EE-559 – Deep learning

12.3. Word embeddings and translation

François Fleuret
https://fleuret.org/ee559/
Dec 23, 2019
Word embeddings and CBOW
An important application domain for machine intelligence is Natural Language Processing (NLP).

- Speech and (hand)writing recognition,
- auto-captioning,
- part-of-speech tagging,
- sentiment prediction,
- translation,
- question answering.
An important application domain for machine intelligence is Natural Language Processing (NLP).

- Speech and (hand)writing recognition,
- auto-captioning,
- part-of-speech tagging,
- sentiment prediction,
- translation,
- question answering.

While language modeling was historically addressed with formal methods, in particular generative grammars, state-of-the-art and deployed methods are now heavily based on statistical learning and deep learning.
A core difficulty of Natural Language Processing is to devise a proper density model for sequences of words.

Since a vocabulary is usually of the order of $10^4 – 10^6$ words, empirical distributions can not be estimated for more than triplets of words.
The standard strategy to mitigate this problem is to embed words into a geometrical space and exploit regularities for further [statistical] modeling.
The standard strategy to mitigate this problem is to embed words into a geometrical space and exploit regularities for further [statistical] modeling.

The geometry after embedding should account for synonymy, but also for identical word classes, etc. E.g. we would like such an embedding to make “cat” and “tiger” close, but also “red” and “blue”, or “eat” and “work”, etc.
The standard strategy to mitigate this problem is to embed words into a geometrical space and exploit regularities for further [statistical] modeling.

The geometry after embedding should account for synonymy, but also for identical word classes, etc. *E.g.* we would like such an embedding to make “cat” and “tiger” close, but also “red” and “blue”, or “eat” and “work”, etc.

Even though they are not “deep”, classical word embedding models are key elements of NLP with deep-learning.
Let

\[k_t \in \{1, \ldots, W\}, \ t = 1, \ldots, T \]

be a training sequence of \(T \) words, encoded as IDs from a \(W \) words vocabulary.
Let
\[k_t \in \{1, \ldots, W\}, \ t = 1, \ldots, T \]
be a training sequence of \(T \) words, encoded as IDs from a \(W \) words vocabulary.

Given an embedding dimension \(D \), the objective is to learn vectors
\[E_k \in \mathbb{R}^D, \ k \in \{1, \ldots, W\} \]
so that “similar” words are embedded with “similar” vectors.
A common word embedding is the Continuous Bag of Words (CBOW) version of word2vec (Mikolov et al., 2013a).
A common word embedding is the Continuous Bag of Words (CBOW) version of word2vec (Mikolov et al., 2013a).

In this model, the embedding vectors are chosen so that a word can be [linearly] predicted from the sum of the embeddings of words around it.
More formally, let $C \in \mathbb{N}^*$ be a “context size”, and

$$C_t = (k_{t-C}, \ldots, k_{t-1}, k_{t+1}, \ldots, k_{t+C})$$

be the “context” around k_t, that is the indexes of words around it.
The embeddings vectors

\[E_k \in \mathbb{R}^D, \quad k = 1, \ldots, W, \]

are optimized jointly with an array

\[M \in \mathbb{R}^{W \times D} \]

so that the predicted vector of \(W \) scores

\[\psi(t) = M \sum_{k \in C_t} E_k \]

is a good predictor of the value of \(k_t \).
Ideally we would minimize the cross-entropy between the vector of scores $\psi(t) \in \mathbb{R}^W$ and the class k_t

$$\sum_t - \log \left(\frac{\exp \psi(t)_{k_t}}{\sum_{k=1}^W \exp \psi(t)_k} \right).$$

However, given the vocabulary size, doing so is numerically unstable and computationally demanding.
The “negative sampling” approach uses the prediction for the correct class k_t and only $Q \ll W$ incorrect classes $\kappa_{t,1}, \ldots, \kappa_{t,Q}$ sampled at random.

In our implementation we take the later uniformly in $\{1, \ldots, W\}$ and use the same loss as Mikolov et al. (2013b):

$$\sum_t \log \left(1 + e^{-\psi(t)k_t} \right) + \sum_{q=1}^Q \log \left(1 + e^{\psi(t)\kappa_{t,q}} \right).$$

We want $\psi(t)k_t$ to be large and all the $\psi(t)\kappa_{t,q}$ to be small.
Although the operation

\[x \mapsto E_x \]

could be implemented as the product between a one-hot vector and a matrix, it is far more efficient to use an actual lookup table.
The PyTorch module `nn.Embedding` does precisely that. It is parametrized with a number N of words to embed, and an embedding dimension D.

