Deep learning

3.6. Back-propagation

François Fleuret

https://fleuret.org/ee559/

Nov 2, 2020
We want to train an MLP by minimizing a loss over the training set

$$\mathcal{L}(w, b) = \sum_n \ell(f(x_n; w, b), y_n).$$
We want to train an MLP by minimizing a loss over the training set

$$\mathcal{L}(w, b) = \sum_n \ell(f(x_n; w, b), y_n).$$

To use gradient descent, we need the expression of the gradient of the
per-sample loss $\ell_n = \ell(f(x_n; w, b), y_n)$ with respect to the parameters, e.g.

$$\frac{\partial \ell_n}{\partial w_{i,j}^{(l)}} \text{ and } \frac{\partial \ell_n}{\partial b_i^{(l)}}.$$
For clarity, we consider a single training sample x, and introduce $s^{(1)}, \ldots, s^{(L)}$ as the summations before activation functions.

\[
x^{(0)} = x \xrightarrow{w^{(1)}_1, b^{(1)}_1} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{w^{(2)}_2, b^{(2)}_2} s^{(2)} \xrightarrow{\sigma} \ldots \xrightarrow{w^{(L)}_L, b^{(L)}_L} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; w, b).
\]
For clarity, we consider a single training sample x, and introduce $s^{(1)}, \ldots, s^{(L)}$ as the summations before activation functions.

$$x^{(0)} = x \xrightarrow{w^{(1)}, b^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{w^{(2)}, b^{(2)}} s^{(2)} \xrightarrow{\sigma} \ldots \xrightarrow{w^{(L)}, b^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; w, b).$$

Formally we set $x^{(0)} = x,$

$$\forall l = 1, \ldots, L, \left\{ \begin{array}{l} s^{(l)} = w^{(l)}x^{(l-1)} + b^{(l)} \\ x^{(l)} = \sigma(s^{(l)}) \end{array} \right.,$$

and we set the output of the network as $f(x; w, b) = x^{(L)}.$
For clarity, we consider a single training sample x, and introduce $s^{(1)}, \ldots, s^{(L)}$ as the summations before activation functions.

$$x^{(0)} = x \xrightarrow{w^{(1)}, b^{(1)}} s^{(1)} \xrightarrow{\sigma} x^{(1)} \xrightarrow{w^{(2)}, b^{(2)}} s^{(2)} \xrightarrow{\sigma} \ldots \xrightarrow{w^{(L)}, b^{(L)}} s^{(L)} \xrightarrow{\sigma} x^{(L)} = f(x; w, b).$$

Formally we set $x^{(0)} = x,$

$$\forall l = 1, \ldots, L, \quad \begin{cases} s^{(l)} = w^{(l)}x^{(l-1)} + b^{(l)} \\ x^{(l)} = \sigma(s^{(l)}) \end{cases},$$

and we set the output of the network as $f(x; w, b) = x^{(L)}.$

This is the **forward pass**.
The core principle of the back-propagation algorithm is the “chain rule” from differential calculus:

\[(g \circ f)' = (g' \circ f)f'.\]

The linear approximation of a composition of mappings is the product of their individual linear approximations.
The core principle of the back-propagation algorithm is the “chain rule” from differential calculus:
\[(g \circ f)' = (g' \circ f)f'.\]

The linear approximation of a composition of mappings is the product of their individual linear approximations.

