>
<td>0.067</td>
</tr>
<tr>
<td>0.00005</td>
<td>0.004</td>
<td>0.068</td>
</tr>
<tr>
<td>0.00010</td>
<td>0.087</td>
<td>0.128</td>
</tr>
<tr>
<td>0.00020</td>
<td>0.057</td>
<td>0.101</td>
</tr>
<tr>
<td>0.00050</td>
<td>0.496</td>
<td>0.516</td>
</tr>
</tbody>
</table>

\[
\text{output} = \text{model}(\text{train_input}\lbrack b:b+\text{batch}_\text{size}\rbrack)
\]
\[
\text{loss} = \text{criterion}(\text{output}, \text{train_target}\lbrack b:b+\text{batch}_\text{size}\rbrack)
\]

\[
\text{optimizer}.\text{zero_grad}()
\]
\[
\text{loss}.\text{backward}()
\]
\[
\text{optimizer}.\text{step}()
\]

\[
\text{with torch.no_grad():}
\]
\[
\text{for } p \text{ in model}.\text{parameters}():
\]
\[
\text{p}.\text{sub}_{\lbrack p.\text{sign}() \ast p.\text{abs}().\text{clamp}(\text{max} = \lambda)}
\]

\[
\lambda = 0.0001
\]

12.4% of zeroed weights
Convnet trained on MNIST with 1,000 samples and a L_1 penalty.

<table>
<thead>
<tr>
<th>Error</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.00000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.00001</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.00002</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.00005</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>0.00010</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>0.00020</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>0.00050</td>
<td>0.496</td>
</tr>
</tbody>
</table>

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
 for p in model.parameters():
 p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))

62.4% of zeroed weights

$\lambda = 0.0002$
Convnet trained on MNIST with 1,000 samples and a L_1 penalty.

<table>
<thead>
<tr>
<th>λ</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000</td>
<td>0.000</td>
<td>0.064</td>
</tr>
<tr>
<td>0.00001</td>
<td>0.000</td>
<td>0.063</td>
</tr>
<tr>
<td>0.00002</td>
<td>0.000</td>
<td>0.067</td>
</tr>
<tr>
<td>0.00005</td>
<td>0.004</td>
<td>0.068</td>
</tr>
<tr>
<td>0.00010</td>
<td>0.087</td>
<td>0.128</td>
</tr>
<tr>
<td>0.00020</td>
<td>0.057</td>
<td>0.101</td>
</tr>
<tr>
<td>0.00050</td>
<td>0.496</td>
<td>0.516</td>
</tr>
</tbody>
</table>

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
 for p in model.parameters():
 p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))

91.7% of zeroed weights

$\lambda = 0.0005$
Penalties on the weights may be useful when dealing with small models and small data-sets and are still standard when data is scarce.

While they have a limited impact for large-scale deep learning, they may still provide the little push needed to beat baselines.
The end