It gets as input an integer tensor of arbitrary dimension $A_1 \times \cdots \times A_U$, containing values in $\{0, \ldots, N - 1\}$ and it returns a float tensor of dimension $A_1 \times \cdots \times A_U \times D$.

If w are the embedding vectors, x the input tensor, y the result, we have

$$y[a_1, \ldots, a_U, d] = w[x[a_1, \ldots, a_U]][d].$$
```python
>>> e = nn.Embedding(10, 3)
>>> x = torch.tensor([[1, 1, 2, 2], [0, 1, 9, 9]], dtype = torch.int64)
>>> e(x)
tensor([[ 0.0386, -0.5513, -0.7518],
        [ 0.0386, -0.5513, -0.7518],
        [-0.4033,  0.6810,  0.1060],
        [-0.4033,  0.6810,  0.1060]],

[[-0.5543, -1.6952,  1.2366],
 [ 0.0386, -0.5513, -0.7518],
 [ 0.2793, -0.9632,  1.6280],
 [ 0.2793, -0.9632,  1.6280]])
```
Our CBOW model has as parameters two embeddings

$$E \in \mathbb{R}^{W \times D} \quad \text{and} \quad M \in \mathbb{R}^{W \times D}.$$

Its forward gets as input a pair of integer tensors corresponding to a batch of size B:

- c of size $B \times 2C$ contains the IDs of the words in a context, and
- d of size $B \times R$ contains the IDs, for each of the B contexts, of the R words for which we want the prediction score (that will be the correct one and Q negative ones).

it returns a tensor y of size $B \times R$ containing the dot products.

$$y[n,j] = \frac{1}{D} M_{d[n,j]} \cdot \left(\sum_i E_{c[n,i]} \right).$$
class CBOW(nn.Module):
 def __init__(self, voc_size = 0, embed_dim = 0):
 super(CBOW, self).__init__()
 self.embed_dim = embed_dim
 self.embed_E = nn.Embedding(voc_size, embed_dim)
 self.embed_M = nn.Embedding(voc_size, embed_dim)

 def forward(self, c, d):
 sum_w_E = self.embed_E(c).sum(1).unsqueeze(1).transpose(1, 2)
 w_M = self.embed_M(d)
 return w_M.matmul(sum_w_E).squeeze(2) / self.embed_dim
Regarding the loss, we can use \texttt{nn.BCEWithLogitsLoss} which implements

\[
\sum_t y_t \log(1 + \exp(-x_t)) + (1 - y_t) \log(1 + \exp(x_t)).
\]

It takes care in particular of the numerical problem that may arise for large values of x_t if implemented “naively”.
Before training a model, we need to prepare data tensors of word IDs from a text file. We will use a 100Mb text file taken from Wikipedia and

- make it lower-cap,
- remove all non-letter characters,
- replace all words that appear less than 100 times with ‘*’,
- associate to each word a unique id.

From the resulting sequence of length T stored in a integer tensor, and the context size C, we will generate mini-batches, each of two tensors

- a 'context' integer tensor c of dimension $B \times 2C$, and
- a 'word' integer tensor w of dimension B.
If the corpus is “The black cat plays with the black ball.”, we will get the following word IDs:

the: 0, black: 1, cat: 2, plays: 3, with: 4, ball: 5.

The corpus will be encoded as

the black cat plays with the black ball
0 1 2 3 4 0 1 5
If the corpus is “The black cat plays with the black ball.”, we will get the following word IDs:

```
the: 0, black: 1, cat: 2, plays: 3, with: 4, ball: 5.
```

The corpus will be encoded as

```
the black cat plays with the black ball
0 1 2 3 4 0 1 5
```