This generalizes to longer compositions and higher dimensions

\[J_{f_N \circ f_{N-1} \circ \ldots \circ f_1}(x) = J_{f_N}(f_{N-1}(\ldots (x)))) \ldots J_{f_3}(f_2(f_1(x))) J_{f_2}(f_1(x)) J_{f_1}(x)\]

where \(J_f(x)\) is the Jacobian of \(f\) at \(x\), that is the matrix of the linear approximation of \(f\) in the neighborhood of \(x\).
Since $s(l)$ influences l only through $x(l)$ with $x(l) = \sigma(s(l))$, we have

$$
\frac{\partial l}{\partial s(l)} = \frac{\partial l}{\partial x(l)} \frac{\partial x(l)}{\partial s(l)} = \frac{\partial l}{\partial x(l)} \sigma'(s(l))
$$

And since $x(l-1)$ influences l only through the $s(l)$ with $s(l) = \sum_j w(l) x(l-1) j + b(l)$, we have

$$
\frac{\partial l}{\partial x(l-1) j} = \sum_i \frac{\partial l}{\partial s(l)} i \frac{\partial s(l)}{\partial x(l-1) j} = \sum_i \frac{\partial l}{\partial s(l)} i w(l)i j.
$$
Since $s_i^{(l)}$ influences ℓ only through $x_i^{(l)}$ with

$$x_i^{(l)} = \sigma(s_i^{(l)}),$$
Since \(s^{(l)}_i \) influences \(\ell \) only through \(x^{(l)}_i \) with

\[
x^{(l)}_i = \sigma(s^{(l)}_i),
\]

we have

\[
\frac{\partial \ell}{\partial s^{(l)}_i} = \frac{\partial \ell}{\partial x^{(l)}_i} \frac{\partial x^{(l)}_i}{\partial s^{(l)}_i}.
\]
Since $s_i^{(l)}$ influences ℓ only through $x_i^{(l)}$ with

$$x_i^{(l)} = \sigma(s_i^{(l)})$$

we have

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})$$
\(x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \)

Since \(s_i^{(l)} \) influences \(\ell \) only through \(x_i^{(l)} \) with

\[
x_i^{(l)} = \sigma(s_i^{(l)}),
\]

we have

\[
\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}),
\]

And since \(x_j^{(l-1)} \) influences \(\ell \) only through the \(s_i^{(l)} \) with

\[
s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)},
\]
Since $s_i^{(l)}$ influences ℓ only through $x_i^{(l)}$ with

\[x_i^{(l)} = \sigma(s_i^{(l)}) , \]

we have

\[\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}) , \]

And since $x_j^{(l-1)}$ influences ℓ only through the $s_i^{(l)}$ with

\[s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)} , \]

we have

\[\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_j \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial x_j^{(l-1)}} \]
Since $s_i^{(l)}$ influences ℓ only through $x_i^{(l)}$ with

$$x_i^{(l)} = \sigma(s_i^{(l)}),$$

we have

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}),$$

And since $x_j^{(l-1)}$ influences ℓ only through the $s_i^{(l)}$ with

$$s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)},$$

we have

$$\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}.$$
\[x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \]

Since \(s_i^{(l)} \) influences \(\ell \) only through \(x_i^{(l)} \) with

\[x_i^{(l)} = \sigma(s_i^{(l)}) , \]

we have

\[\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)}) , \]

And since \(x_j^{(l-1)} \) influences \(\ell \) only through the \(s_i^{(l)} \) with

\[s_i^{(l)} = \sum_j w_{i,j} x_j^{(l-1)} + b_i^{(l)} , \]

we have

\[\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j} . \]
\[x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \]

Since \(w_{i,j}^{(l)} \) and \(b_i^{(l)} \) influences \(\ell \) only through \(s_i^{(l)} \) with

\[
 s_i^{(l)} = \sum_j w_{i,j}^{(l)} x_j^{(l-1)} + b_i^{(l)},
\]
Since $w_{i,j}^{(l)}$ and $b_i^{(l)}$ influences ℓ only through $s_i^{(l)}$ with

$$s_i^{(l)} = \sum_j w_{i,j}^{(l)} x_j^{(l-1)} + b_i^{(l)},$$

we have

$$\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial w_{i,j}^{(l)}}.$$
\[x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)} \]

Since \(w_{i,j} \) and \(b_{i}^{(l)} \) influences \(\ell \) only through \(s_{i}^{(l)} \) with

\[s_{i}^{(l)} = \sum_{j} w_{i,j} x_{j}^{(l-1)} + b_{i}^{(l)}, \]

we have

\[\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_{i}^{(l)}} \frac{\partial s_{i}^{(l)}}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_{i}^{(l)}} x_{j}^{(l-1)}, \]
\[
x^{(l-1)} \xrightarrow{w^{(l)}, b^{(l)}} s^{(l)} \xrightarrow{\sigma} x^{(l)}
\]

Since \(w_{i,j}^{(l)} \) and \(b_i^{(l)} \) influences \(\ell \) only through \(s_i^{(l)} \) with

\[
s_i^{(l)} = \sum_j w_{i,j}^{(l)} x_j^{(l-1)} + b_i^{(l)},
\]

we have

\[
\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} \frac{\partial s_i^{(l)}}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_j^{(l-1)},
\]

\[
\frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}.
\]
To summarize: we can compute $\frac{\partial \ell}{\partial x^{(L)}_i}$ from the definition of ℓ, and recursively propagate backward the derivatives of the loss w.r.t the activations with

$$\frac{\partial \ell}{\partial s^{(l)}_i} = \frac{\partial \ell}{\partial x^{(l)}_i} \sigma'(s^{(l)}_i)$$

and

$$\frac{\partial \ell}{\partial x^{(l-1)}_j} = \sum_i \frac{\partial \ell}{\partial s^{(l)}_i} w^{(l)}_{i,j}.$$
To summarize: we can compute $\frac{\partial \ell}{\partial x_i^{(L)}}$ from the definition of ℓ, and recursively propagate backward the derivatives of the loss w.r.t the activations with

$$\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})$$

and

$$\frac{\partial \ell}{\partial x_j^{(l-1)}} = \sum_i \frac{\partial \ell}{\partial s_i^{(l)}} w_{i,j}^{(l)}.$$

And then compute the derivatives w.r.t the parameters with

$$\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_j^{(l-1)},$$

and

$$\frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}.$$
To write in tensorial form we will use a notation for the Jacobian to make explicit the variable wrt which the derivatives are computed. For $\psi : \mathbb{R}^N \rightarrow \mathbb{R}^M$,

$$\left[\frac{\partial \psi}{\partial x} \right] = \left(\begin{array}{ccc} \frac{\partial \psi_1}{\partial x_1} & \cdots & \frac{\partial \psi_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi_M}{\partial x_1} & \cdots & \frac{\partial \psi_M}{\partial x_N} \end{array} \right),$$

and if $\psi : \mathbb{R}^{N \times M} \rightarrow \mathbb{R}$, we will use the notation

$$\left[\frac{\partial \psi}{\partial w} \right] = \left(\begin{array}{ccc} \frac{\partial \psi}{\partial w_{1,1}} & \cdots & \frac{\partial \psi}{\partial w_{1,M}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \psi}{\partial w_{N,1}} & \cdots & \frac{\partial \psi}{\partial w_{N,M}} \end{array} \right).$$
\[
\begin{align*}
&\frac{\partial l}{\partial x(l-1)} \\
&\frac{\partial l}{\partial b(l)} \\
&\frac{\partial l}{\partial w(l)} \\
&\frac{\partial l}{\partial b(l)} \\
&\sigma
\end{align*}
\]

François Fleuret
\[
\begin{bmatrix}
\frac{\partial \ell}{\partial x(l)}
\end{bmatrix}
\]
\[
\frac{\partial \ell}{\partial s_i^{(l)}} = \frac{\partial \ell}{\partial x_i^{(l)}} \sigma'(s_i^{(l)})
\]
\[
\frac{\partial \ell}{\partial x_j(l-1)} = \sum_i w_{i,j} \frac{\partial \ell}{\partial s_i(l)}
\]
\[
\frac{\partial \ell}{\partial b_i^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}}
\]
\[
\frac{\partial \ell}{\partial w_{i,j}^{(l)}} = \frac{\partial \ell}{\partial s_i^{(l)}} x_{j}^{(l-1)}
\]
\[
\begin{align*}
\frac{\partial \ell}{\partial w^{(l)}} & \quad \frac{\partial \ell}{\partial b^{(l)}} \\
\sigma' & \quad \circ
\end{align*}
\]
Forward pass