and the data and label tensors will be

<table>
<thead>
<tr>
<th>Words</th>
<th>IDs</th>
<th>c</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>the black cat plays with</td>
<td>0 1 2 3 4</td>
<td>0,1,3,4</td>
<td>2</td>
</tr>
<tr>
<td>black cat plays with the</td>
<td>1 2 3 4 0</td>
<td>1,2,4,0</td>
<td>3</td>
</tr>
<tr>
<td>cat plays with the black</td>
<td>2 3 4 0 1</td>
<td>2,3,0,1</td>
<td>4</td>
</tr>
<tr>
<td>plays with the black ball</td>
<td>3 4 0 1 5</td>
<td>3,4,1,5</td>
<td>0</td>
</tr>
</tbody>
</table>
We can train the model for an epoch with:

```python
for k in range(0, id_seq.size(0) - 2 * context_size - batch_size, batch_size):
    c, w = extract_batch(id_seq, k, batch_size, context_size)

    d = torch.empty(w.size(0), 1 + nb_neg_samples, dtype = torch.int64)
    d.random_(voc_size)
    d[:, 0] = w

    target = torch.empty(d.size())
    target.narrow(1, 0, 1).fill_(1)
    target.narrow(1, 1, nb_neg_samples).fill_(0)

    output = model(c, d)
    loss = bce_loss(output, target)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```
As results, some nearest-neighbors for the cosine distance between the embeddings

\[d(w, w') = \frac{E_w \cdot E_{w'}}{\|E_w\| \|E_{w'}\|}. \]

<table>
<thead>
<tr>
<th></th>
<th>bike</th>
<th>cat</th>
<th>fortress</th>
<th>powerful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paris</td>
<td>bicycle</td>
<td>cats</td>
<td>fortresses</td>
<td>formidable</td>
</tr>
<tr>
<td>0.61</td>
<td>0.61</td>
<td>0.55</td>
<td>0.61</td>
<td>0.47</td>
</tr>
<tr>
<td>France</td>
<td>bicycles</td>
<td>dog</td>
<td>citadel</td>
<td>power</td>
</tr>
<tr>
<td>0.59</td>
<td>0.51</td>
<td>0.54</td>
<td>0.55</td>
<td>0.44</td>
</tr>
<tr>
<td>Brussels</td>
<td>bikes</td>
<td>kitten</td>
<td>castle</td>
<td>potent</td>
</tr>
<tr>
<td>0.55</td>
<td>0.51</td>
<td>0.49</td>
<td>0.55</td>
<td>0.44</td>
</tr>
<tr>
<td>Bordeaux</td>
<td>biking</td>
<td>feline</td>
<td>fortifications</td>
<td>fearsome</td>
</tr>
<tr>
<td>0.53</td>
<td>0.49</td>
<td>0.44</td>
<td>0.52</td>
<td>0.40</td>
</tr>
<tr>
<td>Toulouse</td>
<td>motorcycle</td>
<td>pet</td>
<td>forts</td>
<td>destroy</td>
</tr>
<tr>
<td>0.51</td>
<td>0.47</td>
<td>0.42</td>
<td>0.51</td>
<td>0.40</td>
</tr>
<tr>
<td>Vienna</td>
<td>cyclists</td>
<td>dogs</td>
<td>siege</td>
<td>wielded</td>
</tr>
<tr>
<td>0.51</td>
<td>0.43</td>
<td>0.40</td>
<td>0.50</td>
<td>0.39</td>
</tr>
<tr>
<td>Strasbourg</td>
<td>riders</td>
<td>kittens</td>
<td>stronghold</td>
<td>versatile</td>
</tr>
<tr>
<td>0.51</td>
<td>0.42</td>
<td>0.40</td>
<td>0.49</td>
<td>0.38</td>
</tr>
<tr>
<td>Munich</td>
<td>sled</td>
<td>hound</td>
<td>castles</td>
<td>capable</td>
</tr>
<tr>
<td>0.49</td>
<td>0.41</td>
<td>0.39</td>
<td>0.49</td>
<td>0.38</td>
</tr>
<tr>
<td>Marseille</td>
<td>triathlon</td>
<td>squirrel</td>
<td>monastery</td>
<td>strongest</td>
</tr>
<tr>
<td>0.49</td>
<td>0.41</td>
<td>0.39</td>
<td>0.48</td>
<td>0.38</td>
</tr>
<tr>
<td>Rouen</td>
<td>car</td>
<td>mouse</td>
<td>besieged</td>
<td>able</td>
</tr>
<tr>
<td>0.48</td>
<td>0.41</td>
<td>0.38</td>
<td>0.48</td>
<td>0.37</td>
</tr>
</tbody>
</table>
An alternative algorithm is the skip-gram model, which optimizes the embedding so that a word can be predicted by any individual word in its context (Mikolov et al., 2013a).

(Mikolov et al., 2013a)

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do $R \times 2$ word classifications, with the current word as input, and each of the $R + R$ words as output. In the following experiments, we use $C = 10$.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table showing example words and their most similar words, and understand them intuitively. Although it is easy to show that word France is similar to Italy and perhaps some other countries, it is much more challenging when subjecting those vectors in a more complex similarity task, as follows. We follow previous observation that there can be many different types of similarities between words, for example, word big is similar to bigger in the same sense that small is similar to smaller. Example of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further denote two pairs of words with the same relationship as a question, as we can ask: “What is the word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations with the vector representation of words. To find a word that is similar to small in the same sense as biggest is similar to big, we can simply compute vector $X = \text{vector}("\text{biggest}") - \text{vector}("\text{big}") + \text{vector}("\text{small}"). Then, we search in the vector space for the word closest to X measured by cosine distance, and use it as the answer to the question (we discard the input question words during this search). When the word vectors are well trained, it is possible to find the correct answer (word smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the resulting vectors can be used to answer very subtle semantic relationships between words, such as a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors with such semantic relationships could be used to improve many existing NLP applications, such as machine translation, information retrieval and question answering systems, and may enable other future applications yet to be invented.
Trained on large corpora, such models reflect semantic relations in the linear structure of the embedding space. E.g.

\[E[paris] - E[france] + E[italy] \approx E[rome] \]
Trained on large corpora, such models reflect semantic relations in the linear structure of the embedding space. *E.g.*

\[E_{[\text{paris}]} - E_{[\text{france}]} + E_{[\text{italy}]} \approx E_{[\text{rome}]} \]

Table 8: *Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-gram model trained on 783M words with 300 dimensionality).*

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>France - Paris</td>
<td>Italy: Rome</td>
<td>Japan: Tokyo</td>
<td>Florida: Tallahassee</td>
</tr>
<tr>
<td>big - bigger</td>
<td>small: larger</td>
<td>cold: colder</td>
<td>quick: quicker</td>
</tr>
<tr>
<td>Miami - Florida</td>
<td>Baltimore: Maryland</td>
<td>Dallas: Texas</td>
<td>Kona: Hawaii</td>
</tr>
<tr>
<td>Einstein - scientist</td>
<td>Messi: midfielder</td>
<td>Mozart: violinist</td>
<td>Picasso: painter</td>
</tr>
<tr>
<td>Sarkozy - France</td>
<td>Berlusconi: Italy</td>
<td>Merkel: Germany</td>
<td>Koizumi: Japan</td>
</tr>
<tr>
<td>copper - Cu</td>
<td>zinc: Zn</td>
<td>gold: Au</td>
<td>uranium: plutonium</td>
</tr>
<tr>
<td>Berlusconi - Silvio</td>
<td>Sarkozy: Nicolas</td>
<td>Putin: Medvedev</td>
<td>Obama: Barack</td>
</tr>
<tr>
<td>Microsoft - Windows</td>
<td>Google: Android</td>
<td>IBM: Linux</td>
<td>Apple: iPhone</td>
</tr>
<tr>
<td>Microsoft - Ballmer</td>
<td>Google: Yahoo</td>
<td>IBM: McNealy</td>
<td>Apple: Jobs</td>
</tr>
<tr>
<td>Japan - sushi</td>
<td>Germany: bratwurst</td>
<td>France: tapas</td>
<td>USA: pizza</td>
</tr>
</tbody>
</table>

(Mikolov et al., 2013a)
The main benefit of word embeddings is that they are trained with unsupervised corpora, hence possibly extremely large.

This modeling can then be leveraged for small-corpora tasks such as

- sentiment analysis,
- question answering,
- topic classification,
- etc.
Sequence-to-sequence translation
Sequence of words representing the answer. It is therefore clear that a domain-independent method that learns to map sequences to sequences would be useful.

Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and outputs is known and fixed. In this paper, we show that a straightforward application of the Long Short-Term Memory (LSTM) architecture [16] can solve general sequence to sequence problems. The idea is to use one LSTM to read the input sequence, one time step at a time, to obtain large fixed-dimensional vector representation, and then to use another LSTM to extract the output sequence from that vector (fig. 1). The second LSTM is essentially a recurrent neural network language model [28, 23, 30] except that it is conditioned on the input sequence. The LSTM's ability to successfully learn on data with long range temporal dependencies makes it a natural choice for this application due to the considerable time lag between the inputs and their corresponding outputs (fig. 1).

There have been a number of related attempts to address the general sequence to sequence learning problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18] who were the first to map the entire input sentence to vector, and is related to Cho et al. [5] although the latter was used only for rescoring hypotheses produced by a phrase-based system. Graves [10] introduced a novel differentiable attention mechanism that allows neural networks to focus on different parts of their input, and an elegant variant of this idea was successfully applied to machine translation by Bahdanau et al. [2]. The Connectionist Sequence Classification is another popular technique for mapping sequences to sequences with neural networks, but it assumes a monotonic alignment between the inputs and the outputs [11].

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the input sentence in reverse, because doing so introduces many short term dependencies in the data that make the optimization problem much easier.