Compute the activations.

\[x^{(0)} = x, \quad \forall l = 1, \ldots, L, \quad \left\{ \begin{array}{l} s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\ x^{(l)} = \sigma(s^{(l)}) \end{array} \right. \]
Forward pass

Compute the activations.

\[
x^{(0)} = x, \quad \forall l = 1, \ldots, L,
\begin{cases}
 s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\
 x^{(l)} = \sigma (s^{(l)})
\end{cases}
\]

Backward pass

Compute the derivatives of the loss wrt the activations.

\[
\begin{align*}
\left[\frac{\partial \ell}{\partial x^{(l)}} \right] & \quad \text{from the definition of } \ell \\
\text{if } l < L, \quad \left[\frac{\partial \ell}{\partial x^{(l)}} \right] & = (w^{(l+1)})^\top \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right]
\end{align*}
\]

Compute the derivatives of the loss wrt the parameters.

\[
\begin{align*}
\left[\frac{\partial \ell}{\partial w^{(l)}} \right] & = \left[\frac{\partial \ell}{\partial s^{(l)}} \right] \left(x^{(l-1)} \right)^\top \\
\left[\frac{\partial \ell}{\partial b^{(l)}} \right] & = \left[\frac{\partial \ell}{\partial s^{(l)}} \right].
\end{align*}
\]
Forward pass

Compute the activations.

\[x^{(0)} = x, \quad \forall l = 1, \ldots, L, \]
\[\begin{cases} s^{(l)} = w^{(l)} x^{(l-1)} + b^{(l)} \\ x^{(l)} = \sigma (s^{(l)}) \end{cases} \]

Backward pass

Compute the derivatives of the loss with respect to the activations.

\[\begin{cases} \left[\frac{\partial \ell}{\partial x^{(L)}} \right] \text{ from the definition of } \ell \\ \text{if } l < L, \left[\frac{\partial \ell}{\partial x^{(l)}} \right] = \left(w^{(l+1)} \right)^\top \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right] \end{cases} \]

\[\left[\frac{\partial \ell}{\partial s^{(l)}} \right] = \left[\frac{\partial \ell}{\partial x^{(l)}} \right] \odot \sigma' \left(s^{(l)} \right) \]

Compute the derivatives of the loss with respect to the parameters.

\[\left[\frac{\partial \ell}{\partial w^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right] \left(x^{(l-1)} \right)^\top \quad \left[\frac{\partial \ell}{\partial b^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right]. \]

Gradient step

Update the parameters.

\[w^{(l)} \leftarrow w^{(l)} - \eta \left[\frac{\partial \ell}{\partial w^{(l)}} \right] \quad \quad b^{(l)} \leftarrow b^{(l)} - \eta \left[\frac{\partial \ell}{\partial b^{(l)}} \right] \]
In spite of its hairy formalization, the backward pass is a simple algorithm: apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy computation is concentrated in linear operations, and all the non-linearities go into component-wise operations.
Regarding computation, since the costly operation for the forward pass is

$$s^{(l)} = w^{(l)}x^{(l-1)} + b^{(l)}$$

and for the backward

$$\left[\frac{\partial \ell}{\partial x^{(l)}} \right] = \left(w^{(l+1)} \right)^\top \left[\frac{\partial \ell}{\partial s^{(l+1)}} \right]$$

and

$$\left[\frac{\partial \ell}{\partial w^{(l)}} \right] = \left[\frac{\partial \ell}{\partial s^{(l)}} \right] \left(x^{(l-1)} \right)^\top,$$

the rule of thumb is that the backward pass is twice more expensive than the forward one.
The end