The main result of this work is the following. On the WMT’14 English to French translation task, we obtained a BLEU score of 34.81 by directly extracting translations from an ensemble of 5 deep LSTMs (with 384M parameters and 8,000 dimensional state each) using a simple left-to-right beam-search decoder. This is by far the best result achieved by direct translation with large neural networks. For comparison, the BLEU score of an SMT baseline on this dataset is 33.30 [29]. The 34.81 BLEU score was achieved by an LSTM with a vocabulary of 80k words, so the score was penalized whenever the reference translation contained a word not covered by these 80k. This result shows that a relatively unoptimized small-vocabulary neural network architecture which has much room for improvement outperforms a phrase-based SMT system.

Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline by 3.2 BLEU points and is close to the previous best published result on this task (which is 37.0 [9]). Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other researchers with related architectures [26]. We were able to do well on long sentences because we reversed the order of words in the source sentence but not the target sentences in the training and test set. By doing so, we introduced many short term dependencies that made the optimization problem much simpler (see sec. 2 and 3.3). As a result, SGD could learn LSTMs that had no trouble with long sentences. The simple trick of reversing the words in the source sentence is one of the key technical contributions of this work.

A useful property of the LSTM is that it learns to map an input sentence of variable length into a fixed-dimensional vector representation. Given that translations tend to be paraphrases of the source sentences, the translation objective encourages the LSTM to find sentence representations that capture their meaning, as sentences with similar meanings are close to each other while different sentences are far away from each other in the vector space (Sutskever et al., 2014).
English to French translation.

Training:

- corpus 12M sentences, 348M French words, 30M English words,
- LSTM with 4 layers, one for encoding, one for decoding,
- 160,000 words input vocabulary, 80,000 output vocabulary,
- 1,000 dimensions word embedding, 384M parameters total,
- input sentence is reversed,
- gradient clipping.

The hidden state that contains the information to generate the translation is of dimension $8,000$.

Inference is done with a “beam search”, that consists of greedily increasing the size of the predicted sequence while keeping a bag of K best ones.
Comparing a produced sentence to a reference one is complex, since it is related to their semantic content.

A widely used measure is the BLEU score, that counts the fraction of groups of one, two, three and four words (aka “n-grams”) from the generated sentence that appear in the reference translations (Papineni et al., 2002).

The exact definition is complex, and the validity of this score is disputable since it poorly accounts for semantic.
Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of size 12.

(Sutskever et al., 2014)
Ulrich UNK, membre du conseil d’administration du constructeur automobile Audi, affirme qu’il s’agit d’une pratique courante depuis des années pour que les téléphones portables puissent être collectés avant les réunions du conseil d’administration afin qu’ils ne soient pas utilisés comme appareils d’écoute à distance.

Ulrich Hackenberg, membre du conseil d’administration du constructeur automobile Audi, déclare que la collecte des téléphones portables avant les réunions du conseil, afin qu’ils ne puissent pas être utilisés comme appareils d’écoute à distance, est une pratique courante depuis des années.

“Les téléphones cellulaires, qui sont vraiment une question, non seulement parce qu’ils pourraient potentiellement causer des interférences avec les appareils de navigation, mais nous savons, selon la FCC, qu’ils pourraient interférer avec les tours de téléphone cellulaire lorsqu’ils sont dans l’air”, dit UNK.

“Les téléphones portables sont véritablement un problème, non seulement parce qu’ils pourraient éventuellement créer des interférences avec les instruments de navigation, mais parce que nous savons, d’après la FCC, qu’ils pourraient perturber les antennes-relais de téléphonie mobile s’ils sont utilisés à bord”, a déclaré Rosenker.

Avec la crémation, il y a un “sentiment de violence contre le corps d’un être cher”, qui sera “réduit à une pile de cendres” en très peu de temps au lieu d’un processus de décomposition “qui accompagnera les étapes du deuil”.

Il y a, avec la crémation, “une violence faite au corps aimé”, qui va être “réduit à un tas de cendres” en très peu de temps, et non après un processus de décomposition, qui “accompagnerait les phases du deuil”.

Table 3: A few examples of long translations produced by the LSTM alongside the ground truth translations. The reader can verify that the translations are sensible using Google translate.

(Sutskever et al., 2014)
Our model Ulrich UNK, membre du conseil d’administration du constructeur automobile Audi, affirme qu’il s’agit d’une pratique courante depuis des années pour que les téléphones portables puissent être collectés avant les réunions du conseil d’administration afin qu’ils ne soient pas utilisés comme appareils d’écoute à distance.

Ulrich Hackenberg, membre du conseil d’administration du constructeur automobile Audi, déclare que la collecte des téléphones portables avant les réunions du conseil, afin qu’ils ne puissent pas être utilisés comme appareils d’écoute à distance, est une pratique courante depuis des années.

“Les téléphones cellulaires, qui sont vraiment une question, non seulement parce qu’ils pourraient potentiellement causer des interférences avec les appareils de navigation, mais nous savons, selon la FCC, qu’ils pourraient interférer avec les tours de téléphone cellulaires lorsqu’ils sont dans l’air”, dit UNK.

“Les téléphones portables sont véritablement un problème, non seulement parce qu’ils pourraient éventuellement créer des interférences avec les instruments de navigation, mais parce que nous savons, d’après la FCC, qu’ils pourraient perturber les antennes-relais de téléphonie mobile s’ils sont utilisés à bord”, a déclaré Rosenker.

Avec la crémation, il y a un “sentiment de violence contre le corps d’un être cher”, qui sera “réduit à une pile de cendres” en très peu de temps au lieu d’un processus de décomposition “qui accompagnera les étapes du deuil”.

Il y a, avec la crémation, “une violence faite au corps aimé”, qui va être “réduite à un tas de cendres” en très peu de temps, et non après un processus de décomposition, qui “accompagnerait les phases du deuil”.

Figure 3: The left plot shows the performance of our system as a function of sentence length, where the x-axis corresponds to the test sentences sorted by their length and is marked by the actual sequence lengths. There is no degradation on sentences with less than 35 words, there is only a minor degradation on the longest sentences. The right plot shows the LSTM’s performance on sentences with progressively more rare words, where the x-axis corresponds to the test sentences sorted by their “average word frequency rank”.

(Sutskever et al., 2014)
Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of size 12.

<table>
<thead>
<tr>
<th>Method</th>
<th>test BLEU score (ntst14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahdanau et al. [2]</td>
<td>28.45</td>
</tr>
<tr>
<td>Baseline System [29]</td>
<td>33.30</td>
</tr>
<tr>
<td>Single forward LSTM, beam size 12</td>
<td>26.17</td>
</tr>
<tr>
<td>Single reversed LSTM, beam size 12</td>
<td>30.59</td>
</tr>
<tr>
<td>Ensemble of 5 reversed LSTMs, beam size 1</td>
<td>33.00</td>
</tr>
<tr>
<td>Ensemble of 2 reversed LSTMs, beam size 12</td>
<td>33.27</td>
</tr>
<tr>
<td>Ensemble of 5 reversed LSTMs, beam size 2</td>
<td>34.50</td>
</tr>
<tr>
<td>Ensemble of 5 reversed LSTMs, beam size 12</td>
<td>34.81</td>
</tr>
</tbody>
</table>

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English to French test set (ntst14).

<table>
<thead>
<tr>
<th>Method</th>
<th>test BLEU score (ntst14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cho et al. [5]</td>
<td>34.54</td>
</tr>
<tr>
<td>Best WMT’14 result [9]</td>
<td>37.00</td>
</tr>
<tr>
<td>Rescoring the baseline 1000-best with a single forward LSTM</td>
<td>35.61</td>
</tr>
<tr>
<td>Rescoring the baseline 1000-best with a single reversed LSTM</td>
<td>35.85</td>
</tr>
<tr>
<td>Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs</td>
<td>36.50</td>
</tr>
<tr>
<td>Oracle Rescoring of the Baseline 1000-best lists</td>
<td>∼45</td>
</tr>
</tbody>
</table>

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantitatively in figure 3. Table 3 presents several examples of long sentences and their translations.

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that both clusters have similar internal structure.

(Sutskever et al., 2014)
The end
References

